IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 5, MAY 2013 1

Machine Learning Paradigms for Speech Recognition:
An Overview
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Abstract—Automatic Speech Recognition (ASR) has histori-
cally been a driving force behind many machine learning (ML)
techniques, including the ubiquitously used hidden Markov
model, discriminative learning, structured sequence learning,
Bayesian learning, and adaptive learning. Moreover, ML can and
occasionally does use ASR as a large-scale, realistic application
to rigorously test the effectiveness of a given technique, and to
inspire new problems arising from the inherently sequential and
dynamic nature of speech. On the other hand, even though ASR
is available commercially for some applications, it is largely an
unsolved problem—for almost all applications, the performance
of ASR is not on par with human performance. New insight from
modern ML methodology shows great promise to advance the
state-of-the-art in ASR technology. This overview article provides
readers with an overview of modern ML techniques as utilized in
the current and as relevant to future ASR research and systems.
The intent is to foster further cross-pollination between the ML
and ASR communities than has occurred in the past. The article
is organized according to the major ML paradigms that are either
popular already or have potential for making significant contribu-
tions to ASR technology. The paradigms presented and elaborated
in this overview include: generative and discriminative learning;
supervised, unsupervised, semi-supervised, and active learning;
adaptive and multi-task learning; and Bayesian learning. These
learning paradigms are motivated and discussed in the context of
ASR technology and applications. We finally present and analyze
recent developments of deep learning and learning with sparse
representations, focusing on their direct relevance to advancing
ASR technology.

Index Terms—Machine learning, speech recognition, su-
pervised, unsupervised, discriminative, generative, dynamics,
adaptive, Bayesian, deep learning.

I. INTRODUCTION

N recent years, the machine learning (ML) and automatic
speech recognition (ASR) communities have had increasing
influences on each other. This is evidenced by a number of ded-
icated workshops by both communities recently, and by the fact
that major ML-centric conferences contain speech processing
sessions and vice versa. Indeed, it is not uncommon for the ML
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community to make assumptions about a problem, develop pre-
cise mathematical theories and algorithms to tackle the problem
given those assumptions, but then evaluate on data sets that are
relatively small and sometimes synthetic. ASR research, on the
other hand, has been driven largely by rigorous empirical eval-
uations conducted on very large, standard corpora from real
world. ASR researchers often found formal theoretical results
and mathematical guarantees from ML of less use in prelimi-
nary work. Hence they tend to pay less attention to these results
than perhaps they should, possibly missing insight and guidance
provided by the ML theories and formal frameworks even if the
complex ASR tasks are often beyond the current state-of-the-art
in ML.

This overview article is intended to provide readers of
IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE
PROCESSING with a thorough overview of the field of modern
ML as exploited in ASR’s theories and applications, and to
foster technical communications and cross pollination between
the ASR and ML communities. The importance of such cross
pollination is twofold: First, ASR is still an unsolved problem
today even though it appears in many commercial applications
(e.g. iPhone’s Siri) and is sometimes perceived, incorrectly, as
a solved problem. The poor performance of ASR in many con-
texts, however, renders ASR a frustrating experience for users
and thus precludes including ASR technology in applications
where it could be extraordinarily useful. The existing techniques
for ASR, which are based primarily on the hidden Markov
model (HMM) with Gaussian mixture output distributions,
appear to be facing diminishing returns, meaning that as more
computational and data resources are used in developing an
ASR system, accuracy improvements are slowing down. This
is especially true when the test conditions do not well match
the training conditions [1], [2]. New methods from ML hold
promise to advance ASR technology in an appreciable way.
Second, ML can use ASR as a large-scale, realistic problem to
rigorously test the effectiveness of the developed techniques,
and to inspire new problems arising from special sequential
properties of speech and their solutions. All this has become
realistic due to the recent advances in both ASR and ML. These
advances are reflected notably in the emerging development
of the ML methodologies that are effective in modeling deep,
dynamic structures of speech, and in handling time series or
sequential data and nonlinear interactions between speech and
the acoustic environmental variables which can be as complex
as mixing speech from other talkers; e.g., [3]-[5].

The main goal of this article is to offer insight from mul-
tiple perspectives while organizing a multitude of ASR tech-
niques into a set of well-established ML schemes. More specif-
ically, we provide an overview of common ASR techniques by
establishing several ways of categorization and characteriza-
tion of the common ML paradigms, grouped by their learning
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styles. The learning styles upon which the categorization of the
learning techniques are established refer to the key attributes of
the ML algorithms, such as the nature of the algorithm’s input
or output, the decision function used to determine the classifica-
tion or recognition output, and the loss function used in training
the models. While elaborating on the key distinguishing factors
associated with the different classes of the ML algorithms, we
also pay special attention to the related arts developed in ASR
research.

In its widest scope, the aim of ML is to develop automatic
systems capable of generalizing from previously observed ex-
amples, and it does so by constructing or learning functional de-
pendencies between arbitrary input and output domains. ASR,
which is aimed to convert the acoustic information in speech se-
quence data into its underlying linguistic structure, typically in
the form of word strings, is thus fundamentally an ML problem;
i.e., given examples of inputs as the continuous-valued acoustic
feature sequences (or possibly sound waves) and outputs as the
nominal (categorical)-valued label (word, phone, or phrase) se-
quences, the goal is to predict the new output sequence from a
new input sequence. This prediction task is often called classifi-
cation when the temporal segment boundaries of the output la-
bels are assumed known. Otherwise, the prediction task is called
recognition. For example, phonetic classification and phonetic
recognition are two different tasks: the former with the phone
boundaries given in both training and testing data, while the
latter requires no such boundary information and is thus more
difficult. Likewise, isolated word “recognition” is a standard
classification task in ML, except with a variable dimension in
the input space due to the variable length of the speech input.
And continuous speech recognition is a special type of struc-
tured ML problems, where the prediction has to satisfy addi-
tional constraints with the output having structure. These ad-
ditional constraints for the ASR problem include: 1) linear se-
quence in the discrete output of either words, syllables, phones,
or other finer-grained linguistic units; and 2) segmental prop-
erty that the output units have minimal and variable durations
and thus cannot switch their identities freely.

The major components and topics within the space of ASR
are: 1) feature extraction; 2) acoustic modeling; 3) pronuncia-
tion modeling; 4) language modeling; and 5) hypothesis search.
However, to limit the scope of this article, we will provide the
overview of ML paradigms mainly on the acoustic modeling
component, which is arguably the most important one with
greatest contributions to and from ML.

The remaining portion of this paper is organized as follows:
We provide background material in Section II, including math-
ematical notations, fundamental concepts of ML, and some es-
sential properties of speech subject to the recognition process. In
Sections III and IV, two most prominent ML paradigms, gener-
ative and discriminative learning, are presented. We use the two
axes of modeling and loss function to categorize and elaborate
on numerous techniques developed in both ML and ASR areas,
and provide an overview on the generative and discriminative
models in historical and current use for ASR. The many types of
loss functions explored and adopted in ASR are also reviewed.
In Section V, we embark on the discussion of active learning
and semi-supervised learning, two different but closely related
ML paradigms widely used in ASR. Section VI is devoted to
transfer learning, consisting of adaptive learning and multi-task

TABLE I
DEFINITIONS OF A SUBSET OF COMMONLY USED
SYMBOLS AND NOTATIONS IN THIS ARTICLE

Symbol Meaning

X Space of input vectors

Yy Set of output labels

p(x,9) Joint distribution p(X =x,Y =y)

F Space of decision functions f: X' — Y
f(x;A) Decision function

dy(x; A) Discriminant function

A Model or decision function parameters
L(f(x),y) Loss function

Ep(xAy) H Expectation E(x,y)wp(x,y) H

D Training data (x¥,y®)™"

learning, where the former has a long and prominent history of
research in ASR and the latter is often embedded in the ASR
system design. Section VII is devoted to two emerging areas of
ML that are beginning to make inroad into ASR technology with
some significant contributions already accomplished. In partic-
ular, as we started writing this article in 2009, deep learning
technology was only taking shape, and now in 2013 it is gaining
full momentum in both ASR and ML communities. Finally,
in Section VIII, we summarize the paper and discuss future
directions.

II. BACKGROUND

A. Fundamentals

In this section, we establish some fundamental concepts in
ML most relevant to the ASR discussions in the remainder of
this paper. We first introduce our mathematical notations in
Table 1.

Consider the canonical setting of classification or regression
in machine learning. Assume that we have a training set D =
{(x®,y@)}™ | drawn from the distribution p(x, %), x € X,
y € Y. The goal of learning is to find a decision function
[+ X — Y that correctly predicts the output of a future input
drawn from the same distribution. The prediction task is called
classification when the output takes categorical values, which
we assume in this work. ASR is fundamentally a classification
problem. In a multi-class setting, a decision function is deter-
mined by a set of discriminant functions, i.e.,

f(x) = arg max d,(x); (1)
y

Each discriminant function d,, is a class-dependent function of
x. In binary classification where ) = {£1}, however, it is
common to use a single “discriminant function” as follows,

F(x) = sgn d(x) @)

Formally, learning is concerned with finding a decision func-
tion (or equivalently a set of discriminant functions) that mini-
mizes the expected risk, i.e.,

Rp(f) = Ep(xq) [L (f(X)/ y)] 3)

under some loss function L(f(x),y). Here the loss function
measures the “cost” of making the decision f(x) while the true
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output is y; and the expected risk is simply the expected value
of such a cost. In ML, it is important to understand the differ-
ence between the decision function and the loss function. The
former is often referred to as the “model”. For example, a linear
model is a particular form of the decision function, meaning that
input features are linearly combined at classification time. On
the other hand, how the parameters of a linear model are esti-
mated depends on the loss function (or, equivalently, the training
objective). A particular model can be estimated using different
loss functions, while the same loss function can be applied to
a variety of models. We will discuss the choice of models and
loss functions in more detail in Section III and Section I'V.

Apparently, the expected risk is hard to optimize directly as
p(x,y) is generally unknown. In practice, we often aim to find
a decision function that minimizes the empirical risk, i.e.,

m

Rompl) = S L(40x9).5)) @

with respect to the training set. It has been shown that, if L sat-
isfies certain constraints, Remp (/) converges to I2,(f) in prob-
ability for any f [6]. The training set, however, is almost always
insufficient. It is therefore crucial to apply certain type of reg-
ularization to improve generalization. This leads to a practical
training objective referred to as accuracy-regularization which
takes the following general form:

J(f)

where C(f) is a regularizer that measures “complexity” of f,
and ~ is a tradeoff parameter.

In fact, a fundamental problem in ML is to derive such
forms of C(f) that guarantee the generalization performance
of learning. Among the most popular theorems on generaliza-
tion error bound is the VC bound theorem [7]. According to
the theorem, if two models describe the training data equally
well, the model with the smallest VC dimension has better
generalization performance. The VC dimension, therefore, can
naturally serve as a regularizer in empirical risk minimization,
provided that it has a mathematically convenient form, as in the
case of large-margin hyperplanes [7], [8].

