
1

University College London

Introduction to Supervised Learning

Iasonas Kokkinos
i.kokkinos@cs.ucl.ac.uk

Week 3: 
Support Vector Machines



2

Lecture outline

Optimization

Kernels

Applications to vision

Large margins and generalization

Introduction to Support Vector Machines
Geometric margins
Training criterion & hinge loss
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Our path so far (week 1-2)
Week 1 - regression: geometric Week 2: probabilistic interpretation

Week 2: switch to classification
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Week 2: log loss vs. quadratic loss

Log lossQuadratic loss
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Do we need the logistic loss?
Week 2: Useful criterion for training classifiers

Maybe we can quickly hack an easy algorithm

Least squares: Gauss, 1795

Logistic Regression: Cox, 1958

Perceptrons, Minsky & Papert, 1969
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Perceptron algorithm
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Perceptron algorithm (first ‘neural network’)

This lecture: push it far away!
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Which classifier is best?

All points should lie clearly on the correct side of the boundary
How can we quantify this? 

How can we enforce this?
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Functional Margins 

Consider Logistic Regression:

Ideally:

Put together:

`functional margin’

Problem: scaling w changes functional margin, but not decision boundary
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What is the 
distance of this 
point from the 
decision 
boundary? 

Geometric Margins

Discriminant 

y(x) = w

T
x+ b
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Geometric Margins

: projection of x on decision boundary
x?

w

T
x? + b = 0

Discriminant 

y(x) = w

T
x+ b
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Geometric Margins

�

Discriminant 

y(x) = w

T
x+ b
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Geometric Margins
Point = projection + distance* direction

Note: γ is independent of |w|

Multiply:

Rewrite (                                    )  :
w

T
x? + b = 0

Solve for  γ:
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Geometric Margins

� =
w

T
x+ b

|w|

Geometric Margin:

(positive if x is on the correct size of the decision boundary)
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Which classifier is best?

All points should lie clearly on the correct side of the boundary
How can we quantify this? (large margins!)

How can we enforce this?
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Lecture outline

Optimization

Kernels

Applications to vision

Large margins and generalization

Introduction to Support Vector Machines
Geometric margins
Training criterion & hinge loss
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What should we be optimizing?

{(x1, y1), . . . , (xN , yN )}Training set:

Candidate parameter vector:

Related margins:

(w, b)

Should we be optimizing the mean, max, min margin?

All points should lie clearly on the correct side of the boundary
1) Take points that do not lie clearly on the correct side 
2) Make sure they do

�i = yi
w

T
x

i + b

kwk
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Least clear positivesSupport vectors: hardest points

Least clear negatives
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Least clear negatives

Least clear positivesSupport Vector Machine (SVM)

Solution depends only on 
hardest points
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Least clear negatives

Least clear positivesWeek 3: Support Vector Machine (SVM)

Solution depends only on ‘Support Vectors’
w

⇤ =
NX

i=1

↵i
�
yixi

�

petros
Text Box
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SVM, sketch of derivation
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Support Vector Machine (SVM)
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Representer theorem
Objective: find w that maximizes the margin subject to margin constraints  

Equivalently:

Representer Theorem: we can prove that the minimum is a 
linear combination of the training points

max
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Geometric algorithm
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Intuitive justification of theorem
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Support Vector Machine (SVM)
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Primal and dual problems
Primal, in terms of w:

w

⇤ =
NX

i=1

↵i
�
yixi

�

=
NX

i=1

NX

j=1

↵i↵jyiyjhxi,xji

kw⇤k2 = hw⇤,w⇤i
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*
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↵iyixi,
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+

Dual, in terms of :↵↵↵ = (↵1, . . . ,↵N ) min
↵↵↵

NX
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NX

j=1

↵i↵jyiyjhxi,xji

s.t. : yi

0

@
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↵jyjhxj ,xii+ b
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A � 1, i = 1, . . . , N
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w
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s.t. : yi(wT
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i + b) � 1, 8i

But:
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Primal vs dual
Primal:

Dual: min
↵↵↵

NX

i=1

NX

j=1

↵i↵jyiyjhxi,xji

Primal and dual classifier forms:

f(x) = hw,xi+ b =
NX

i=1

↵iyihxi,xi+ b

min
w

kwk2

s.t. : yi(wT
x

i + b) � 1, 8i

s.t. : yi

0

@
NX

j=1

↵jyjhxj ,xii+ b

1

A � 1, 8i

w 2 RD ! O(D3)

↵↵↵ 2 RN ! O(N3)

Dual can be faster if N<D! 

