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We assume that the basic concepts and tools of linear algebra are known at the analytical level
as in Strang [2] and hopefully also at the numerical level as in Golub & Van Loan [1]. Herein we
only summarize a few ideas and results on (i) linear equations using least squares and (ii) matrix
factorizations emphasizing SVD, as a supplement of the linear methods in this book. Our exposition
follows Strang [2].

1 Linear Equations and Least Squares

To solve a system of m linear equations in n unknowns, represented by the matrix equation

Ax = b

it greatly helps if we consider the four fundamental spaces related to matrix A and their geometry,
depicted in Fig. 1(a). We can assume that all coefficients and unknowns are real numbers. Thus,
A represents a linear transformation from Rn to Rm, whose range space is R(A) and null space is
N (A). Its rank is

r , rank(A) ≤ min(m,n)

Then the following theorem summarizes some algebraic and geometric properties of the range and
null spaces of A and its transpose.

Theorem 1 (Fundamental Theorem of Linear Algebra)
(a) The dimensions of the four fundamental spaces of a real m× n matrix A are:

column space : dim R(A) = r

row space : dim R(AT ) = r
null space : dim N (A) = n− r

left null space : dim N (AT ) = m− r

(1)

(b) In Rm, the orthogonal complement of the column space of A is the null space of its transpose.
In Rn, the orthogonal complement of the null space of A is the row space of its transpose.

It can be shown that the above theorem can also be extended to a complex matrix A, by using
the Hermitian of the matrix instead of its transpose and by viewing the matrix as a linear map
from Cn to Cm.
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Figure 1: (a) The four fundamental subspaces in solving Ax = b of m linear equations in n unknowns. (b) The
geometry of the pseudo-inverse in the least-squares solution. (Figure from Strang [2].)

As Fig. 1(a) shows, the mapping between the row and column spaces is always invertible. The
existence and uniqueness of the solution depend on the relationships among r,m, n and on b. We
distinguish two cases.

Case I (Full Rank): r = min(m,n):
If r = m ≤ n (independent rows), then there exists at least one solution. Namely, every vector
b belongs to the column space and comes from a unique vector xr in the row space such that
Axr = b. The full solution will be x = xr +xn, where xn belongs to the null space. If r = m = n,
the solution is unique, i.e. xn = 0, and can be found using the matrix inverse: x = xr = A−1b.
If r = m < n, there is an infinite set of solutions created by selecting any nonzero xn from the
(n− r)-dimensional null space.

If r = n < m (independent columns), we have at most one solution. Let us consider first the
most frequent case where b ̸∈ R(A) and we have an inconsistent system of equations which has
no solution. However, we can search for a least squares solution that minimizes the Euclidean
norm of the approximation error:

x̂ = argmin
x

∥Ax− b∥ (2)

This approximate solution is obtained by solving the n× n system of normal equations

ATAx̂ = ATb

Note that ATA is invertible since A has independent columns. Hence, the least squares solution is

x̂ = A†b, A† , (ATA)−1AT (3)

where A† is the Moore-Penrose pseudo-inverse of the matrix A. A geometrical insight can be
gained if we realize that the orthogonal projection of b onto the column space is the vector

p = Ax̂ = AA†b
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Now, in the rare case where b belongs to the column space of A the result (3) becomes a unique
solution of the original system Ax = b. This is an exact solution with zero approximation error.

Case II (Low Rank): r < min(m,n):
Now both the rows and the columns of A are linearly dependent. Since the most general and
interesting case is when b does not belong to the column space, consider the projection p of b onto
the column space; see Fig. 1(b). We are generally interested in least squares solutions x̂ as in (2).
(Of course, if b belongs to the column space, these solutions become exact and yield zero error.)
There exists at least one such solution; it is the unique vector x̂r in the row space with Ax̂r = p.
Unfortunately, this solution is not unique because r < n. Specifically, we can obtain an infinite
number of least squares solutions x̂ = x̂r+ x̂n by adding orthogonal vectors x̂n from the null space.
However, if we select x̂n = 0, this will give us a unique solution with minimum norm. Thus, by
adding the constraint that the least squares solution x̂ should also have minimum norm ∥x̂∥, we
find that x̂r is the unique least squares solution with minimum length, denoted henceforth by x+.
This can be found as x+ = A+b where A+ is the most general pseudo-inverse matrix of A and
can be computed using its singular value decomposition (SVD), as explained next.

2 Matrix Factorizations

For greater generality, we shall assume complex matrices A. The two most frequent differences
from the real case are: (i) the transpose MT of a real matrix M is replaced by the conjugate
transpose AH , and (ii) real symmetric matrices M = MT are replaced by Hermitian matrices
A = AH .

2.1 Triangular factorizations

From Gauss elimination, assuming that row exchanges are not required, any square matrix A can
be factored as A = LDU , where L and U are lower and upper triangular, respectively, with unit
diagonals, and D is the diagonal matrix of pivots. If A is invertible, this factorization is unique.
If A is Hermitian, then U = LH and we obtain the

A = LDLH (4)

If A is Hermitian and positive semidefinite, then D has nonnegative diagonal; hence, the
triangular factorization becomes

A = L
√
D
√
DLH = L

√
D(L

√
D)H (5)

which is a product of a lower triangular matrix with its conjugate transpose. Often, the above
factorization, called Cholesky decomposition, is more compactly written as in (4).

2.2 Spectral decomposition

Any n× n matrix A that has n linearly independent eigenvectors accepts an eigenvalue decompo-
sition

A = V ΛV −1 (6)

where V contains as columns the eigenvectors v1, ...,vn and Λ is a diagonal matrix that contains
the eigenvalues λ1, ..., λn. This factorization is also called diagonalization of A.