Alternatively, regularization can be viewed from a Bayesian
perspective, where f itself is considered a random variable. One
needs to specify a prior belief, denoted as p(f), before seeing
the training data (D). In contrast, the posterior probability of
the model is derived affer training data is observed:

= Remp(f) +70(f) ©)

3 — o £1) = PPLHP()
(J(}L) =F (f|D) - p(D) :

Maximizing (6) is known as maximum a posteriori (MAP) esti-
mation. Notice that by taking logarithm, this learning objective
fits the general form of (5); Rewp(f) is now represented by a
particular loss function In p(Datalf) and C(f) by —Inp(f).
The choice of the prior distribution has usually been a compro-
mise between a realistic assessment of beliefs and choosing a
parametric form that simplifies analytical calculations. In prac-
tice, certain forms of the prior are preferred due mainly to their

Q)

mathematical tractability. For example, in the case of genera-
tive models, a conjugate prior w(f) with respect to the joint
sample distribution p(x, y|f) is often used, so that the posterior
p(f]x,y) belongs to the same functional family as the prior.

All discussions above are based on the goal of finding a point-
estimate of the model. In the Bayesian approach, it is often ben-
eficial to have a decision function that takes into account the
uncertainty of the model itself. A Bayesian predictive classifier
is precisely for this purpose:

FBayes(%) 2 Ey(py [f(x)] )

In other words, instead of using one point-estimate of the model
(as is in MAP), we consider the entire posterior distribution,
thereby making the classification decision less subject to the
variance of the model.

The use of Bayesian predictive classifiers apparently leads
to a different learning objective; it is now the posterior dis-
tribution ¢( f) that we are interested in estimating as opposed
to a particular f. As a result, the training objective becomes
Ryx,yy(q(f)). Similar to our earlier discussion, this objective
can be estimated via empirical risk minimization with regular-
ization. For example, McAllester’s PAC-Bayesian bound [9]
suggests the following training objective,

¢ (f) = argqmin (Eq(r) [Remp (D] + AD (g(NIp(F))  ®)

which finds a posterior distribution that minimizes both the
marginalized empirical risk as well as the divergence from the
prior distribution of the model. Similarly, Maximum entropy
discrimination [10] seeks q(f) that minimizes D(q(f)||p(f))
under the constraints that gy [, o) [(3: f(x:) — 7i)]] 2> 0.

Finally, it is worth noting that Bayesian predictive classifiers
should be distinguished from the notion of Bayesian minimum
risk (BMR) classifiers. The latter is a form of point-estimate
classifiers in (1) that are based on Bayesian probabilities. We
will discuss BMR in detail in the discriminative learning para-
digm in Section IV.

B. Speech Recognition: A Structured Sequence Classification
Problem in Machine Learning

Here we address the fundamental problem of ASR. From
a functional view, ASR is the conversion process from the
acoustic data sequence of speech into a word sequence. From
the technical view of ML, this conversion process of ASR re-
quires a number of sub-processes including the use of (discrete)
time stamps, often called frames, to characterize the speech
waveform data or acoustic features, and the use of categorical
labels (e.g. words, phones, etc.) to index the acoustic data
sequence. The fundamental issues in ASR lie in the nature of
such labels and data. It is important to clearly understand the
unique attributes of ASR, in terms of both input data and output
labels, as a central motivation to connect the ASR and ML
research areas and to appreciate their overlap.

From the output viewpoint, ASR produces sentences that con-
sist of a variable number of words. Thus, at least in principle, the
number of possible classes (sentences) for the classification is so
large that it is virtually impossible to construct ML models for
complete sentences without the use of structure. From the input
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viewpoint, the acoustic data are also a sequence with a variable
length, and typically, the length of data input is vastly different
from that of label output, giving rise to the special problem of
segmentation or alignment that the “static” classification prob-
lems in ML do not encounter. Combining the input and output
viewpoints, we state the fundamental problem as a structured
sequence classification task, where a (relatively long) sequence
of acoustic data is used to infer a (relatively short) sequence of
the linguistic units such as words. More detailed exposition on
the structured nature of input and output of the ASR problem
can be found in [11], [12].

It is worth noting that the sequence structure (i.e. sentence)
in the output of ASR is generally more complex than most of
classification problems in ML where the output is a fixed, finite
set of categories (e.g., in image classification tasks). Further,
when sub-word units and context dependency are introduced to
construct structured models for ASR, even greater complexity
can arise than the straightforward word sequence output in ASR
discussed above.

The more interesting and unique problem in ASR, however,
is on the input side, i.e., the variable-length acoustic-feature se-
quence. The unique characteristic of speech as the acoustic input
to ML algorithms makes it a sometimes more difficult object for
the study than other (static) patterns such as images. As such, in
the typical ML literature, there has typically been less emphasis
on speech and related “temporal” patterns than on other signals
and patterns.

The unique characteristic of speech lies primarily in its tem-
poral dimension—in particular, in the huge variability of speech
associated with the elasticity of this temporal dimension. As a
consequence, even if two output word sequences are identical,
the input speech data typically have distinct lengths; e.g., dif-
ferent input samples from the same sentence usually contain dif-
ferent data dimensionality depending on how the speech sounds
are produced. Further, the discriminative cues among separate
speech classes are often distributed over a reasonably long tem-
poral span, which often crosses neighboring speech units. Other
special aspects of speech include class-dependent acoustic cues.
These cues are often expressed over diverse time spans that
would benefit from different lengths of analysis windows in
speech analysis and feature extraction. Finally, distinguished
from other classification problems commonly studied in ML,
the ASR problem is a special class of structured pattern recog-
nition where the recognized patterns (such as phones or words)
are embedded in the overall temporal sequence pattern (such as
a sentence).

Conventional wisdom posits that speech is a one-dimensional
temporal signal in contrast to image and video as higher di-
mensional signals. This view is simplistic and does not capture
the essence and difficulties of the ASR problem. Speech is best
viewed as a two-dimensional signal, where the spatial (or fre-
quency or tonotopic) and temporal dimensions have vastly dif-
ferent characteristics, in contrast to images where the two spatial
dimensions tend to have similar properties. The “spatial” dimen-
sion in speech is associated with the frequency distribution and
related transformations, capturing a number of variability types
including primarily those arising from environments, speakers,
accent, speaking style and rate. The latter type induces correla-

Labeled data

Supervised

Learning Sparse features

Same distribution

Joint likelihood loss

Generative

Learning

Learning

Unlabeled data Different distributions

Multiple layers of

Discriminative loss non-linearity

Adaptation
(Learn sequentially)

Selectively-labeled data Deep learning

fMuIti—task Learning

(learn simultaneously) .

Active Learning

Fig. 1. An overview of ML paradigms and their distinct characteristics.

tions between spatial and temporal dimensions, and the environ-
ment factors include microphone characteristics, speech trans-
mission channel, ambient noise, and room reverberation.

The temporal dimension in speech, and in particular its
correlation with the spatial or frequency-domain properties of
speech, constitutes one of the unique challenges for ASR. Some
of the advanced generative models associated with the genera-
tive learning paradigm of ML as discussed in Section III have
aimed to address this challenge, where Bayesian approaches
are used to provide temporal constraints as prior knowledge
about the human speech generation process.

C. A High-Level Summary of Machine Learning Paradigms

Before delving into the overview detail, here in Fig. 1 we
provide a brief summary of the major ML techniques and
paradigms to be covered in the remainder of this article. The
four columns in Fig. 1 represent the key attributes based on
which we organize our overview of a series of ML paradigms.
In short, using the nature of the loss function (as well as the
decision function), we divide the major ML paradigms into
generative and discriminative learning categories. Depending
on what kind of training data are available for learning, we
alternatively categorize the ML paradigms into supervised,
semi-supervised, unsupervised, and active learning classes.
When disparity between source and target distributions arises,
a more common situation in ASR than many other areas of ML
applications, we classify the ML paradigms into single-task,
multi-task, and adaptive learning. Finally, using the attribute of
input representation, we have sparse learning and deep learning
paradigms, both more recent developments in ML and ASR
and connected to other ML paradigms in multiple ways.

III. GENERATIVE LEARNING

Generative learning and discriminative learning are the two
most prevalent, antagonistically paired ML paradigms devel-
oped and deployed in ASR. There are two key factors that distin-
guish generative learning from discriminative learning: the na-
ture of the model (and hence the decision function) and the loss
function (i.e., the core term in the training objective). Briefly
speaking, generative learning consists of

» Using a generative model, and

* Adopting a training objective function based on the joint

likelihood loss defined on the generative model.
Discriminative learning, on the other hand, requires either
* Using a discriminative model, or
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* Applying a discriminative training objective function to a

generative model.

In this and the next sections, we will discuss generative vs.
discriminative learning from both the model and loss function
perspectives. While historically there has been a strong associ-
ation between a model and the loss function chosen to train the
model, there has been no necessary pairing of these two com-
ponents in the literature [13]. This section will offer a decou-
pled view of the models and loss functions commonly used in
ASR for the purpose of illustrating the intrinsic relationship and
contrast between the paradigms of generative vs. discrimina-
tive learning. We also show the hybrid learning paradigm con-
structed using mixed generative and discriminative learning.

This section, starting below, is devoted to the paradigm of
generative learning, and the next Section IV to the discrimina-
tive learning counterpart.

A. Models

Generative learning requires using a generative model and
hence a decision function derived therefrom. Specifically, a
generative model is one that describes the joint distribution
p(x,y; A), where A denotes generative model parameters. In
classification, the discriminant functions have the following
general form:

dy(x;A) = Inp(x,y; ) = Inp(x|y; Vp(y: ) (9)
As a result, the output of the decision function in (1) is the class
label that produces the highest joint likelihood. Notice that de-
pending on the form of the generative model, the discriminant
function and hence the decision function can be greatly sim-
plified. For example, when p(x|y; A) are Gaussian distributions
with the same covariance matrix, d, (x; A), for all classes can be
replaced by an affine function of x.

One simplest form of generative models is the naive Bayes
classifier, which makes strong independence assumptions that
features are independent of each other given the class label. Fol-
lowing this assumption, p(x|y; A) is decomposed to a product of
single-dimension feature distributions [], p(«;|y; A). The fea-
ture distribution at one dimension can be either discrete or con-
tinuous, either parametric or non-parametric. In any case, the
beauty of the naive Bayes approach is that the estimation of
one feature distribution is completely decoupled from the es-
timation of others. Some applications have observed benefits
by going beyond the naive Bayes assumption and introducing
dependency, partially or completely, among feature variables.
One such example is a multivariate Gaussian distribution with
a block-diagonal or full convariance matrix.

One can introduce latent variables to model more complex
distributions. For example, latent topic models such as proba-
bilistic Latent Semantic Analysis (pLSA) and Latent Dirichilet
Allocation (LDA), are widely used as generative models for text
inputs. Gaussian mixture models (GMM) are able to approxi-
mate any continuous distribution with sufficient precision. More
generally, dependencies between latent and observed variables
can be represented in a graphical model framework [14].