Dual form involves only inner products of features (=> kernel trick)
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What is the “best” decision plane?

Best: understood at test time

Maybe we could sacrifice classifying some training points correctly

All points on the 
correct side!

But this looks 
better overall!
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Tuning the model’s complexity
A flexible model approximates the target function well in the training set

but can “overtrain” and have poor performance on the test set (“variance”)

A rigid model’s performance is more predictable in the test set

but the model may not be good even on the training set (“bias”)
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Slack variables: let us make (but also pay) some errors
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misclassification when ξ>1

Objective for non-separable data

:upper bound on number of errors

newcomersmin
w,⇠⇠⇠

kwk2 + C
NX

i=1

⇠i

s.t. : yi(wT
x

i + b) � 1� ⇠i, 8i
⇠i � 0, 8i

C: hyperparameter

(cross-validation!)
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Primal 
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Loss function
Optimization problem:

Rewrite constraint:

What if we plug that in the optimization objective?

yihw,b(x) � 1� ⇠i

Compact form: ⇠i = [1� yihw,b(x)]+

= max(1� yihw,b(x), 0)
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Loss function
Optimization problem:

Hinge loss:

Support Vectors

regularizer additive loss 
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Hinge loss vs log-loss getting larger than 1: 
does not harm, but also 
does not help 
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Hinge loss vs log-loss vs quadratic
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Lecture outline
Recap 

Optimization

Kernels

Applications to vision

Large margins and generalization
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Generalization Error

¨ What is model complexity?
¨ Number of parameters, magnitude of discriminant w?
¨ Analyze complexity of hypothesis class

¨ Linear classifiers:
¨ Different decision boundaries

¨ Different generalization performance
¨ Test error > training error
¨ Which line gives smallest test error?
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Learning Theory

¨ V. Vapnik, 1968 
¨ Mainstream Statistics: Large-sample analysis (`in the limit’)
¨ Pattern Recognition: Small sample properties

¨ Distribution-free bounds on worst performance
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Empirical and Actual risk
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Actual and Empirical Risk
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Vapnik Chervonenkis (VC) Dimension

• Shattering:

• VC dimension

• Example
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Arbitrary linear classifier in N-dimensions: VC-dim= N+1
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X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

Reminder: K-nearest neighbor classifier

–Compute distance to other training records
–Identify K nearest neighbors 
–Take majority vote
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Training data for NN classifier (in R2)
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1-nn classifier prediction (in R2)

What is the VC dimension of this classifier?
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Large Margins & VC Dimension

• Vapnik:

• If we maximize the margins, feature dimensionality does not matter
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Tuning the model’s complexity
A flexible model approximates the target function well in the training set

A rigid model’s performance is more predictable in the test set

VC dimension
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“There’s nothing more practical than a good theory”
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“There’s nothing more practical than a good theory”
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Support vectors for Faces (P&P 98)
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SVMs in computer vision

Slide credit: A. Vedaldi
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Image features

Slides: A. Vedaldi, http://www.robots.ox.ac.uk/~vedaldi/assets/teach/vedaldi14bmvc-tutorial.pdf
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Desirable feature properties

Slide credit: A. Vedaldi
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Histogram of Gradient (HOG)/SIFT Features

Slide credit: A. Vedaldi
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Image classification in a nutshell
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Dalal and Triggs, ICCV 2005

– Histogram of Oriented Gradient (HOG) features 
– Highly accurate detection using linear SVM
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HOG features for pedestrians



64

SVMs and Pedestrians
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SVMs and Pedestrians
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SVMs and Pedestrians
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Pedestrian detection: almost done in 2005
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Lecture outline
Recap 

Optimization

Kernels

Applications to vision

Large margins and generalization
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Non-separable data
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74

Non-linear	SVMs

• Datasets	that	are	linearly	separable	(with	some	noise)	work	out	great:

• But	what	are	we	going	to	do	if	the	dataset	is	just	too	hard?	

• How	about	…	mapping	data	to	a	higher-dimensional	space:

0

x2

x

0 x

0 x

Sec. 15.2.3
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75

Non-linear	SVMs:		Feature	spaces

• General	idea:			the	original	feature	space	can	always	be	mapped	to	some	
higher-dimensional	feature	space	where	the	training	set	is	separable:

Φ:  x→ φ(x)

Sec. 15.2.3
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Solution by inspection: hand-crafted features 
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More general method
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Nonseparable in 2D
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Separable in 3D
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Linear regression
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Nonlinear regression

x ! ���(x) =

2

64
�1(x)

...
�M (x)

3

75
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Example: second-order polynomials

x = (x1, x2)

hw,�

�

�(x)i = w0 + w1x1 + w2x2 + w3x
2
1 + w4x

2
2 + w5x1x2

�

�

�(x) =

2

6666664

1
x1

x2

(x1)2

(x2)2

x1x2

3

7777775
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Non-linear Classifiers

So far, decision is based on the sign of 

Use non-linear transformation, φ(x) of our data, x

e.g.

