Introduction to Supervised Learning
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Lecture outline

Introduction to Support Vector Machines

Geometric margins
Training criterion & hinge loss

Large margins and generalization
Optimization
Kernels

Applications to vision




Our path so far (week 1-2)

Week 1 - regression: geometric Week 2: probabilistic interpretation
(euclidean distance) | .

1_
%
0_

1t

P = oy (W)

202

V2mo

Week 2: switch to classification

geometry + classification?




Week 2: log loss vs. quadratic loss
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Quadratic loss

I(y. f(x)) = (1 —yf(x))

0
y f(x)

1

Log loss
[(y, f(x)) = log(1 + exp(—y f(x)))




Do we need the logistic loss?

Week 2: Useful criterion for training classifiers
Maybe we can quickly hack an easy algorithm
Least squares: Gauss, 1795

Logistic Regression: Cox, 1958
Perceptrons, Minsky & Papert, 1969




Perceptron algorithm

* Initialize w =0
* Cycle though the data points { x;, y; }
« if x; is misclassified then w <— w + asign(f(x;)) x;

« Until all the data is correctly classified

before update after update

W W — aX;

after convergence w = YN a;x;




Perceptron algorithm (first ‘neural network’)

Perceptron
example

« if the data is linearly separable, then the algorithm will converge
» convergence can be slow ...

« separating line close to training data
This lecture: push it far away!




Which classifier is best?

All points should lie clearly on the correct side of the boundary
How can we quantify this?

How can we enforce this?




Functional Margins

Consider Logistic Regression:

1

P(y = 1|x;w) = g(w' x) = 1 + exp(—wix)

ideally: wix! > 0, if yz =1

wlix' <0, if y'=-1
Put together: yz (WTXi) > ()

“functional margin’

Problem: scaling w changes functional margin, but not decision boundary




Geometric Margins

y >0 L2
y <0 .
Ro Discriminant

y(x) =wix+b

What is the
distance of this
point from the
decision
boundary?

X

L




Geometric Margins
X | : projection of x on decision boundary

: T T
y >0 ’ w' x, +b=0
.y:o
y <0

R,y Discriminant

y(x) =wix+b




Geometric Margins

N
y >0 22

y =10
y <0

Ry Discriminant

y(x) =wix+b




Geometric Margins

Point = projection + distance™ direction

W
X=X +7 ’W’ Note: y is independent of |w|

Multiply:

Rewrite ( WTXJ_ +b=0):
TX

W

Solve for v: v =
W




Geometric Margins

y >0 22
y =0
y <0
Ry

(Wb
Geometric Margln: ;=Y ‘W’X + ’W|

(positive if x is on the correct size of the decision boundary)



Which classifier is best?

All points should lie clearly on the correct side of the boundary

How can we quantify this? (large margins!)

How can we enforce this?
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What should we be optimizing?

Training set: {(Xl, yl), Cey (XN, yN)}

Candidate parameter vector: (W, b)

; wlixt+ b

Related margins: Y=y

A A
A A,
AAAA

A

Should we be optimizing the mean, max, min margin®?

All points should lie clearly on the correct side of the boundary
1) Take points that do not lie clearly on the correct side

2) Make sure they do



Support vectors: rardQSt ?omts Least clear positives
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Support Vector Machine (SVM)

° ; Least clear positives

wix+b=0
®

Least clear negatives
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f(:c) — Z Y (xiTx) +b .

o
support vectors Solution depends only on
hardest points




lt clear positives

Support Vector Machine (SY(M
- i

.....-’.. wa +b=0
Ic

Least clear negatives
b

o
[[wl

Support Vector@'y

v

) = E oyi(x; Tx) +b
[

o
support vectors
Solution depends only on ‘Support Vectors’
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SVM, sketch of derivation

e Since w' x+b =0 and ¢(w'x+ b) = 0 define the
same plane, we have the freedom to choose the nor-
malization

e Choose normalization such that w'xy +b= +1 and

w x_+b= —1 for the positive and negative support
vectors respectively

e [ hen the margin is given by




Support Vector Machine (SVM)

4




Representer theorem
Objective: find w that maximizes the margin subject to margin constraints

Equivalently:

S.t.