The notion of graphical models is especially interesting when
dealing with structured output. Dynamic Bayesian network is a
directed acyclic graph with vertices representing variables and
edges representing possible direct dependence relations among

the variables. A Bayesian network represents all probability
distributions that validly factor according to the network. The
joint distribution of all variables in a distribution corresponding
to the network factorizes over variables given their parents,
ie. p(xim) = [[i, p(x® |parents(x(?)). By having fewer
edges in the graph, the network has stronger conditional inde-
pendence properties and the resulting model has fewer degrees
of freedom. When an integer expansion parameter representing
discrete time is associated with a Bayesian network, and a set of
rules is given to connect together two successive such “chunks”
of Bayesian network, then a dynamic Bayesian network arises.
For example, hidden Markov models (HMMs), with simple
graph structures, are among the most popularly used dynamic
Bayesian networks.

Similar to a Bayesian network, a Markov random field (MRF)
is a graph that expresses requirements over a family of proba-
bility distributions. A MRF, however, is an undirected graph,
and thus is capable of representing certain distributions that
a Bayesian network can not represent. In this case, the joint
distribution of the variables is the product of potential func-
tions over cliques (the maximal fully-connected sub-graphs).
Formally, p(X1..) = (1/2) [I}, ¢x(Xx}), where ¢p(xys)) is
the potential function for clique &, and Z is a normalization
constant. Again, the graph structure has a strong relation to the
model complexity.

B. Loss Functions

As mentioned in the beginning of this section, generative
learning requires using a generative model and a training ob-
jective based on joint likelihood loss, which is given by

L(f(x),y) = —Inp(x,y; \) (10)

One advantage of using the joint likelihood loss is that the loss
function can often be decomposed into independent sub-prob-
lems which can be optimized separately. This is especially ben-
eficial when the problem is to predict structured output (such
as a sentence output of an ASR system), denoted as bolded y.
For example, in a Beysian network, p(x,y) can be conveniently
rewritten as p(x|y )p(y ), where each of p(x|y) and p(y) can be
further decomposed according to the input and output structure.
In the following subsections, we will present several joint like-
lihood forms widely used in ASR.

The generative model’s parameters learned using the above
training objective are referred to as maximum likelihood esti-
mates (MLE), which is statistically consistent under the assump-
tions that (a) the generative model structure is correct, (b) the
training data is generated from the true distribution, and (c) we
have an infinite amount of such training data. In practice, how-
ever, the model structure we choose can be wrong and training
data is almost never sufficient, making MLE suboptimal for
learning tasks. Discriminative loss functions, as will be intro-
duced in Section IV, aim at directly optimizing predicting per-
formance rather than solving a more difficult density estimation
problem.

C. Generative Learning in Speech Recognition—An Overview

In ASR, the most common generative learning approach
is based on Gaussian-Mixture-Model based Hidden Markov
models, or GMM-HMM; e.g., [15]-[18]. A GMM-HMM is
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parameterized by A = (7, A, B). 7 is a vector of state prior
probabilities; A = (a; ;) is a state transition probability matrix;
and B = {b1,...,b,} is a set where b; represents the Gaussian
mixture model of state j. The state is typically associated with a
sub-segment of a phone in speech. One important innovation in
ASR is the introduction of context-dependent states (e.g. [19]),
motivated by the desire to reduce output variability associated
with each state, a common strategy for “detailed” generative
modeling. A consequence of using context dependency is a
vast expansion of the HMM state space, which, fortunately,
can be controlled by regularization methods such as state
tying. (It turns out that such context dependency also plays
a critical role in the more recent advance of ASR in the area
of discriminative-based deep learning [20], to be discussed in
Section VII-A.)

The introduction of the HMM and the related statistical
methods to ASR in mid 1970s [21], [22] can be regarded the
most significant paradigm shift in the field, as discussed in [1].
One major reason for this early success was due to the highly
efficient MLE method invented about ten years earlier [23].
This MLE method, often called the Baum-Welch algorithm,
had been the principal way of training the HMM-based ASR
systems until 2002, and is still one major step (among many)
in training these systems nowadays. It is interesting to note
that the Baum-Welch algorithm serves as one major motivating
example for the later development of the more general Expec-
tation-Maximization (EM) algorithm [24].

The goal of MLE is to minimize the empirical risk with re-
spect to the joint likelihood loss (extended to sequential data),
ie.,

Remp(f) = =Y Inp(x@,yDix A,B) (1)

where x represents acoustic data, usually in the form of a se-
quence feature vectors extracted at frame-level; y represents a
sequence of linguistic units. In large-vocabulary ASR systems,
it is normally the case that word-level labels are provided, while
state-level labels are latent. Moreover, in training HMM-based
ASR systems, parameter tying is often used as a type of reg-
ularization [25]. For example, similar acoustic states of the tri-
phones can share the same Gaussian mixture model. In this case,
the C(f) term in (5) is expressed by

C(f) =

H 6(i)m = bn)

(m,n)eT

(12)

where 7 represents a set of tied state pairs.

The use of the generative model of HMMs, including the most
popular Gaussian-mixture HMM, for representing the (piece-
wise stationary) dynamic speech pattern and the use of MLE for
training the tied HMM parameters constitute one most promi-
nent and successful example of generative learning in ASR.
This success was firmly established by the ASR community,
and has been widely spread to the ML and related communi-
ties; in fact, HMM has become a standard tool not only in ASR
but also in ML and their related fields such as bioinformatics
and natural language processing. For many ML as well as ASR
researchers, the success of HMM in ASR is a bit surprising due

to the well-known weaknesses of the HMM. The remaining part
of this section and part of Section VII will aim to address ways
of using more advanced ML models and techniques for speech.
Another clear success of the generative learning paradigm in
ASR is the use of GMM-HMM as prior “knowledge” within
the Bayesian framework for environment-robust ASR. The
main idea is as follows. When the speech signal, to be recog-
nized, is mixed with noise or another non-intended speaker,
the observation is a combination of the signal of interest
and interference of no interest, both unknown. Without prior
information, the recovery of the speech of interest and its
recognition would be ill defined and subject to gross errors.
Exploiting generative models of Gaussian-mixture HMM (also
serving the dual purpose of recognizer), or often a simpler
Gaussian mixture or even a single Gaussian, as Bayesian prior
for “clean” speech overcomes the ill-posed problem. Further,
the generative approach allows probabilistic construction of the
model for the relationship among the noisy speech observation,
clean speech, and interference, which is typically nonlinear
when the log-domain features are used. A set of generative
learning approaches in ASR following this philosophy are vari-
ably called “parallel model combination” [26], vector Taylor
series (VTS) method [27], [28], and Algonquin [29]. Notably,
the comprehensive application of such a generative learning
paradigm for single-channel multitalker speech recognition is
reported and reviewed in [5], where the authors apply success-
fully a number of well established ML methods including loopy
belief propagation and structured mean-field approximation.
Using this generative learning scheme, ASR accuracy with loud
interfering speakers is shown to exceed human performance.

D. Trajectory/Segment Models

Despite some success of GMM-HMMSs in ASR, their weak-
nesses, such as the conditional independence assumption, have
been well known for ASR applications [1], [30]. Since early
1990’s, ASR researchers have begun the development of statis-
tical models that capture the dynamic properties of speech in
the temporal dimension more faithfully than HMM. This class
of beyond-HMM models have been variably called stochastic
segment model [31], [32], trended or nonstationary-state HMM
[33], [34], trajectory segmental model [32], [35], trajectory
HMMs [36], [37], stochastic trajectory models [38], hidden dy-
namic models [39]-[45], buried Markov models [46], structured
speech model [47], and hidden trajectory model [48] depending
on different “prior knowledge” applied to the temporal structure
of speech and on various simplifying assumptions to facilitate
the model implementation. Common to all these beyond-HMM
models is some temporal trajectory structure built into the
models, hence trajectory models. Based on the nature of such
structure, we can classify these models into two main cate-
gories. In the first category are the models focusing on temporal
correlation structure at the “surface” acoustic level. The second
category consists of hidden dynamics, where the underlying
speech production mechanisms are exploited as the Bayesian
prior to represent the “deep” temporal structure that accounts
for the observed speech pattern. When the mapping from the
hidden dynamic layer to the observation layer limited to linear
(and deterministic), then the generative hidden dynamic models
in the second category reduces to the first category.
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The temporal span of the generative trajectory models in both
categories above is controlled by a sequence of linguistic labels,
which segment the full sentence into multiple regions from left
to right; hence segment models.

In a general form, the trajectory/segment models with hidden
dynamics makes use of the switching state space formulation,
intensely studied in ML as well as in signal processing and
control. They use temporal recursion to define the hidden dy-
namics, z(k), which may correspond to articulatory movement
during human speech production. Each discrete region or seg-
ment, s, of such dynamics is characterized by the s-dependent
parameter set A, with the “state noise” denoted by w,(k).
The memory-less nonlinear mapping function is exploited to
link the hidden dynamic vector z(k) to the observed acoustic
feature vector o(k), with the “observation noise” denoted by
v4(k), and parameterized also by segment-dependent parame-
ters. The combined “state equation” (13) and “observation equa-
tion” (14) below form a general switching nonlinear dynamic
system model:

Z(k + 1) = 8k [Z(k)7A<] + We(k)
O(k/) =hy [Z(k,),ﬂs/] + VS/(k/)‘

(13)
(14)

where subscripts & and &’ indicate that the functions g].] and
h[.] are time varying and may be asynchronous with each other.
s or s' denotes the dynamic region correlated with phonetic
categories.

There have been several studies on switching nonlinear state
space models for ASR, both theoretical [39], [49] and experi-
mental [41]-[43], [50]. The specific forms of the functions of
grlz(k), A,] and by [z(k'), Q] and their parameterization are
determined by prior knowledge based on current understanding
of the nature of the temporal dimension in speech. In particular,
state equation (13) takes into account the temporal elasticity in
spontaneous speech and its correlation with the “spatial” prop-
erties in hidden speech dynamics such as articulatory positions
or vocal tract resonance frequencies; see [45] for a comprehen-
sive review of this body of work.

When nonlinear functions of g [z(k), A;] and hy [2(%), Q4]
in (13) and (14) are reduced to linear functions (and when syn-
chrony between the two equations are eliminated), the switching
nonlinear dynamic system model is reduced to its linear coun-
terpart, or switching linear dynamic system (SLDS). The SLDS
can be viewed as a hybrid of standard HMMs and linear dynam-
ical systems, with a general mathematical description of

z(k+ 1) =Az(k) + B,ws(k)
o(k) = C,z(k) + v, (k).

1s)
(16)

There has also been an interesting set of work on SLDS
applied to ASR. The early set of studies have been carefully
reviewed in [32] for generative speech modeling and for its
ASR applications. More recently, the studies reported in [51],
[52] applied SLDS to noise-robust ASR and explored several
approximate inference techniques, overcoming intractability in
decoding and parameter learning. The study reported in [53]
applied another approximate inference technique, a special type
of Gibbs sampling commonly used in ML, to an ASR problem.