Non-linear in x, linear in φ(x)

Discriminant:

y = w

T
x

x = (x1, x2)

hw,�

�

�(x)i = w0 + w1x1 + w2x2 + w3x
2
1 + w4x

2
2 + w5x1x2

�

�

�(x) =

2

6666664

1
x1

x2

(x1)2

(x2)2

x1x2

3

7777775
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Dual form of SVM & kernel trick
Optimization: min

↵↵↵

NX

i=1

NX

j=1

↵i↵jyiyjhxi,xji

Primal and dual classifier forms:

f(x) = hw,xi+ b =
NX

i=1

↵iyihxi,xi+ b

s.t. : yi

0

@
NX

j=1

↵jyjhxj ,xii+ b

1

A � 1, 8i

↵↵↵ 2 RN ! O(N3)

What if we replace x with φ(x)?

Everything involves only inner products!

K(x,y) = h���(x),���(y)i
Rewrite everything in terms of Kernel 
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Dual form of SVM & kernel trick
Optimization:

Dual classifier form:

min
↵↵↵

NX

i=1

NX

j=1

↵i↵jyiyj K
�
x

i,xj
�

s.t. : yi

0

@
NX

j=1

↵jyjK(xj ,xi) + b

1

A � 1, i = 1, . . . , N

f(x) =
NX

i=1

↵iyiK(xi,x) + b

=
X

{i:↵i 6=0}

wiK(xi,x) + b, wi = yi↵i

f(x) =
X

k

wk�k(x)Compare with general nonlinear form:  

N nonlinear functions – smart choice of sparse coefficients 
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`Kernel trick’

Consider:

We then have:

Polynomial Kernel 
Kernel: linear complexity in D (dimensions of x,y), constant in p

.
= K(x,y)

K(x,y) = (xT
y + 1)p

Feature space complexity: much higher

�

�

�(x) =

2

6666664

x

2
1

x

2
2p

2x1x2p
2x1p
2x2

1

3

7777775

h���(x),���(y)i =
= x

2
1y

2
1 + 2x1x2y1y2 + x

2
2y

2
2 + 2x1y1 + 2x2y2 + 1

= (x1y1 + x2y2 + 1)2

= (xT
y + 1)2
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Condition for kernel trick: ‘Mercer’ kernel
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Mercer Kernel Examples

Linear kernel

Polynomial kernel

Radial Basis Function  (a.k.a. Gaussian) kernel

K(x,y) = (xT
y + 1)p

K(x,y) = x

T
y

K(x,y) = exp

✓
� 1

2�2
kx� yk2

◆

Underlying feature dimension: Infinite
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RBF kernel SVM
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RBF kernel SVM (next week’s assignment)

f(x) =
NX

i=1

↵iyiK(xi,x) + b

=
X

{i:↵i 6=0}

↵iyiK(xi,x) + b

=

X

{i:↵i 6=0}

wi
exp

✓
� 1

2�2
kxi � xk22

◆
+ b

Discriminant form: sum of bumps centered on training points

petros
Text Box
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RBF-SVM example
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RBF-SVM example
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RBF-SVM example
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RBF-SVM example
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RBF-SVM example
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RBF-SVM example
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RBF-SVM example
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All of the flexibility you may need is there
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X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

Reminder: K-nearest neighbor classifier

–Compute distance to other training records
–Identify K nearest neighbors 
–Take majority vote
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Training data for NN classifier (in R2)
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1-nn classifier prediction (in R2)
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VC dimension of 1-nearest neighbor classifier?