Representer Theorem: we can prove that the minimum is a
linear combination of the training points

N
wt — Zai <szz)
1=1




Geometric algorithm

« Compute the convex hull of the positive points, and the
convex hull of the negative points

* For each pair of points, one on positive hull and the other
on the negative hull, compute the margin

» Choose the largest margin




Intuitive justification of theorem

Support Vector@

* only need to consider points on hul'l"
(internal points irrelevant) for separation




Support Vector Machine (SVM)

4




Primal and dual problems

Primal, in terms of w: min HWH2
A%
st y'(wlix'+b)>1, Vi

But: ||W ||2 <W W >

W _Za

N N
<Zazyzxz Zajy X‘7> — S: S:Oé’bajy%yj <Xi,Xj>

1131

Dual, interms of & = (a1, ..., aN): mlnYYOz Oz]yy X X‘7>

1=1 7=1
N
E &Jyj
j=1




Primal vs dual

Primal:  min|w]? w e RP - O(D?)

sty (wixi+b)>1, Vi

— cRY — O(N?)
. - i i d (5t 5T o
Dual: Hgng E a'odyty? (x°x7)

z'ljl

Z o’ ' \4)

Dual can be faster if N<D!

Primal and dual classifier forms: N
f(x) = (w,x) +b=) a'y(x',x)+b
1=1

Dual form involves only inner products of features (=> kernel trick)




What is the “best” decision plane?

A A
A A,

A AAA ,
AasdA
® A AA
A

All points on the But this looks
correct side! better overall!

Best: understood at test time

Maybe we could sacrifice classifying some training points correctly




Tuning the model’s complexity

A flexible model approximates the target function well in the training set

but can “overtrain” and have poor performance on the test set (“variance”

A rigid model’s performance is more predictable in the test set

but the model may not be good even on the training set (“bias’)

High Bias Low Bias

Low Variance High Variance

Test Sample

Prediction Error

/

Training Sample

Model Complexity




Slack variables: let us make (but also pay) some errors
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Objective for non-separable data

newcomers

§i
Misclassified ®\[w][ ~ !

point

misclassification when ¢>1 o

> £ :upper bound on number of errors suport vectorg”

C: hyperparameter

(cross-validation!)




Primal problem: for w € R?

N
" 2 . T .
min wl|lc+ C - subjecttoy; |l w'x; +b)>1—-¢& fori=1...N
e W2+ 036 yi (Wx; +b) ¢

The constraint y; (wai + b) > 1—¢&;, can be written more concisely as

vif(x;) >1-&
which is equivalent to
&= [1—yif(x)]+

where [.]4 indicates the positive part. Hence the optimization problem is
equivalent to

N
min [[w||?+C Y [1 -y f(x:)]4
weRd i\ y
wJ .

regularization loss function




Loss function

Optimization problem:

Rewrite constraint: y hw b( ) > 1 — gl
Compact form: 5 [1 — hw b( )]—I-

= max(1 — 4" hw.p(x), 0)

What if we plug that in the optimization objective?




Loss function

N
T 1 . )
Optlmlzatlon problem: L(W) — §”W”2 + E 1113,}(((), 1 — yzh‘w’b(l’,z))
1=1

7

N
o Alwl* + ) max(0,1 - y'hws(2"))
1=1 e

] l(y*,x")
regularizer additive loss
I(y,f(x))

Hinge loss:




getting larger than 1:
does not harm, but also

I(y,f(X)) does not help

Hinge loss vs log-loss

0/




Hinge loss vs log-loss vs quadratic

I(y,f(X))
—0/1
——Quadratic loss |

121 —Log loss
—Hinge

16

14+

10+
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Generalization Error

o What is model complexity?

o Number of parameters, magnitude of discriminant w?
o Analyze complexity of hypothesis class

o Linear classifiers:
o Different decision boundaries
o Different generalization performance
o Test error > training error
o Which line gives smallest test error?




Learning Theory

o V. Vapnik, 1968
o Mainstream Statistics: Large-sample analysis (‘in the limit’)
o Pattern Recognition: Small sample properties

o Distribution-free bounds on worst performance




Empirical and Actual risk

 Empirical risk
» Measured on the training/validation set

]\?
1
Remp(a) = N E L(yi, f(xi: )
i=1

e Actual risk (= Expected risk)

- Expectation of the error on all data.