During the development of trajectory/segment models
for ASR, a number of ML techniques invented originally

in non-ASR communities, e.g. variational learning [50],
pseudo-Bayesian [43], [51], Kalman filtering [32], extended
Kalman filtering [39], [45], Gibbs sampling [53], orthogonal
polynomial regression [34], etc., have been usefully applied
with modifications and improvement to suit the speech-specific
properties and ASR applications. However, the success has
mostly been limited to small-scale tasks. We can identify four
main sources of difficulty (as well as new opportunities) in suc-
cessful applications of trajectory/segment models to large-scale
ASR. First, scientific knowledge on the precise nature of the
underlying articulatory speech dynamics and its deeper articu-
latory control mechanisms is far from complete. Coupled with
the need for efficient computation in training and decoding
for ASR applications, such knowledge was forced to be again
simplified, reducing the modeling power and precision further.
Second, most of the work in this area has been placed within
the generative learning setting, having a goal of providing
parsimonious accounts (with small parameter sets) for speech
variations due to contextual factors and co-articulation. In con-
trast, the recent joint development of deep learning by both ML
and ASR communities, which we will review in Section VII,
combines generative and discriminative learning paradigms
and makes use of massive instead of parsimonious parameters.
There is a huge potential for synergy of research here. Third,
although structural ML learning of switching dynamic systems
via Bayesian nonparametrics has been maturing and producing
successful applications in a number of ML and signal pro-
cessing tasks (e.g. the tutorial paper [54]), it has not entered
mainstream ASR; only isolated studies have been reported
on using Bayesian nonparametrics for modeling aspects of
speech dynamics [55] and for language modeling [56]. Finally,
most of the trajectory/segment models developed by the ASR
community have focused on only isolated aspects of speech
dynamics rooted in deep human production mechanisms, and
have been constructed using relatively simple and largely stan-
dard forms of dynamic systems. More comprehensive modeling
and learning/inference algorithm development would require
the use of more general graphical modeling tools advanced by
the ML community. It is this topic that the next subsection is
devoted to.

E. Dynamic Graphical Models

The generative trajectory/segment models for speech dy-
namics just described typically took specialized forms of the
more general dynamic graphical model. Overviews on the
general use of dynamic Bayesian networks, which belong to
directed form of graphical models, for ASR have been provided
in [4], [57], [58]. The undirected form of graphical models,
including Markov random field and the product of experts
model as its special case, has been applied successfully in
HMM-based parametric speech synthesis research and systems
[59]. However, the use of undirected graphical models has not
been as popular and successful. Only quite recently, a restricted
form of the Markov random field, called restricted Boltzmann
machine (RBM), has been successfully used as one of the
several components in the speech model for use in ASR. We
will discuss RBM for ASR in Section VII-A.

Although the dynamic graphical networks have provided
highly generalized forms of generative models for speech
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modeling, some key sequential properties of the speech signal,
e.g. those reviewed in Section II-B, have been expressed in
specially tailored forms of dynamic speech models, or the tra-
jectory/segment models reviewed in the preceding subsection.
Some of these models applied to ASR have been formulated and
explored using the dynamic Bayesian network framework [4],
[45], [60], [61], but they have focused on only isolated aspects
of speech dynamics. Here, we expand the previous use of the
dynamic Bayesian network and provide more comprehensive
modeling of deep generative mechanisms of human speech.

Shown in Fig. 2 is an example of the directed graphical
model or Bayesian network representation of the observable
distorted speech feature sequence vi, Vo, ..., vy of length K
given its “deep” generative causes from both top-down and
bottom up directions. The top-down causes represented in Fig. 2
include the phonological/pronunciation model (denoted by se-
quence $1, s3, . .., Sk ), articulatory control model (denoted by
sequence tq,to, ..., tg), articulatory dynamic model (denoted
by sequence zi,Zs,...,Zx), and the articultory-to-acoustic
mapping model (denoted by the conditional relation from
Z1,Z9,...,Zx t0 01,09,...,0x). The bottom-up causes in-
clude nonstationary distortion model, and the interaction model
among “hidden” clean speech, observed distorted speech, and
the environmental distortion such as channel and noise.

The semantics of the Bayesian network in Fig. 2, which spec-
ifies dependency among a set of time varying random variables
involved in the full speech production process and its interac-
tions with acoustic environments, is summarized below. First,
the probabilistic segmental property of the target process is rep-
resented by the conditional probability [62]:

pt(k)|se, se—1,6(k — 1)]
- {6 [60) —t(k— 1)) if sk =si1,
otherwise.

17
N (6(k):msi), B(si) (1

Second, articulatory dynamics controlled by the target
process is given by the conditional probability:

Pz [2(k + 1)[2(k), t(k), 8]
=pwz(k +1) — O, 2(k) — (I-®,, )t(k)], (18)
or equivalently the target-directed state equation with
state-space formulation [63]:
z(k+1)=®.2(k)+ (I-®,)t, + w(k). (19)
Third, the “observation” equation in the state-space model
governing the relationship between distortion-free acoustic fea-
tures of speech and the corresponding articulatory configuration
is represented by
o(k) =hz(k)] + wo(k). (20)
where o(k) is the distortion-free speech vector, wq (k) is the ob-
servation noise vector uncorrelated with the state noise w, and
h[] is the static memory-less transformation from the articula-
tory vector to its corresponding acoustic vector. h[.] was imple-
mented by a neural network in [63].
Finally, the dependency of the observed environmentally-dis-
torted acoustic features of speech v(k) on its distortion-free

counterpart o(k), on the non-stationary noise n(k), and on the
stationary channel distortion h is represented by

pv (v(k)[o(k), b, n(k))
=p [v(k) —o(k)+h+ Clog
x [I+exp [C™' (n(k) —o(k) —h)]]]. (2D
where the distribution p,. on the prediction residual has typically
taken a Gaussian form with a constant variance [29] or with an
SNR-dependent variance [64].

Inference and learning in the comprehensive generative
model of speech shown in Fig. 2 are clearly not tractable.
Numerous sub-problems and model components associated
with the overall model have been explored or solved using
inference and learning algorithm developed in ML; e.g. varia-
tional learning [50] and other approximate inference methods
[5], [45], [53]. Recently proposed new techniques for learning
graphical model parameters given all sorts of approximations
(in inference, decoding, and graphical model structure) are in-
teresting alternatives to overcoming the intractability problem
[65].

Despite the intractable nature of the learning problem in com-
prehensive graphical modeling of the generative process for
human speech, it is our belief that accurate “generative” rep-
resentation of structured speech dynamics holds a key to the
ultimate success of ASR. As will be discussed in Section VII,
recent advance of deep learning has reduced ASR errors sub-
stantially more than the purely generative graphical modeling
approach while making much weaker use of the properties of
speech dynamics. Part of that success comes from well designed
integration of (unstructured) generative learning with discrimi-
native learning (although more serious but difficult modeling of
dynamic processes with temporal memory based on deep recur-
rent neural networks is a new trend). We devote the next section
to discriminative learning, noting a strong future potential of
integrating structured generative learning discussed in this sec-
tion with the increasingly successful deep learning scheme with
a hybrid generative-discriminative learning scheme, a subject of
Section VII-A.

IV. DISCRIMINATIVE LEARNING

As discussed earlier, the paradigm of discriminative learning
involves either using a discriminative model or applying dis-
criminative training to a generative model. In this section, we
first provide a general discussion of the discriminative models
and of the discriminative loss functions used in training, fol-
lowed by an overview of the use of discriminative learning in
ASR applications including its successful hybrid with genera-
tive learning.

A. Models

Discriminative models make direct use of the conditional re-
lation of labels given input vectors. One major school of such
models are referred to as Bayesian Mininum Risk (BMR) clas-
sifiers [66]-[68]:

fx A =— arg IInin Z AW, y)ply|x; A)

Yy

(22)



DENG AND LI: MACHINE LEARNING PARADIGMS FOR SPEECH RECOGNITION: AN OVERVIEW 9

Fig. 2. A directed graphical model, or Bayesian network, which represents the
deep generative process of human speech production and its interactions with
the distorting acoustic environment; adopted from [45], where the variables ¢
represent the “visible” or measurable distorted speech features which are de-
noted by v(k) in the text.

where A(y’, y) represents the cost of classifying x as y" while
the true classification is y. A is sometimes referred to as “loss
function”, but this loss function is applied at classification time,
which should be distinguished from the loss function applied at
training time as in (3).

When 0-1 loss is used in classification, (22) is reduced to
finding the class label that yields the highest conditional proba-
bility, i.e.,

F(x; A) = argmin p(y|x; A) (23)
y

The corresponding discriminant function can be represented as

d(x; A) = Inp(y|x; A) (24)
Conditional log linear models (Chapter 4 in [69]) and multi-
layer perceptrons (MLPs) with softmax output (Chapter 5 in
[69]) are both of this form.

Another major school of discriminative models focus on the
decision boundary instead of the probabilistic conditional dis-
tribution. In support vector machines (SVMs, see (Chapter 7
in [69])), for example, the discriminant functions (extended to
multi-class classification) can be written as

dy(x;A) = A+ p(x,y) (25)
where ¢(x;y) is a feature vector derived from the input and
the class label, and is implicitly determined by a reproducing
kernel. Notice that for conditional log linear models and MLPs,

the discriminant functions in (24) can be equivalently replaced
by (25), by ignoring their common denominators.

B. Loss Functions

This section introduces a number of discriminative loss func-
tions. The first group of loss functions are based on probabilistic
models, while the second group on the notion of margin.

1) Probability-Based Loss: Similar to the joint likelihood
loss discussed in the preceding section on generative learning,
conditional likelihood loss is a probability-based loss function
but is defined upon the conditional relation of class labels given
input features:

L(f(x),y) = —Inp(ylx; A).

This loss function is strongly tied to probabilistic discrimina-
tive models such as conditional log linear models and MLPs,
while they can be applied to generative models as well, leading
to a school of discriminative training methods which will be
discussed shortly. Moreover, conditional likelihood loss can be
naturally extended to predicting structure output. For example,
when applying (26) to Markov random fields, we obtain the
training objective of conditional random fields (CRFs) [70]:

(26)

HYRN = s end fx). @)
The partition function Z,(x) is a normalization factor. A is a
weight vector and f(y,x) is a vector of feature functions re-
ferred to as a feature vector. In ASR tasks where state-level la-
bels are usually unknown, hidden CRF have been introduced to
model conditional likelihood with the presence of hidden vari-
ables [71], [72]:

p(ylx;A) = %(X)Zexw-f(y?zx)- (28)

Note that in most of the ML as well as the ASR literature, one
often calls the training method using the conditional likelihood
loss above as simply maximal likelihood estimation (MLE).
Readers should not confuse this type of discriminative learning
with the MLE in the generative learning paradigm we discussed
in the preceding section.

A generalization of conditional likelihood loss is Minimum
Bayes Risk training. This is consistent with the criterion of MBR
classifiers described in the previous subsection. The loss func-
tion of (MBR) in training is given by

L(f(x),y)=—InY Ay, y)plylx; )

Yy

29

where A is the cost (loss) function used in classification. This
loss function is especially useful in models with structured
output; dissimilarity between different outputs y can be formu-
lated using the cost function, e.g., word or phone error rates
in speech recognition [73]-[75], and BLEU score in machine
translation [76]-[78]. When A is based on 0-1 loss, (29) is
reduced to conditional likelihood loss.