Normal matrices A, i.e. matrices with the property AAH = AHA, are exactly those square
matrices that possess a complete set of orthonormal eigenvectors and hence can be diagonalized
by a unitary matrix Q = [q1, ..., qn]. Special cases of normal matrices are the Hermitian matrices.
Thus, the spectral theorem of linear algebra states that, any Hermitian matrixA accepts a harmonic
decomposition as

A = QΛQ−1 = QΛQH =
n∑

i=1

λiqiq
H
i (7)
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where all the eigenvalues are real. If A is Hermitian and positive semidefinite, then the eigenvalues
are nonnegative. The general harmonic decomposition obviously applies to any real symmetric
matrix A, with the simplification that Q is a real orthogonal matrix.

2.3 Factorization of Symmetric Positive-definite Matrices

A square matrix A is Hermitian and positive semidefinite iff it can be factored as

A = RHR (8)

where R is any matrix. Further, A is positive definite iff R has independent columns. Three
choices for R are:
(1) From the Cholesky decomposition of A, we can choose R to be the upper triangular matrix√
DLH .

(2) A different choice results from the harmonic decomposition of A, by setting R =
√
ΛQH .

(3) Another factorization based on the harmonic decomposition is:

A = R2, R = Q
√
ΛQH (9)

The above choice for R is called the Hermitian positive semidefinite square root of A.

2.4 Singular Value Decomposition (SVD)

Any (real or complex) m× n matrix A can be factored as

A = USV H =
r∑

i=1

σiuiv
H
i (10)

where the m×m matrix U is unitary and its columns u1, ...,um are the eigenvectors of AAH , the
n× n matrix V is unitary and its columns v1, ...,vn are the eigenvectors of AHA, and the m× n
matrix S is real diagonal whose only nonzero elements are its r diagonal terms σ1, σ2, ..., σr > 0,
called singular values, with

r , rank(A) = rank(AAH) = rank(AHA)

The singular values are the square roots of the common nonzero eigenvalues σ2
i , i = 1, ..., r, of both

AAH and AHA.
Thus, the SVD of A is related to the spectral decomposition of the Hermitian AAH as follows:

AAH = USSTUH =
r∑

i=1

σ2
i uiu

H
i (11)

Similarly for the other Hermitian product:

AHA = V STSV H =

r∑
i=1

σ2
i viv

H
i (12)

If A is real, the only difference in its SVD (compared to the complex case) is that U and V are real
orthogonal matrices. If A is Hermitian and positive semidefinite, its SVD is identical to its spectral
decomposition QΛQH . If A is indefinite, then any negative eigenvalue in Λ becomes positive in
S.

The columns of U and V provide orthonormal bases for all four fundamental subspaces of A:

R(A) = column space = span({u1, ...,ur})
R(AH) = row space = span({v1, ...,vr})
N (A) = null space = span({vr+1, ...,vn})

N (AH) = left null space = span({ur+1, ...,um})
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These bases are interrelated since
AV = US (13)

Hence, Avi = σiui for i = 1, ..., n. For i > r, we set σi = 0.

Applications of SVD:

(1) Effective Rank : Keep only the singular values above a threshold that determines the nu-
merical precision.

(2) Image/Signal Compact Representation: Use only a few large singular values to approxi-
mately represent A using a truncated version of (10).

(3) Polar Decomposition: Factorize a (real or complex) square matrix A as QC where Q is
unitary and C is Hermitian positive semidefinite. (If A is invertible, C is positive definite.)

A = QC, Q = UV H , C = V SV H (14)

This has applications in robotics where Q represents rotation or reflection, and C represents co-
ordinate stretching or compression by the factors σ1, ...σr. Actually, C is the Hermitian positive
definite square root of AHA.

(4) Least Squares: Theminimum length least squares solution to the set of linear equations
Ax = b is the vector x+ such that

x+ , argmin
x̂

∥x̂∥, x̂ = argmin
x

∥Ax− b∥ (15)

Equivalently, the vector x+ is the minimum-norm solution of Ax̂ = p where p is the orthogonal
projection of b onto the column space of A; see Fig. 1(b). Using the SVD of A, let us define the
general pseudo-inverse of A by the n×m matrix

A+ , V S+UH (16)

where S+ is a n×m diagonal matrix with 1/σ1, ..., 1/σr as its only nonzero diagonal terms. Note a
few properties of the pseudo-inverse: (A+)+ = A. Further, if r = n < m, then A+ becomes equal
to the Moore-Penrose pseudo-inverse (AHA)−1AH . Finally, if r = m = n, then A+ coincides with
the standard matrix inverse A−1.

Now, based on the pseudo-inverse, the optimal solution of (15) can easily be found as

x+ = A+b = V S+UHb (17)

Decomposing the action of A+ by looking at its three factors, the multiplication UHb creates
m components of b in the orthonormal basis (u1, ...,um), from which the first r account for its
projection p onto the column space whereas the last m− r components account for its projection
b−p onto the left null space. Then, the multiplication with S+ zeros the components of b−p and
inverts the components of p along the r orthogonal directions. Finally the multiplication with V
brings the resulting vector into the row space spanned by the orthonormal basis (v1, ...,vr). The
above total action of the pseudo-inverse can be summarized by

Ax+ = p , p ⊥ b− p
A+p = x+ , A+(b− p) = 0

In general the SVD has excellent performance for numerical matrix computations.
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