R(a) = /L(yi,f(xt a))dPx,y (X, y)

- Pxy(X.y) is the probability distribution of (x.y).
It is fixed, but typically unknown.




Actual and Empirical Risk

e |dea

» Compute an upper bound on the actual risk based on the
empirical risk

R(a) < Remp(a) +€(N,p™, h)

» where

N: number of training examples
p": probability that the bound is correct

h: capacity of the learning machine (“VC-dimension”)




Vapnik Chervonenkis (VC) Dimension

Shattering: If a given set of ( points can be labeled in all possible 2" ways,
and for each labeling, a member of the set { f(a.)} can be found
which correctly assigns those labels, we say that the set of
points is shattered by the set of functions.

VC dimension The VC dimension for the set of functions { f(a)} is defined as
the maximum number of training points that can be shattered

by { f(a)}.

e} ] o
° o o}

-~
~

S A

« Example




Arbitrary linear classifier in N-dimensions: VC-dim= N+1

3 points shattered 4 points impossible




Reminder: K-nearest neighbor classifier

R
+ +

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

—Compute distance to other training records
—ldentify K nearest neighbors
—Take majority vote




Training data for NN classifier (in R?)

o
'l"::. o ¢




1-nn classifier prediction (in R?)

What is the VC dimension of this classifier?




Large Margins & VC Dimension

Vapnik: The class of optimal linear separators has VC dimension h

bounded from above as D>
h< minﬂ ] mo} +1

2
P,
where p is the margin, D is the diameter of the smallest sphere
that can enclose all of the training examples, and m, is the

dimensionality.

If we maximize the margins, feature dimensionality does not matter




Tuning the model’s complexity

A flexible model approximates the target function well in the training set

A rigid model’s performance is more predictable in the test set
» With probability (1-7), the following bound holds

h(log(2N/h 1) —log(n/4
R(@) < Runpla) -+ "0E2N/W) £ 1) ~ g/
N - y
~
“VC confidence”

High Bias Low Bias
Low Variance High Variance

Test Sample

Prediction Error

/

Training Sample

High
Model Complexity \C dimension




“There’s nothing more practical than a good theory”

Statistical
Learning




“There’s nothing more practical than a good theory”

Statistical
Learning

John Shawe-Taylor
and Nesio Cristianini

| Kernel Methods
Vladimir N. Vapnik for Pattern Analysis
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Methods, Theory
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Learning with Kernels
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edited by Léon Bottou, Olivier Chapelle,
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Support vectors for Faces (P&P 98)
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SVMs in computer vision

bicycle?

linear predictor
F(x) = (w, x)

Slide credit: A. Vedaldi



Image features

encoder © representation

> ®(x) € R?

Slides: A. Vedaldi, http://www.robots.ox.ac.uk/~vedaldi/assets/teach/vedaldi14bmvc-tutorial.pdf



Desirable feature properties

embedding space Rd

® is invariant to nuisance
factors, sensitive to semantic
variations

Slide credit: A. Vedaldi



Histogram of Gradient (HOG)/SIFT Features

Slide credit: A. Vedaldi




Image classification in a nutshell

. i

_/

[Luong & Malik, 1999]
[Varma & Zisserman, 2003]
[Csurka et al, 2004]

[Vogel & Schiele, 2004]
[Jurie & Triggs, 2005]
[Lazebnik et al, 2006]

Linear SVM [Bosch et al, 2006]




Dalal and Triggs, ICCV 2005

— Histogram of Oriented Gradient (HOG) features
— Highly accurate detection using linear SVM

Cell —

Block

Overlap
of Blocks

Feature vector f=1[ ..., ...,




HOG features for pedestrians
dominant

image direction

» tile window into 8 x 8 pixel cells

« each cell represented by HOG

frequency

orientation

-eature vector dimension = 16 x 8 (for tiling) x 8 (orientations) = 1024




Y
—

N
o
©
-
i
N
)
O
()
(a
©
o
©
N
=
>
(7))




D R TR SR

SR SR R

(7))
G
- ()
- o
E £
e
o %
A O
©
.me
(@)
C ®©
2 9
s <
N




SVMs and Pedestrians

* Positive data — 1208 positive window examples

* Negative data — 1218 negative window examples (initially)




Training (Learning)

* Represent each example window by a HOG feature vector

= x; € R?, with d = 1024

* Train a SVM classifier

Testing (Detection)

« Sliding window classifier

f(z) = Zaiyi(xfx) +b
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Dalal and Triggs, CVPR 2005




Pedestrian detection: almost done in 2005

Detection Mode : Pedestrid
Method : HOG+SVM
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Non-separable data

 introduce slack variables

N
: 2
min w +C§ &;
WERd,€i€R+ ” “ i ¢

subject to

yi(WTxi+b) >1-¢ fori=1...