2) Margin-Based Loss: Margin-based loss, as discussed and
analyzed in detail in [6], represents another class of loss func-
tions. In binary classification, they follow a general expression
L(f(x),y) = h(yd(x)), where d(x) is the discriminant func-
tion defined in (2), and yd(x) is known as the margin.
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Fig. 3. Convex surrogates of 0—1 loss as discussed and analyzed in [6].

Margin-based loss functions, including logistic loss, hinge
loss used in SVMs, and exponential loss used in boosting, are all
motivated by upper bounds of 0—1 loss, as illustrated in Fig. 3,
with the highly desirable convexity property for ease of op-
timization. Empirical risk minimization under such loss func-
tions are related to the minimization of classification error rate.
In a multi-class setting, the notion of “margin” can be gener-
ally viewed as a discrimination metric between the discriminant
function of the true class and those of the competing classes,
e.g., dy(x) — d,(x), for all ¥’ # y. Margin-based loss, then,
can be defined accordingly such that minimizing the loss would
enlarge the “margins” between d, (x) and d,(x), y' # .

One functional form that fits this intuition is introduced in the
minimum classification error (MCE) training [79], [80] com-
monly used in ASR:

L{f(x),y)

=0 |—d,(x;A)+In Zcxp{dy(x;)\)n}

Yy

1
—|y|71 (30)

where o(-) is a smooth function, which is non-convex and
which maps the “margin” to a 0—1 continuum. It is easy to
see that in a binary setting where ) = {£1} and where
dy1(x) = —d_1(x) = d(x), this loss function can be sim-
plified to o(—d, (x; A) + dy(x; X)) = o(—yd(x)) which has
exactly the same form as logistic loss for binary classification
[6].

Similarly, there have been a host of work that generalizes
hinge loss to the multi-class setting. One well known approach

[81] is to have
=2 1=

y'#y

AN +dp(x )], G

(where sum is often replaced by max). Again when there are
only two classes, (31) is reduced to hinge loss |1 — yd(x)|+.
To be even more general, margin based loss can be extended
to structured output as well. In [82], loss functions are defined
based on A(y,y’), where A is a measure of discrepancy be-
tween two output structures. Analogous to (31), we have

=A@, Y) = dy(x:A) + dyr (x5 M) (32)
Y'EY

Intuitively, if two output structures are more similar, their dis-
criminant functions should produce more similar output values

on the same input data. When A is based on 0-1 loss, (32) is
reduced to (31).

C. Discriminative Learning in Speech Recognition—An
Overview

Having introduced the models and loss functions for the gen-
eral discriminative learning settings, we now review the use of
these models and loss functions in ASR applications.

1) Models: When applied to ASR, there are “direct”
approaches which use maximum entropy Markov models
(MEMMs) [83], conditional random fields (CRFs) [84], [85],
hidden CRFs (HCRFs) [71], augmented CRFs [86], segmental
CRFs (SCARFs) [72], and deep-structured CRFs [87], [88].
The use of neural networks in the form of MLP (typically with
one hidden layer) with the softmax nonlinear function at the
final layer was popular in 1990’s. Since the output of the MLP
can be interpreted as the conditional probability [89], when the
output is fed into an HMM, a good discriminative sequence
model, or hybrid MLP-HMM, can be created. The use of this
type of discriminative model for ASR has been documented
and summarized in detail in [90]-[92] and analyzed recently in
[93]. Due mainly to the difficulty in learning MLPs, this line of
research has been switched to a new direction where the MLP
simply produces a subset of “feature vectors” in combination
with the traditional features for use in the generative HMM
[94]. Only recently, the difficulty associated with learning
MLPs has been actively addressed, which we will discuss in
Section VII. All these models are examples of the probabilistic
discriminative models expressed in the form of conditional
probabilities of speech classes given the acoustic features as
the input.

The second school of discriminative models focus on deci-
sion boundaries instead of class-conditional probabilities. Anal-
ogous to MLP-HMMs, SVM-HMMs have been developed to
provide more accurate state/phone classification scores, with in-
teresting results reported [95]-[97]. Recent work has attempted
to directly exploit structured SVMs [98], and have obtained sig-
nificant performance gains in noise-robustness ASR.

2) Conditional Likelihood: The loss functions in discrimi-
native learning for ASR applications have also taken more than
one form. The conditional likelihood loss, while being most nat-
ural for use in probabilistic discriminative models, can also be
applied to generative models. The maximum mutual informa-
tion estimation (MMIE) of generative models, highly popular
in ASR, uses an equivalent loss function to the conditional like-
lihood loss that leads to the empirical risk of

(33)

emp

See a simple proof of their equivalence in [74]. Due to its
discriminative nature, MMIE has demonstrated significant
performance improvement over using the joint likelihood loss
in training Gaussian-mixture HMM systems [99]-[101].

For non-generative or direct models in ASR, the conditional
likelihood loss has been naturally used in training. These dis-
criminative probabilistic models including MEMMs [83], CRFs
[85], hidden CRFs [71], semi-Markov CRFs [72], and MLP-
HMMs [91], all belonging to the class of conditional log linear
models. The empirical risk has the same form as (33) except
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that p(y;|x:; A) can be computed directly from the conditional
models by

Remp(f) = = Inp(yilx; ) (34)

For the conditional log linear models, it is common to apply a
Gaussian prior on model parameters, i.c.,

C(f) = —Inp(A) =x

A 2
I ”2 . 35)
g

2

3) Bayesian Minimum Risk: Loss functions based on
Bayesian minimum risk or BMR (of which the conditional
likelihood loss is a special case) have received strong success in
ASR, as their optimization objectives are more consistent with
ASR performance metrics. Using sentence error, word error
and phone error as A in (29) leads to their respective methods
commonly called Minimum Classification Error (MCE), Min-
imum Word Error (MWE) and Minimum Phone Error (MPE)
in the ASR literature. In practice, due to the non-continuity
of these objectives, they are often substituted by continuous
approximations, making them closer to margin-based loss in
nature.

The MCE loss, as represented by (30) is among the earliest
adoption of BMR with margin-based loss form in ASR. It
was originated from MCE training of the generative model of
Gaussian-mixture HMM [79], [102]. The analogous use of the
MPE loss has been developed in [73]. With a slight modifi-
cation of the original MCE objective function where the bias
parameter in the sigmoid smoothing function is annealed over
each training iteration, highly desirable discriminative margin
is achieved while producing the best ASR accuracy result for a
standard ASR task (TI-Digits) in the literature [103], [104].

While the MCE loss function has been developed originally
and used pervasively for generative models of HMM in ASR,
the same MCE concept can be applied to training discrimina-
tive models. As pointed out in [105], the underlying principle
of MCE is decision feedback, where the discriminative deci-
sion function that is used as the scoring function in the decoding
process becomes a part of the optimization procedure of the en-
tire system. Using this principle, a new MCE-based learning al-
gorithm is developed in [106] with success for a speech under-
standing task which embeds ASR as a sub-component, where
the parameters of a log linear model is learned via a general-
ized MCE criterion. More recently, a similar MCE-based deci-
sion-feedback principle is applied to develop a more advanced
learning algorithm with success for a speech translation task
which also embeds ASR as a sub-component [107].

Most recently, excellent results on large-scale ASR are re-
ported in [108] using the direct BMR (state-level) criterion to
train massive sets of ASR model parameters. This is enabled
by distributed computing and by a powerful technique called
Hessian-free optimization. The ASR system is constructed in a
similar framework to the deep neural networks of [20], which
we will describe in more detail in Section VII-A.

4) Large Margin: Further, the hinge loss and its variations
lead to a variety of large-margin training methods for ASR.
Equation (32) represents a unified framework for a number of

such large-margin methods. When using a generative model dis-
criminant function d, (x; A) = lnp(x,y; A), we have

SV A
Aly,y)—1n pl—(x, yiA)

L(f(x)y) = p(x. 55 A)

>

y'#y

NG

+

Similarly, by using d,,(x; A\) = In p(y|x; A), we obtain a large-
margin training objective for conditional models:

, p(ylx; A)
Lf(x),y)= > |Aly.y) - =220 (37)
y!;éy p(y X7 /\) =+
In [109], a quadratic discriminant function of
dy(x; V) = —z7 U,z where z = [x,1]7 (38)

is defined as the decision function for ASR, where ¥,y € V,
are positive semidefinite matrices that incorporate means and
covariance matrices of Gaussians. Note that due to the missing
log-variance term in (38), the underlying ASR model is no
longer probabilistic and generative. The goal of learning in the
approach developed in [109] is to minimize the empirical risk
under the hinge loss function in (31), i.e.,

Remp(f) =30 3 1429711, - 9,020 39)
vy Fy +
while regularizing on model parameters:
(40)

C(f) =) trace(¥,)

The minimization of Remp(f) + vC(f) can be solved as a con-
strained convex optimization problem, which gives a huge com-
putational advantage over most other discriminative learning al-
gorithms in training ASR which are non-convex in the objective
functions. The readers are referred to a recent special issue of
IEEE Signal Processing Magazine on the key roles that convex
optimization plays in signal processing including speech recog-
nition [110].

A different but related margin-based loss function was ex-
plored in the work of [111], [112], where the empirical risk is
expressed by

Reyp(f) = min ((ly (xi; A) — n}ix Ay (x4 A)) . 41
i y' 7Y
following the standard definition of multiclass separation
margin developed in the ML community for probabilistic
generative models; e.g., [113], and the discriminant function
in (41) is taken to be the log likelihood function of the input
data. Here, the main difference between the two approaches
to the use of large margin for discriminative training in ASR
is that one is based on the probabilistic generative model of
HMM [111], [114], and the other based in non-generative
discriminant function [109], [115]. However, similar to [109],
[115], the work described in [111], [114], [116], [117] also
exploits convexity of the optimization objective by using
constraints imposed on model parameters, offering similar
kind of compensational advantage. A geometric perspective on
large-margin training that analyzes the above two types of loss
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functions has appeared recently in [118], which is tested in a
vowel classification task.

In order to improve discrimination, many methods have been
developed for combining different ASR systems. This is one
area with interesting overlaps between the ASR and ML com-
munities. Due to space limitation, we will not cover this en-
semble learning paradigm in this paper, except to point out that
many common techniques from ML in this area have not made
strong impact in ASR and further research is needed.

The above discussions have touched only lightly on discrim-
inative learning for HMM [79], [111], while focusing on the
two general aspects of discriminative learning for ASR with re-
spect to modeling and to the use of loss functions. Nevertheless,
there has been a very large body of work in the ASR literature,
which belongs to the more specific category of the discrimi-
native learning paradigm when the generative model takes the
form of GMM-HMM. Recent surveys have provided detailed
analysis on and comparisons among the various popular tech-
niques within this specific paradigm pertaining to HMM-like
generative models, as well as a unified treatment of these tech-
niques [74], [114],[119], [120]. We now turn to a brief overview
on this body of work.