– VC dimension of 1-NN: infinite

– VC dimension of N-dimensional linear classifier: N+1
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Large margins for nonlinear classifiers

Margin size: determined by both σ and regularizer

We can slide between a linear and a Nearest-Neighbor classifier!
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Guyon & Vapnik, 1995
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Application: Handwritten digit recognition
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Guyon & Vapnik 1995
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Support vectors for Faces (P&P 98)
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Linear vs. Nonlinear

Slide credit: A. Vedaldi
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Other kernels

• From http://www.kernel-methods.net/kernels.html

Kernel Functions Described in the Book:
Definition 9.1 Polynomial kernel 286
Computation 9.6 All-subsets kernel 289
Computation 9.8 Gaussian kernel 290
Computation 9.12 ANOVA kernel 293
Computation 9.18 Alternative recursion for ANOVA kernel 296
Computation 9.24 General graph kernels 301
Definition 9.33 Exponential difiusion kernel 307
Definition 9.34 von Neumann difiusion kernel 307
Computation 9.35 Evaluating difiusion kernels 308
Computation 9.46 Evaluating randomised kernels 315
Definition 9.37 Intersection kernel 309
Definition 9.38 Union-complement kernel 310
Remark 9.40 Agreement kernel 310
Section 9.6 Kernels on real numbers 311
Remark 9.42 Spline kernels 313
Definition 9.43 Derived subsets kernel 313
Definition 10.5 Vector space kernel 325
Computation 10.8 Latent semantic kernels 332
Definition 11.7 The p-spectrum kernel 342
Computation 11.10 The p-spectrum recursion 343
Remark 11.13 Blended spectrum kernel 344
Computation 11.17 All-subsequences kernel 347
Computation 11.24 Fixed length subsequences kernel 352

Computation 11.33 Naive recursion for gap-weighted
subsequences kernel 358
Computation 11.36 Gap-weighted subsequences kernel 360
Computation 11.45 Trie-based string kernels 367
Algorithm 9.14 ANOVA kernel 294
Algorithm 9.25 Simple graph kernels 302
Algorithm 11.20 All�non-contiguous subsequences kernel 350
Algorithm 11.25 Fixed length subsequences kernel 352
Algorithm 11.38 Gap-weighted subsequences kernel 361
Algorithm 11.40 Character weighting string kernel 364
Algorithm 11.41 Soft matching string kernel 365
Algorithm 11.42 Gap number weighting string kernel 366
Algorithm 11.46 Trie-based p-spectrum kernel 368
Algorithm 11.51 Trie-based mismatch kernel 371
Algorithm 11.54 Trie-based restricted gap-weighted kernel 374
Algorithm 11.62 Co-rooted subtree kernel 380
Algorithm 11.65 All-subtree kernel 383
Algorithm 12.8 Fixed length HMM kernel 401
Algorithm 12.14 Pair HMM kernel 407
Algorithm 12.17 Hidden tree model kernel 411
Algorithm 12.34 Fixed length Markov model Fisher kernel 427
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Text Classification: Examples

• Classify news stories as World, US, Business, SciTech, 
Sports, Entertainment, Health, Other

• Add MeSH terms to Medline abstracts
– e.g. “Conscious Sedation” [E03.250] 

• Classify business names by industry.
• Classify student essays as A,B,C,D, or F.
• Classify email as Spam, Other.
• Classify email to tech staff as Mac, Windows, ..., Other.
• Classify pdf files as ResearchPaper, Other
• Classify documents as WrittenByReagan, GhostWritten
• Classify movie reviews as Favorable,Unfavorable,Neutral.
• Classify technical papers as Interesting, Uninteresting.
• Classify jokes as Funny, NotFunny.
• Classify web sites of companies by Standard Industrial 

Classification (SIC)  code.
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Text Classification: Examples

• Best-studied benchmark: Reuters-21578 newswire stories

– 9603 train, 3299 test documents, 80-100 words each, 93 classes

ARGENTINE 1986/87 GRAIN/OILSEED REGISTRATIONS

BUENOS AIRES, Feb 26

Argentine grain board figures show crop registrations of grains, oilseeds 
and their products to February 11, in thousands of tonnes, showing 
those for future shipments month, 1986/87 total and 1985/86 total to 
February 12, 1986, in brackets:

• Bread wheat prev 1,655.8, Feb 872.0, March 164.6, total 2,692.4 
(4,161.0).

• Maize Mar 48.0, total 48.0 (nil).

• Sorghum nil (nil)

• Oilseed export registrations were:

• Sunflowerseed total 15.0 (7.9)

• Soybean May 20.0, total 20.0 (nil)

The board also detailed export registrations for subproducts, as follows....