* linear classifier not appropriate
??




Non-linear SVMs

e Datasets that are linearly separable (with some noise) work out great:

e But what are we going to do if the dataset is just too hard?

@ @ o—o—i *0—@ *—@ o—>
e How about ... mapping da®a to a higher-dimen%clonal space:




Non-linear SVMs: Feature spaces

e General idea: the original feature space can always be mapped to some
higher-dimensional feature space where the training set is separable:




Solution by inspection: hand-crafted features

« Datais linearly separable in polar coordinates

« Acts non-linearly in original space

) R2 — R2




More general method

» Data is linearly separable in 3D

» This means that the problem can still be solved by a linear classifier




Nonseparable in 2D




Separable in 3D
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Nonlinear regression




Example: second-order polynomials

X = (IL’l, ZL‘Q)

1
(1)
(22)°

L1L2

(W, (%)) = wo + w1 L1 + Wals + W3T] + WaTs + WsT1To




Non-linear Classifiers

T
So far, decision is based on the signof U — W X

Use non-linear transformation, ¢(x) of our data, x

= (1, x2) P (x)

Discriminant:

(W, 9(x)) = wo + w11 + wexs + wsﬁ + w4x§ + W5T1T2

Non-linear in x, linear in @(x)




Dual form of SVM & kernel trick

N N
Optimization: i Z Z aiozjyiyj <Xi’ Xj>
o
i=1 '_1

Zoﬂ “NHb| >1, Vi
acRY = O(N?)

Primal and dual classmer forms:

What if we replace x with ¢(x)?

Everything involves only inner products!

Rewrite everything in terms of Kernel

K(x,y) = (#(x),6(y))




Dual form of SVJI\\;I &Nkernel trick

Compare with general nonlinear form: f(X) — Z Wi §bk (X)
k

N nonlinear functions — smart choice of sparse coefficients




"Kernel trick’

Consider: ¢(X) —

We then have: (¢(x), d(y)) =
= T7Y] + 2T122Y1Y2 + T3Y5 + 27191 + 2T2Y2 + 1
2
= (z1y1 + z2y2 + 1)
= (x'y +1)* =K(xY)
Polynomial Kernel K (X,y) = (XTy + 1)P
Kernel: linear complexity in D (dimensions of x,y), constant in p

Feature space complexity: much higher



Condition for kernel trick: ‘Mercer’ kernel
e Given some arbitrary function k(x;,x;), how do we know
if it corresponds to a scalar product Cb(xz-)TCb(xj) in some

space”?

e Mercer kernels: if k(,) satisfies:

— Symmetric k(x;,x;) = k(x;,X;)

— Positive definite, a'Ka > 0 for all a € RY, where K is
the N x N Gram matrix with entries K;; = k(x;,x;).

then k(,) is a valid kernel.




Mercer Kernel Examples

Linear kernel

K(x,y)=x"y

Polynomial kernel
K(x,y) = (x"y + 1)

Radial Basis Function (a.k.a. Gaussian) kernel

1
K(x.y) = exp (~ s x - y1?)

Underlying feature dimension: Infinite




RBF kernel SVM

N = size of training data

N
f(x) = Z a;y;k(x;,x) + b

AN

support vector
weight (may be zero) Ppo ’

Gaussian kernel k(x,x’) = exp (—||x — x’||2/202)