D. Discriminative Learning for HMM and Related Generative
Models

The overview article of [74] provides the definitions and intu-
itions of four popular discriminative learning criteria in use for
HMM-based ASR, all being originally developed and steadily
modified and improved by ASR researchers since mid-1980’s.
They include: 1) MMI[101], [121]; 2) MCE, which can be inter-
preted as minimal sentence error rate [79] or approximate min-
imal phone error rate [122]; 3) MPE or minimal phone error
[73], [123]; and 4) MWE or minimal word error. A discrimina-
tive learning objective function is the empirical average of the
related loss function over all training samples.

The essence of the work presented in [74] is to reformu-
late all the four discriminative learning criteria for an HMM
into a common, unified mathematical form of rational functions.
This is trivial for MMI by the definition, but non-trivial for
MCE, MPE, and MWE. The critical difference between MMI
and MCE/MPE/MWE is the product form vs. the summation
form in the respective loss function, while the form of rational
function requires the product form and requires a non-trivial
conversion for the MCE/MPE/MWE criteria in order to arrive
at a unified mathematical expression with MMI. The tremen-
dous advantage gained by the unification is the enabling of a nat-
ural application of the powerful and efficient optimization tech-
nique, called growth-transformation or extended Baum-Welch
algorithm, to optimization all parameters in parametric genera-
tive models. One important step in developing the growth-trans-
formation algorithm is to derive two key auxiliary functions for
intermediate levels of optimization. Technical details including
major steps in the derivation of the estimation formulas are pro-
vided for growth-transformation based parameter optimization
for both the discrete HMM and the Gaussian HMM. Full tech-
nical details including the HMM with the output distributions
using the more general exponential family, the use of lattices
in computing the needed quantities in the estimation formulas,
and the supporting experimental results in ASR are provided in
[119].

The overview article of [114] provides an alternative unified
view of various discriminative learning criteria for an HMM.
The unified criteria include 1) MMI; 2) MCE; and 3) LME
(large-margin estimate). Note the LME is the same as (41) when
the discriminant function d takes the form of log likelihood
function of the input data in an HMM. The unification proceeds
by first defining a “margin” as the difference between the HMM
log likelihood on the data for the correct class minus the geo-
metric average the HMM log likelihoods on the data for all in-
correct classes. This quantity can be intuitively viewed as a mea-
sure of distance from the data to the current decision boundary,
and hence “margin”. Then, given the fixed margin function def-
inition, three different functions of the same margin function
over the training data samples give rise to 1) MMI as a sum of
the margins over the data; 2) MCE as sum of exponential func-
tions of the margin over the data; and 3) LME as a minimum of
the margins over the data.

Both the motivation and the mathematical form of the unified
discriminative learning criteria presented in [114] are quite dif-
ferent from those presented in [74], [119]. There is no common
rational functional form to enable the use of the extended Baum-
Welch algorithm. Instead, the interesting constrained optimiza-
tion technique was developed by the authors and presented.
The technique consists of two steps: 1) Approximation step,
where the unified objective function is approximated by an aux-
iliary function in the neighborhood of the current model param-
eters; and 2) Maximization step, where the approximated aux-
iliary function was optimized using the locality constraint. Im-
portantly, a relaxation method was exploited, which was also
used in [117] with an alternative approach, to further approxi-
mate the auxiliary function into a form of positive semi-definite
matrix. Thus, the efficient convex optimization technique for a
semi-definite programming problem can be developed for this
M-step.

The work described in [124] also presents a unified formula
for the objective function of discriminative learning for MMI,
MP/MWE, and MCE. Similar to [114], both contain a generic
nonlinear function, with its varied forms corresponding to dif-
ferent objective functions. Again, the most important distinction
between the product vs. summation forms of the objective func-
tions was not explicitly addressed.

One interesting area of ASR research on discriminative
learning for HMM has been to extend the learning of HMM pa-
rameters to the learning of parametric feature extractors. In this
way, one can achieve end-to-end optimization for the full ASR
system instead of just the model component. One earliest work
in this area was from [125], where dimensionality reduction in
the Mel-warped discrete Fourier transform (DFT) feature space
was investigated subject to maximal preservation of speech
classification information. An optimal linear transformation
on the Mel-warped DFT was sought, jointly with the HMM
parameters, using the MCE criterion for optimization. This
approach was later extended to use filter-bank parameters, also
jointly with the HMM parameters, with similar success [126].
In [127], an auditory-based feature extractor was parameterized
by a set of weights in the auditory filters, and had its output fed
into an HMM speech recognizer. The MCE-based discrimina-
tive learning procedure was applied to both filter parameters
and HMM parameters, yielding superior performance over
the separate training of auditory filter parameters and HMM
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parameters. The end-to-end approach to speech understanding
described in [106] and to speech translation described in
[107] can be regarded as extensions of the earlier set of work
discussed here on “joint discriminative feature extraction and
model training” developed for ASR applications.

In addition to the many uses of discriminative learning for
HMM as a generative model, for other more general forms of
generative models for speech that are surveyed in Section III,
discriminative learning has been applied with success in ASR.
The early work in the area can be found in [128], where MCE
is used to discriminatively learn all the polynomial coefficients
in the trajectory model discussed in Section III. The extension
from the generative learning for the same model as described
in [34] to the discriminative learning (via MCE, e.g.) is mo-
tivated by the new model space for smoothness-constrained,
state-bound speech trajectories. Discriminative learning offers
the potential to re-structure the new, constrained model space
and hence to provide stronger power to disambiguate the obser-
vational trajectories generated from nonstationary sources cor-
responding to different speech classes. In more recent work of
[129] on the trajectory model, the time variation of the speech
data is modeled as a semi-parametric function of the observation
sequence via a set of centroids in the acoustic space. The model
parameters of this model are learned discriminatively using the
MPE criterion.

E. Hybrid Generative-Discriminative Learning Paradigm

Toward the end of discussing generative and discriminative
learning paradigms, here we would like to provide a brief
overview on the hybrid paradigm between the two. Discrimi-
native classifiers directly relate to classification boundaries, do
not rely on assumptions on the data distribution, and tend to be
simpler for the design. On the other hand, generative classifiers
are most robust to the use of unlabeled data, have more princi-
pled ways of treating missing information and variable-length
data, and are more amenable to model diagnosis and error
analysis. They are also coherent, flexible, and modular, and
make it relatively easy to embed knowledge and structure
about the data. The modularity property is a particularly key
advantage of generative models: due to local normalization
properties, different knowledge sources can be used to train
different parts of the model (e.g., web data can train a language
model independent of how much acoustic data there is to train
an acoustic model). See [130] for a comprehensive review of
how speech production knowledge is embedded into design
and improvement of ASR systems.

The strengths of both generative and discriminative learning
paradigms can be combined for complementary benefits. In the
ML literature, there are several approaches aimed at this goal.
The work of [131] makes use of the Fisher kernel to exploit
generative models in discriminative classifiers. Structured dis-
criminability as developed in the graphical modeling framework
also belongs to the hybrid paradigm [57], where the structure
of the model is formed to be inherently discriminative so that
even a generative loss function yields good classification per-
formance. Other approaches within the hybrid paradigm use the
loss functions that blend the joint likelihood with the conditional
likelihood by linearly interpolating them [132] or by conditional
modeling with a subset of the observation data. The hybrid par-
adigm can also be implemented by staging generative learning

ahead of discriminative learning. A prime example of this hy-
brid style is the use of a generative model to produce features
that are fed to the discriminative learning module [133], [134]
in the framework of deep belief network, which we will return
to in Section VII. Finally, we note that with appropriate parame-
terization some classes of generative and discriminative models
can be made mathematically equivalent [135].

V. SEMI-SUPERVISED AND ACTIVE LEARNING

The preceding overview of generative and discriminative ML
paradigms uses the attributes of loss and decision functions to
organize a multitude of ML techniques. In this section, we use
a different set of attributes, namely the nature of the training
data in relation to their class labels. Depending on the way that
training samples are labeled or otherwise, we can classify many
existing ML techniques into several separate paradigms, most of
which have been in use in the ASR practice. Supervised learning
assumes that all training samples are labeled, while unsuper-
vised learning assumes none. Semi-supervised learning, as the
name suggests, assumes that both labeled and unlabeled training
samples are available. Supervised, unsupervised and semi-su-
pervised learning are typically referred to under the passive
learning setting, where labeled training samples are generated
randomly according to an unknown probability distribution. In
contrast, active learning is a setting where the learner can intel-
ligently choose which samples to label, which we will discuss at
the end of this section. In this section, we concentrate mainly on
semi-supervised and active learning paradigms. This is because
supervised learning is reasonably well understood and unsuper-
vised learning does not directly aim at predicting outputs from
inputs (and hence is beyond the focus of this article); We will
cover these two topics only briefly.

A. Supervised Learning

In supervised learning, the training set consists of pairs of
inputs and outputs drawn from a joint distribution. Using nota-
tions introduced in Section II-A,

« D= {(xW gD =D, y) ~ px. )},

The learning objective is again empirical risk minimization with
regularization, i.e., Renp(f) + ¥C(X), where both input data
x( and the corresponding output labels y*) are provided. In
Sections III and IV, we provided an overview of the generative
and discriminative approaches and their uses in ASR all under
the setting of supervised learning.

Notice that there may exist multiple levels of label variables,
notably in ASR. In this case, we should distinguish between
the fully supervised case, where labels of all levels are known,
the partially supervised case, where labels at certain levels
are missing. In ASR, for example, it is often the case that the
training set consists of waveforms and their corresponding
word-level transcriptions as the labels, while the phone-level
transcriptions and time alignment information between the
waveforms and the corresponding phones are missing.

Therefore, strictly speaking, what is often called supervised
learning in ASR is actually partially supervised learning. It is
due to this “partial” supervision that ASR often uses EM algo-
rithm [24], [136], [137]. For example, in the Gaussian mixture
model for speech, we may have a label variable y representing
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the Gaussian mixture ID and =z representing the Gaussian com-
ponent ID. In the latter case, our goal is to maximize the incom-
plete likelihood

anp(x,y,z; A) (42)

which cannot be optimized directly. However, we can apply EM
algorithm that iteratively maximizes its lower bound. The opti-
mization objective at each iteration, then, is given by

Z In Ep(z(i)‘x(i)’y(i);)\g) [P (x(i), y(i)j 2@ )\)} (43)

B. Unsupervised Learning

In ML, unsupervised learning in general refers to learning
with the input data only. This learning paradigm often aims at
building representations of the input that can be used for predic-
tion, decision making or classification, and data compression.
For example, density estimation, clustering, principle compo-
nent analysis and independent component analysis are all impor-
tant forms of unsupervised learning. Use of vector quantization
(VQ) to provide discrete inputs to ASR is one early successful
application of unsupervised learning to ASR [138].

More recently, unsupervised learning has been developed
as a component of staged hybrid generative-discriminative
paradigm in ML. This emerging technique, based on the deep
learning framework, is beginning to make impact on ASR,
which we will discuss in Section VII. Learning sparse speech
representations, to be discussed in Section VII also, can also be
regarded as unsupervised feature learning, or learning feature
representations in absence of classification labels.