Categories: grain, wheat (of 93 binary choices)
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Representing text for 

classification
ARGENTINE 1986/87 GRAIN/OILSEED REGISTRATIONS
BUENOS AIRES, Feb 26
Argentine grain board figures show crop registrations of grains, oilseeds and their 

products to February 11, in thousands of tonnes, showing those for future 
shipments month, 1986/87 total and 1985/86 total to February 12, 1986, in 
brackets:

• Bread wheat prev 1,655.8, Feb 872.0, March 164.6, total 2,692.4 (4,161.0).
• Maize Mar 48.0, total 48.0 (nil).
• Sorghum nil (nil)
• Oilseed export registrations were:
• Sunflowerseed total 15.0 (7.9)

• Soybean May 20.0, total 20.0 (nil)

The board also detailed export registrations for subproducts, as follows....

f( )=y

? What is the best representation 

for the document x being 

classified?

simplest useful
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Bag of words representation

ARGENTINE 1986/87 GRAIN/OILSEED REGISTRATIONS

BUENOS AIRES, Feb 26

Argentine grain board figures show crop registrations of grains, oilseeds and 
their products to February 11, in thousands of tonnes, showing those for future 
shipments month, 1986/87 total and 1985/86 total to February 12, 1986, in 
brackets:

• Bread wheat prev 1,655.8, Feb 872.0, March 164.6, total 2,692.4 (4,161.0).

• Maize Mar 48.0, total 48.0 (nil).

• Sorghum nil (nil)

• Oilseed export registrations were:

• Sunflowerseed total 15.0 (7.9)

• Soybean May 20.0, total 20.0 (nil)

The board also detailed export registrations for subproducts, as follows....

Categories: grain, wheat
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Bag of words representation

xxxxxxxxxxxxxxxxxxx GRAIN/OILSEED xxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxx grain xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx grains, oilseeds
xxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx tonnes, xxxxxxxxxxxxxxxxx 
shipments xxxxxxxxxxxx total xxxxxxxxx total xxxxxxxx  
xxxxxxxxxxxxxxxxxxxx:

• Xxxxx wheat xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx, total xxxxxxxxxxxxxxxx

• Maize xxxxxxxxxxxxxxxxx

• Sorghum xxxxxxxxxx

• Oilseed xxxxxxxxxxxxxxxxxxxxx

• Sunflowerseed xxxxxxxxxxxxxx

• Soybean xxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx....

Categories: grain, wheat
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Bag of words representation

xxxxxxxxxxxxxxxxxxx GRAIN/OILSEED xxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxx grain xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx grains, oilseeds
xxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx tonnes, 
xxxxxxxxxxxxxxxxx shipments xxxxxxxxxxxx total xxxxxxxxx total
xxxxxxxx  xxxxxxxxxxxxxxxxxxxx:

• Xxxxx wheat xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx, total
xxxxxxxxxxxxxxxx

• Maize xxxxxxxxxxxxxxxxx

• Sorghum xxxxxxxxxx

• Oilseed xxxxxxxxxxxxxxxxxxxxx

• Sunflowerseed xxxxxxxxxxxxxx

• Soybean xxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx....

Categories: grain, wheat

grain(s) 3

oilseed(s) 2

total 3

wheat 1

maize 1

soybean 1

tonnes 1

... ...

word freq
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Margin-based Learning

+++
++

+++

++
+ +

+ +

+

++

+

-
--

- -
--

- -

--
-

-

- - - - -

--
- -

- -
- -

+

--

The number of features matters not if the 
margin is sufficiently wide and examples 
are sufficiently close to the origin (!!)
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Support Vector Machine Results
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Sequence Data versus Structure and Function

>1A3N:A HEMOGLOBIN

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGK

KVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPA

VHASLDKFLASVSTVLTSKYR

>1A3N:B HEMOGLOBIN

VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV

KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK

EFTPPVQAAYQKVVAGVANALAHKYH

>1A3N:C HEMOGLOBIN

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGK

KVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPA

VHASLDKFLASVSTVLTSKYR

>1A3N:D HEMOGLOBIN

VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV

KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK

EFTPPVQAAYQKVVAGVANALAHKYH

Sequences for four chains of 
human hemoglobin

Tertiary Structure

Function: 
oxygen transport
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Learning Problem

• Reduce to binary classification problem: 
positive (+) if example belongs to a family (e.g. 
G proteins) or superfamily (e.g. nucleoside 
triphosphate hydrolases), negative (-) 
otherwise

• Use supervised learning approach to train a 
classifier

Labeled Training
Sequences

Classification 
Rule

Learning Algorithm
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SVMs for Protein Classification

• Want to define feature map from space of protein sequences to 
vector space

• Goals:

– Computational efficiency

– Competitive performance with known methods

– No reliance on generative model – general method for sequence-based 
classification problems
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Appendix

• Primal and Dual form of SVMs: the full story

References:

S. Boyd and L. Vandeberghe: Convex Optimization (textbook)

C. Burges: A tutorial on SVMs for pattern recognition