Radial Basis Function (RBF) SVM




RBF kernel SVM

Zoﬂy’KX X)+b

Z o'y K (x',x) + b
{i:a?70}

{i:a*#0}

Discriminant form: sum of bumps centered on training points



petros
Text Box


RBF-SVM example

« data is not linearly separable in original feature space




RBF-SVM example
c=10 (C =




RBF-SVM example

SVM (L1) by Sequential Mirimal Optimizer
Kernet 11 (1), C 100 0000

Kernel evaluations: 396685
Number of Support Vectors: 8

Margr 00519

Training error. 0.00%




RBF-SVM example
c=1.0 C=10

Kernet b1 (1), C 10,0000
Kernel evaluations: 46158




RBF-SVM example




RBF-SVM example
c=0.25 (C=wx




RBF-SVM example
c=0.1 (C =0




All of the flexibility you may need is there

This is a hyperplane!
(in some space)

www.kernel-methods.net




Reminder: K-nearest neighbor classifier

R
+ +

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

—Compute distance to other training records
—ldentify K nearest neighbors
—Take majority vote




Training data for NN classifier (in R?)

o
'l"::. o ¢




1-nn classifier prediction (in R?)




VC dimension of 1-nearest neighbor classifier?

The VC dimension for the set of functions { f(a)} is defined as
the maximum number of training points that can be shattered

by { fla)}.
— VC dimension of N-dimensional linear classifier: N+1

— VC dimension of 1-NN: infinite




Large margins for nonlinear classifiers

RBF Kernel width (o)

Margin size: determined by both o and regularizer

We can slide between a linear and a Nearest-Neighbor classifier!




Guyon & Vapnik, 1995
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Application: Handwritten digit recognition

[

)

O

 Feature vectors: each image is 28 x 28 J

pixels. Rearrange as a 784-vector x

* Training: learn k=10 two-class 1 vs the rest
SVM classifiers fi, (x)

» Classification: choose class with most
positive score
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Guyon & Vapnik 1995

e USPS benchmark

» 2.5% error: human performance

o Different learning algorithms
» 16.2% error: Decision tree (C4.5)
- 5.9% error: (best) 2-layer Neural Network
>  5.1% error: LeNet 1 - (massively hand-tuned) 5-layer network

e Different SVMs

- 4.0% error: Polynomial kernel (p=3, 274 support vectors)
- 4.1% error: Gaussian kernel (0=0.3, 291 support vectors)
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Linear vs. Nonlinear

Linear SVM

" fast
X restrictive

Non-linear SVM

X much slower
" powerful

Slide credit:; A. Vedaldi



Other kernels

From http://www.kernel-methods.net/kernels.html

Kernel Functions Described in the Book:

Definition 9.1 Polynomial kernel 286

Computation 9.6 All-subsets kernel 289

Computation 9.8 Gaussian kernel 290

Computation 9.12 ANOVA kernel 293

Computation 9.18 Alternative recursion for ANOVA kernel 296
Computation 9.24 General graph kernels 301
Definition 9.33 Exponential difiusion kernel 307
Definition 9.34 von Neumann difiusion kernel 307
Computation 9.35 Evaluating difiusion kernels 308
Computation 9.46 Evaluating randomised kernels 315
Definition 9.37 Intersection kernel 309

Definition 9.38 Union-complement kernel 310
Remark 9.40 Agreement kernel 310

Section 9.6 Kernels on real numbers 311

Remark 9.42 Spline kernels 313

Definition 9.43 Derived subsets kernel 313

Definition 10.5 Vector space kernel 325

Computation 10.8 Latent semantic kernels 332
Definition 11.7 The p-spectrum kernel 342
Computation 11.10 The p-spectrum recursion 343
Remark 11.13 Blended spectrum kernel 344
Computation 11.17 All-subsequences kernel 347
Computation 11.24 Fixed length subsequences kernel 352

Computation 11.33 Naive recursion for gap-weighted
subsequences kernel 358

Computation 11.36 Gap-weighted subsequences kernel 360
Computation 11.45 Trie-based string kernels 367

Algorithm 9.14 ANOVA kernel 294

Algorithm 9.25 Simple graph kernels 302

Algorithm 11.20 All€ non-contiguous subsequences kernel 350
Algorithm 11.25 Fixed length subsequences kernel 352
Algorithm 11.38 Gap-weighted subsequences kernel 361
Algorithm 11.40 Character weighting string kernel 364
Algorithm 11.41 Soft matching string kernel 365

Algorithm 11.42 Gap number weighting string kernel 366
Algorithm 11.46 Trie-based p-spectrum kernel 368

Algorithm 11.51 Trie-based mismatch kernel 371

Algorithm 11.54 Trie-based restricted gap-weighted kernel 374
Algorithm 11.62 Co-rooted subtree kernel 380

Algorithm 11.65 All-subtree kernel 383

Algorithm 12.8 Fixed length HMM kernel 401

Algorithm 12.14 Pair HMM kernel 407

Algorithm 12.17 Hidden tree model kernel 411

Algorithm 12.34 Fixed length Markov model Fisher kernel 427




Text Classification: Examples

Classify news stories as World, US, Business, SciTech,
Sports, Entertainment, Health, Other

Add MeSH terms to Medline abstracts
— e.g. “Conscious Sedation” [E03.250]

Classify business names by industry.