C. Semi-Supervised Learning—An Overview

The semi-supervised learning paradigm is of special signifi-
cance in both theory and applications. In many ML applications
including ASR, unlabeled data is abundant but labeling is ex-
pensive and time-consuming. It is possible and often helpful to
leverage information from unlabeled data to influence learning.
Semi-supervised learning is targeted at precisely this type of
scenario, and it assumes the availability of both labeled D and
unlabeled ¢/ data, i.e.,

« D= {(xO,yN)xD, 4 ~ plx,y)}iL,

U= OO ~ po
The goal is to leverage both data sources to improve learning
performance.

There have been a large number of semi-supervised learning
algorithms proposed in the literature and various ways of
grouping these approaches. An excellent survey can be found
in [139]. Here we categorize semi-supervised learning methods
based on their inductive or transductive nature. The key dif-
ference between inductive and transductive learning is the
outcome of learning. In the former setting, the goal is to find a
decision function that not only correctly classifies training set
samples, but also generalizes to any future sample. In contrast,
transductive learning aims at directly predicting the output
labels of a test set, without the need of generalizing to other
samples. In this regard, the direct outcome of transductive
semi-supervised learning is a set of labels instead of a deci-

sion function. All learning paradigms we have presented in
Sections III and IV are inductive in nature.

An important characteristic of transductive learning is that
both training and test data are explicitly leveraged in learning.
For example, in transductive SVMs [7], [140], test-set outputs
are estimated such that the resulting hyper-plane separates
both training and test data with maximum margin. Although
transductive SVMs implicitly use a decision function (hyper-
plane), the goal is no longer to generalize to future samples
but to predict as accurately as possible the outputs of the test
set. Alternatively, transductive learning can be conducted using
graph-based methods that utilize the similarity matrix of the
input [141], [142]. It is worth noting that transductive learning
is often mistakenly equated to semi-supervised learning, as both
learning paradigms receive partially labeled data for training.
In fact, semi-supervised learning can be either inductive or
transductive, depending on the outcome of learning. Of course,
many transductive algorithms can produce models that can be
used in the same fashion as would the outcome of an inductive
learner. For example, graph-based transductive semi-super-
vised learning can produce a non-parametric model that can be
used to classify any new point, not in the training and “test”
set, by finding where in the graph any new point might lie, and
then interpolating the outputs.

1) Inductive Approaches: Inductive approaches to semi-su-
pervised learning require the construction of classification
models f. A general semi-supervised learning objective can be
expressed as

Remp(f) + aBu(f) +vC(N) (44)

where Romp(f) again is the empirical risk on labeled data D,
Ry (f) is a “risk” measured on unlabeled data /.

For generative models (Section IIT), a common measure on
unlabeled data is the incomplete-data likelihood, i.e.,

m—n

Ru(fy=- Z lnp(x(i); A)

i=m+1

(45)

The goal of semi-supervised learning, therefore, becomes to
maximize the complete-data likelihood on D and the incom-
plete-data likelihood on /. One way of solving this optimiza-
tion problem is applying the EM algorithm or its variations to
unlabeled data [143], [144]. Furthermore, when discriminative
loss functions, e.g., (26), (29), or (32), are used in Remp(f),
the learning objective becomes equivalent to applying discrim-
inative training on D and while applying maximum likelihood
estimation on /.

The above approaches, however, are not applicable to dis-
criminative models (which model conditional relations rather
than joint distributions). For conditional models, one solution
to semi-supervised learning is minimum entropy regularization
[145], [146] that defines Ry, (f) as the conditional entropy of
unlabeled data:

Ru(f) = H{ylx; A) (46)
The semi-supervised learning objective is then to maximize the
conditional likelihood of P while minimizing the conditional
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entropy of /. This approach generally would result in “sharper”
models which can be data-sensitive in practice.

Another set of results makes an additional assumption that
prior knowledge can be utilized in learning. Generalized ex-
pectation criteria [147] represent prior knowledge as labeled
features,

Ru(f) = D(pllpr)

In the last term, p and p both refer to conditional distributions
of labels given a feature. While the former is specified by prior
knowledge, and the latter is estimated by applying model A on
unlabeled data. In [148], prior knowledge is encoded as vir-
tual evidence [149], denoted as ». They model the distribution
p(y, v|x) explicitly and formulate the semi-supervised learning
problem as follows,

(47

m+tn

Ru(f) = Z logpk(v(’:”X(‘i);/\)

i=m-+1

(48)

where py (v(?|x( X) can be optimized in an EM fashion. This
type of methods has been most used in sequence models, where
prior knowledge on frame- or segment-level features/labels is
available. This can be potentially interesting to ASR as a way
of incorporating linguistic knowledge into data-driven systems.

The concept of semi-supervised SVMs (S*VM) was origi-
nally inspired by transductive SVMs [7]. The intuition is to find
a labeling of ¢/ such that the SVM trained on D and newly la-
beled Z{ would have the largest margin. In a binary classification
setting, the learning objective is given by a Remyp(f) based on
hinge loss and

m—n

Yo ldle Al

i=m—+1

Ru(f) = (49)

where d(x;; ) represents a linear function; |d(x;; A)| is derived
from (sgn d(x;; A)) - d(x;; A). Various works have been pro-
posed to approximate the optimization problem (which is no
longer convex due to the second term), e.g., [140], [150]-[152].
In fact, a transductive SVM is in the strict sense an inductive
learner, although it is by convention called “transductive” for
its intention to minimize the generalization error bound on the
target inputs.

While the methods introduced above are model-dependent,
there are inductive algorithms that can be applied across dif-
ferent models. Self-training [153] extends the idea of EM to a
wider range of classification models—the algorithm iteratively
trains a seed classifier using the labeled data, and uses predic-
tions on the unlabeled data to expand the training set. Typically
the most confident predictions are added to the training set. The
EM algorithm on generative models can be considered a spe-
cial case of self-training in that all unlabeled samples are used
in re-training, weighted by their posterior probabilities. The dis-
advantage of self-training is that it lacks a theoretical justifica-
tion for optimality and convergence, unless certain conditions
are satisfied [153].

Co-training [154] assumes that the input features can be split
into two conditionally independent subsets, and that each subset
is sufficient for classification. Under these assumptions, the
algorithm trains two separate classifiers on these two subsets

of features, and each classifier’s predictions on new unlabeled
samples are used to enlarge the training set of the other. Similar
to self-training, co-training often selects data based on confi-
dence. Certain work has found it beneficial to probabilistically
label 2/, leading to the co-EM paradigm [155]. Some variations
of co-training include split data and ensemble learning.

2) Transductive Approaches: Transductive approaches do
not necessarily require a classification model. Instead, the goal
is to produce a set of labels {3; } /™ for{. Such approaches are
often based on graphs, with nodes representing labeled and un-
labeled samples and edges representing the similarity between
the samples. Let W denote an m + n by m + n similarity ma-
trix, F' denote an m+n by | Y| matrix representing classification
scores of all x; with respect to all classes, and ¥ denote another
m +n by | Y| matrix representing known label information. The
goal of graph-based learning is to find a classification of all data
that satisfies the constraints imposed by the labeled data and is
smooth over the entire graph. This can be expressed by a gen-
eral objective function of

n}qin L(F.Y)+~C(F, W) (50)
which consists of a loss term and regularization term. The loss
term evaluates the discrepancy between classification outputs
and known labels while the regularization term ensures that
similar inputs have similar outputs. Different graph-based algo-
rithms, including mincut [156], random walk [157], label prop-
agation [158], local and global consistency [159] and manifold
regularization [160], and measure propagation [161] vary only
in the forms of the loss and regularization functions.

Notice that compared to inductive approaches to semi-super-
vised learning, transductive learning has rarely been used in
ASR. This is mainly because of the usually very large amount
of data involved in training ASR systems, which makes it pro-
hibitive to directly use affinity between data samples in learning.
The methods we will review shortly below all fit into the in-
ductive category. We believe, however, it is important to in-
troduce readers to some powerful transductive learning tech-
niques and concepts which have made fundamental impact to
machine learning. They also have the potential for make impact
in ASR as example- or template-based approaches have increas-
ingly been explored in ASR more recently. Some of the recent
work of this type will be discussed in Section VII-B.

D. Semi-Supervised Learning in Speech Recognition

We first point out that the standard description of semi-su-
pervised learning discussed above in the ML literature has been
used loosely in the ASR literature, and often been referred
to as unsupervised learning or unsupervised training. This
(minor) confusion is caused by the fact that while there are both
transcribed/labeled and un-transcribed sets of training data, the
latter is significantly greater in the amount than the former.
Technically, the need for semi-supervised learning in ASR
is obvious. State of the art performance in large vocabulary
ASR systems usually requires thousands of hours of manually
annotated speech and millions of words of text. The manual
transcription is often too expensive or impractical. Fortunately,
we can rely upon the assumption that any domain which re-
quires ASR technology will have thousands of hours of audio
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available. Unsupervised acoustics model training builds initial
models from small amounts of transcribed acoustic data and
then use them to decode much larger amounts of un-transcribed
data. One then trains new models using part or all of these
automatic transcripts as the label. This drastically reduces the
labeling requirements for ASR in the sparse domains.

The above training paradigm falls into the self-training cat-
egory of semi-supervised learning described in the preceding
subsection. Representative work includes [162]-[164], where
an ASR trained on a small transcribed set is used to generate
transcriptions for larger quantities of un-transcribed data first.
The recognized transcriptions are selected then based on confi-
dence measures. The selected transcriptions are treated as the
correct ones and are used to train the final recognizer. Spe-
cific techniques include incremental training where the high-
confidence (as determined with a threshold) utterances are com-
bined with transcribed utterances to retrain or to adapt the rec-
ognizer. Then the retrained recognizer is used to transcribe the
next batch of utterances. Often, generalized expectation maxi-
mization is used where all utterances are used but with different
weights determined by the confidence measure. This approach
fits into the general framework of (44), and has also been ap-
plied to combining discriminative training with semi-supervised
learning [165]. While straightforward, it has been shown that
such confidence-based self-training approaches are associated
with the weakness of reinforcing what the current model already
knows and sometimes even reinforcing the errors. Divergence is
frequently observed when the performance of the current model
is relatively poor.

Similar to the objective of (46), in the work of [166] the global
entropy defined over the entire training data set is used as the
basis for assigning labels in the un-transcribed portion of the
training utterances for semi-supervised learning. This approach
differs from the previous ones by making the decision based on
the global dataset instead of individual utterances only. More
specifically, the developed algorithm focuses on the improve-
ment to the overall system performance by taking into consid-
eration not only the confidence of each utterance but also the
frequency of similar and contradictory patterns in the un-tran-
scribed set when determining the right utterance-transcription
pair to be included in the semi-supervised training set. The al-
gorithm estimates the expected entropy reduction which the ut-
terance-transcription pair may cause on the full un-transcribed
dataset.

Other ASR work [167] in semi-supervised learning lever-
ages prior knowledge, e.g., closed-captions, which are consid-
ered as low-quality or noisy labels, as constraints in otherwise
standard self-training. The idea is akin to (48). One particular
constraint exploited is to align the closed captions with recog-
nized transcriptions and to select only segments that agree. This
approach is called lightly supervised training in [167]. Alter-
natively, recognition has been carried out by using a language
model which is trained on the closed captions.