Classify student essays as A,B,C,D, or F.

Classify email as Spam, Other.

Classify email to tech staff as Mac, Windows, ..., Other.
Classify pdf files as ResearchPaper, Other

Classify documents as WrittenByReagan, GhostWritten
Classify movie reviews as Favorable,Unfavorable,Neutral.
Classify technical papers as Interesting, Uninteresting.
Classify jokes as Funny, NotFunny.

Classify web sites of companies by Standard Industrial
Classification (SIC) code.




Text Classification: Examples

 Best-studied benchmark: Reuters-21578 newswire stories
— 9603 train, 3299 test documents, 80-100 words each, 93 classes

ARGENTINE 1986/87 GRAIN/OILSEED REGISTRATIONS
BUENOS AIRES, Feb 26

Argentine grain board figures show crop registrations of grains, oilseeds
and their products to February 11, in thousands of tonnes, showing
those for future shipments month, 1986/87 total and 1985/86 total to
February 12, 1986, in brackets:

(Er1eg1d (\;\gheat prev 1,655.8, Feb 872.0, March 164.6, total 2,692.4

Maize Mar 48.0, total 48.0 (nil).
Sorghum nil (nil)
Oilseed export registrations were:
Sunflowerseed total 15.0 (7.9)
«  Soybean May 20.0, total 20.0 (nil)
The board also detailed export registrations for subproducts, as follows....

= (Categories: grain, wheat (of 93 binary choices)




Representing text for
classification

ARGENTINE 1986/87 GRAIN/OILSEED REGISTRATIONS
BUENOS AIRES, Feb 26

Argentine grain board figures show crop registrations of grains, oilseeds and their
products to February 11, in thousands of tonnes, showing those for future

ghiprl?etnts month, 1986/87 total and 1985/86 total to February 12, 1986, in I
rackets:

Bread wheat prev 1,655.8, Feb 872.0, March 164.6, total 2,692.4 (4,161.0).

Maize Mar 48.0, total 48.0 (nil). I
Sorghum nil (nil)

Oilseed export registrations were:

Sunflowerseed total 15.0 (7.9)

Soybean May 20.0, total 20.0 (nil)
The board also detailed export registrations for subproducts, as follows....

\— 4

V simplest useful

? What is the best representation
for the document x being
classified?




Bag of words representation

ARGENTINE 1986/87 GRAIN/OILSEED REGISTRATIONS
BUENOS AIRES, Feb 26

Argentine grain board figures show crop registrations of grains, oilseeds and
their products to February 11, in thousands of tonnes, showing those for future
shipments month, 1986/87 total and 1985/86 total to February 12, 1986, in
brackets:

Bread wheat prev 1,655.8, Feb 872.0, March 164.6, total 2,692.4 (4,161.0).
Maize Mar 48.0, total 48.0 (nil).

Sorghum nil (nil)

Oilseed export registrations were:

Sunflowerseed total 15.0 (7.9)

Soybean May 20.0, total 20.0 (nil)
The board also detailed export registrations for subproducts, as follows....

=) (Categories: grain, wheat




Bag of words representation

XXX XXXXXX XXX GRAIN/OILSEED xx00¢;¢aeexxx
XXX XXXXX

XXXXXXXXX grain XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX grains, oilseeds
XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX FONNES, XXXXXXXXXXXXXXXXX

shipments xoooooooxaxaxx total xoooooooxx total xxooooxoxx
XXXXXXXXXXXXXXXXXXXX

Xoxxxx Wheat xo0000000000000000XXXXXXXXX, Total Xooooaxaxaasaaaaa
Maize xxXXOXXXXXXXXXXX

Sorghum xxxxxxxxxx

Oilseed xXxXXXXXXXXXXXXXXXXXXX

Sunflowerseed xxxxxxxxxxxxxx

S oy bean XxxxXxXXXXXXXXXXXXXXXXXX
1,:9,0.9,0.9,9.0.9.0.90,0,.0.9,0.9,9,0.9,0.9,0.0.9.0.9,00.9,09.09.009099090990090909000 S

=) (Categories: grain, wheat




Bag of words representation

word freq

XXXXXXXXXXXXXXXXXXX GRAIN/OILSEED xXXXXXXXXXXXX .
). 9,9,.0.0.0.0.9.9.0.0.0.9.0.0.0.0.9.9.0.0090.4 g ra I n (S )

XXXXXXXXX grain XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX grains, oilseeds
XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX tonnes, : I d
XXXOXXxxxxx shipments xoooooooosaxxx total xooxxxxx total olisee (S)
XXXXXXXX  XXXXKXXXKXXXKKXXKKXXX:

3
2
X000k Whieat XxoooaaOoaasaaasaassooooxx, total total 3
1
1
1
1

XXOXOOXXXKXXXXX
Maize XXXXXXXXXXXXXXXXX
Sorghum x00oxxxxx Wh eat
Oilseed XXXXXXXXXXXXXXXXXXXXX
Sunflowerseed xxxxxxxxxxxxxx
Soybean xxxxXXXXXXXXXXXXXXXXXX

XHXXXXXXXXXXXKKKKKKKHKKKKXXXXXXXXXKKKKKKKKKKXXXXKXKX. ...

maize

soybean

tonnes

Categories: grain, wheat




Margin-based Learning

The number of features matt_ers not if the
margin is sufficiently wide and examples
are sufficiently close to the origin (!!)




Support Vector Machine Results

SVM (poly) SVM (rbf)

degree d = width v =

2 | 3 4 5 1106 |0.8] 1.0 1.2
98.4/98.5(98.4|98.3 |[98.5|98.5|98.4 | 98.3
94.6|95.2|95.2(95.3(95.0(95.3|95.3 [95.4
72.5(75.4|74.9(76.2(|74.0(75.4|76.3|75.9
93.1192.4|91.3189.91((93.1|91.9|91.9 [90.6
87.3|88.6 [88.9|87.8|(88.9|89.0| 88.9 | 88.2
75.5(76.6|77.3|77.1(|76.9|78.0{77.8|76.8
63.3|67.9(73.1|76.2(|74.4|75.0|76.2|76.1
85.4|86.0|86.5|86.0 ||85.4[86.5|87.6 | 87.1
84.5 85.9|83.8((85.2|85.9|85.9(85.9
86.5 85.7(83.9((85.1|85.785.7|84.5

85.1|85.9|86.2(85.9([86.4 |86.5|86.3 | R6.2
combined: 86.0 combined: 86.4
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Sequence Data versus Structure and Function

Sequences for four chains of Tertiary Structure
human hemoglobin

>1A3N:A HEMOGLOBIN
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGK
KVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPA
VHASLDKFLASVSTVLTSKYR

>1A3N:B HEMOGLOBIN
VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV
KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK
EFTPPVQAAYQKVVAGVANALAHKYH

>1A3N:C HEMOGLOBIN
VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGK
KVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPA
VHASLDKFLASVSTVLTSKYR

>1A3N:D HEMOGLOBIN
VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV F u n Cti o n -
KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK

EFTPPVQAAYQKVVAGVANALAHKYH oxygen transport




Learning Problem

* Reduce to binary classification problem:
positive (+) if example belongs to a family (e.g.
G proteins) or superfamily (e.g. nucleoside
triphosphate hydrolases), negative (-)

otherwise

« Use supervised learning approach to train a
classifier

Labeled Training Classification

Sequences > pyle
Learning Algorithm




SVMs for Protein Classification

« Want to define feature map from space of protein sequences to
vector space
 Goals:
— Computational efficiency
— Competitive performance with known methods

— No reliance on generative model — general method for sequence-based
classification problems




Appendix

* Primal and Dual form of SVMs: the full story

References:

S. Boyd and L. Vandeberghe: Convex Optimization (textbook)

C. Burges: A tutorial on SVMs for pattern recognition