We would like to point out that many effective semi-su-
pervised learning algorithms developed in ML as surveyed in
Section V-D have yet to be explored in ASR, and this is one
area expecting growing contributions from the ML community.

E. Active Learning—An overview

Active learning is a similar setting to semi-supervised
learning in that, in addition to a small amount of labeled data
D, there is a large amount of unlabeled data I/ available; i.e.,

« D= {(xO,yM)|xD, 4 ~ plx.y)}L,

s U= {xOO ~ e
The goal of active learning, however, is to query the most infor-
mative set of inputs to be labeled, hoping to improve classifi-
cation performance with the minimum number of queries. That
is, in active learning, the learner may play an active role in de-
ciding the data set D rather than it be passively given.

The key idea behind active learning is that a ML algorithm
can achieve greater performance, e.g., higher classification
accuracy, with fewer training labels if it is allowed to choose
the subset of data that has labels. An active learner may pose
queries, usually in the form of unlabeled data instances to be
labeled (often by a human). For this reason, it is sometimes
called query learning. Active learning is well-motivated in
many modern ML problems, where unlabeled data may be
abundant or easily obtained, but labels are difficult, time-con-
suming, or expensive to obtain. This is the situation for speech
recognition. Broadly, active learning comes in two forms: batch
active learning, where a subset of data is chosen, a priori in
a batch to be labeled. The labels of the instances in the batch
chosen to be labeled may not, under this approach, influence
other instances to be selected since all instances are chosen at
once. In online active learning, on the other hand, instances are
chosen one-by-one, and the true labels of all previously labeled
instances may be used to select other instances to be labeled.
For this reason, online active learning is sometimes considered
more powerful.

A recent survey of active learning can be found in [168].
Below we briefly review a few commonly used approaches with
relevance to ASR.

1) Uncertainty Sampling: Uncertainty sampling is probably
the simplest approach to active learning. In this framework, un-
labeled inputs are selected based on an uncertainty (informa-
tiveness) measure,

x* = argmax ¢(x; \);
xXEU

(5D

where A denote model parameters estimated on D. There are
various choices of the certainty measure [169]-[171], including
o posterior: $(x;A) = 1 — p(g|x;A) where § =
arg max, p(y|x; A);
 margin: ¢(x; A) = —(p(91]x: X)) — p(f2(x; A)), where g,
and 7- are the first and second most likely label under
model A; and
 entropy: ¢(x; \) = H(y|x; A)
For non-probabilistic models, similar measures can be con-
structed from discriminant functions. For example, the distance
to the decision boundary is used as a measure for active learning
associated with SVM [172].
2) Query-by-Committee: The query-by committee algo-
rithm enjoys a more theoretical explanation [173], [174].
The idea is to construct a committee of learners, denoted by
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A = {M. A2, ..., Ax}, all trained on labeled samples. The
unlabeled samples upon which the committee disagree the most
are selected to be labeled by human, i.e.,

x* = argmax @(x; A)
xel

(52)

The key problems in committee-based methods consist of
(1) constructing a committee A that represents competing
hypotheses and (2) having a measure of disagreement ¢. The
first problem is often tackled by sampling the model space, by
splitting the training data or by splitting the feature space. For
the second problem, one popularly used disagreement measure
is vote entropy [175] ¢(x; A) = H(V(y)/C) where V(y) is
the number of votes the class y receives from the committee
regarding input x and C is the committee size.

3) Exploiting Structures in Data: Both uncertainty sampling
and query-by committee may encounter the sampling bias
problem; i.e., the selected inputs are not representatives of the
true input distribution. Recent work proposed to select inputs
not only based on an uncertainty/disagreement measure but
also on a “density” measure [171], [176]. Mathematically, the
decision is

x* = arg max ¢(x)s(x);
xeU

(53)

where ¢(x) can be either ¢(x; A) in uncertainty sampling of
#(x; A) in query-by-committee; s(x) is a density term that can
be estimated by computing similarity with other inputs with or
without clustering. Such methods have achieved active learning
performance superior to those that do not take structure or den-
sity into consideration.

4) Submodular Active Selection: A recent and novel ap-
proach to batch active learning for speech recognition was
proposed in [177] that made use of sub-modular functions; in
this work, results outperformed many of the active learning
methods mentioned above. Sub-modular functions are a rich
class of functions on discrete sets and subsets thereof that cap-
ture the notion of diminishing returns—an item is worth less
as the context in which it is evaluated gets larger. Sub-modular
functions are relevant for batch active learning either in speech
recognition and other areas of machine learning [178], [179].

5) Comparisons Between Semi-Supervised and Active
Learning: Active learning and semi-supervised learning both
aim at making the most out of unlabeled data. As a result, there
are conceptual overlaps between these two paradigms of ML.
As an example, in self-training of semi-supervised technique
as discussed earlier, the classifier is first trained with a small
amount of labeled data, and then used to classify the unlabeled
data. Typically the most confident unlabeled instances, together
with their predicted labels, are added to the training set, and the
process repeats. A corresponding technique in active learning
is uncertainty sampling, where the instances about which the
model is least confident are selected for querying. As another
example, co-training in semi-supervised learning initially trains
separate models with the labeled data. The models then classify
the unlabeled data, and “teach” the other models with a few
unlabeled examples about which they are most confident. This
corresponds to the query-by-committee approach in active
learning.

This analysis shows that active learning and semi-supervised
learning attack the same problem from opposite directions.
While semi-supervised methods exploit what the learner thinks
it knows about the unlabeled data, active methods attempt to
explore the unknown aspects.

F. Active Learning in Speech Recognition

The main motivation for exploiting active learning paradigm
in ASR to improve the systems performance in the applications
where the initial accuracy is very low and only a small amount
of data can be transcribed. A typical example is the voice search
application, with which users may search for information such
as phone numbers of a business with voice. In the ASR com-
ponent of a voice search system, the vocabulary size is usu-
ally very large, and the users often interact with the system
using free-style instantaneous speech under real noisy environ-
ments. Importantly, acquisition of un-transcribed acoustic data
for voice systems is usually as inexpensive as logging the user
interactions with the system, while acquiring transcribed or la-
beled acoustic data is very costly. Hence, active learning is of
special importance for ASR here. In light of the recent popu-
larity of and availability of infrastructure for crowding sourcing,
which has the potential to stimulate a paradigm shift in active
learning, the importance of active learning in ASR applications
in the future is expected to grow.

As described above, the basic approach of active learning is
to actively ask a question based on all the information available
so far, so that some objective function can be optimized when
the answer becomes known. In many ASR related tasks, such
as designing dialog systems and improving acoustic models, the
question to be asked is limited to selecting an utterance for tran-
scribing from a set of un-transcribed utterances.

There have been many studies on how to select appropriate
utterance for human transcription in ASR. The key issue here is
the criteria for selecting utterances. First, confidence measures
is used as the criterion as in the standard uncertainty sampling
method discussed earlier [180]-[182]. The initial recognizer in
these approaches, which is prepared beforehand, is first used
to recognize all the utterances in the training set. Those utter-
ances that have recognition results with less confidence are then
selected. The word posterior probabilities for each utterance
have often been used as confidence measures. Second, in the
query-by-committee based approach proposed in [183], sam-
ples that cause the largest different opinions from a set of rec-
ognizers (committee) are selected. These multiple recognizers
are also prepared beforehand, and the recognition results pro-
duced by these recognizers are used for selecting utterances.
The authors apply the query-by-committee technique not only to
acoustic models but also to language models and their combina-
tion. Further, in [184], the confusion or entropy reduction based
approach is developed where samples that reduce the entropy
about the true model parameters are selected for transcribing.
Similarly, in the error rate-based approach the samples that can
minimize the expected error rate most is selected.

A rather unique technique of active learning for ASR is de-
veloped in [166]. It recognizes the weakness of the most com-
monly used, confidence-based approach as follows. Frequently,
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the confidence-based active learning algorithm is prone to se-
lect noise and garbage utterances since these utterances typi-
cally have low confidence scores. Unfortunately, transcribing
these utterances is usually difficult and carries little value in im-
proving the overall ASR performance. This limitation originates
from the utterance-by-utterance decision, which is based on the
information from each individual utterance only. that is, tran-
scribing the least confident utterance may significantly help rec-
ognize that utterance but it may not help improve the recognition
accuracy on other utterances. Consider two speech utterances A
and B. Say A has a slightly lower confidence score than B. If A
is observed only once and B occurs frequently in the dataset, a
reasonable choice is to transcribe B instead of A. This is because
transcribing B would correct a larger fraction of errors in the test
data than transcribing A and thus has better potential to improve
the performance of the whole system. This example shows that
the active learning algorithm should select the utterances that
can provide the most benefit to the full dataset. Such a global cri-
terion for active learning has been implemented in [166] based
on maximizing the expected lattice entropy reduction over all
un-transcribed data. Optimizing the entropy is shown to be more
robust than optimizing the top choice [184], since it considers
all possible outcomes weighted with probabilities.

VI. TRANSFER LEARNING

The ML paradigms and algorithms discussed so far in this
paper have the goal of producing a classifier that generalizes
across samples drawn from the same distribution. Transfer
learning, or learning with “knowledge transfer”, is a new ML
paradigm that emphasizes producing a classifier that general-
izes across distributions, domains, or tasks. Transfer learning
is gaining growing importance in ML in recent years but is in
general less familiar to the ASR community than other learning
paradigms discussed so far. Indeed, numerous highly successful
adaptation techniques developed in ASR are aimed to solve
one of the most prominent problems that transfer learning
researchers in ML try to address—mismatch between training
and test conditions. However, the scope of transfer learning in
ML is wider than this, and it also encompasses a number of
schemes familiar to ASR researchers such as audio-visual ASR,
multi-lingual and cross-lingual ASR, pronunciation learning
for word recognition, and detection-based ASR. We organize
such diverse ASR methodologies into a unified categorization
scheme under the very broad transfer learning paradigm in
this section, which would otherwise be viewed as isolated
ASR applications. We also use the standard ML notations in
Section II to describe all ASR topics in this section.

There is vast ML literature on transfer learning. To organize
our presentation with considerations to existing ASR applica-
tions, we create the four-way categorization of major transfer
learning techniques, as shown in Table II, using the following
two axes. The first axis is the manner in which knowledge is
transferred. Adaptive learning is one form of transfer learning
in which knowledge transfer is done in a sequential manner,
typically from a source task to a target task. In contrast,
multi-task learning is concerned with learning multiple tasks
simultaneously.

TABLE 11
FOUR-WAY CATEGORIZATION OF TRANSFER LEARNING

X% =X" and Y° = YT
homogeneous transfer
homogeneous multi-task

X5 £ X7 andfor Y° £ YT
heterogeneous transfer
heterogeneous multi-task

Adaptive
Multi-task

Transfer learning can be orthogonally categorized using the
second axis as to whether the input/output space of the target
task is different from that of the source task. It is called homo-
geneous if the source and target task have the same input/output
space, and is heterogeneous otherwise. Note that both adaptive
learning and multi-task learning can be either homogeneous or
heterogeneous.

A. Homogeneous Transfer

Interestingly, homogeneous transfer, i.e., adaptation, is one
paradigm of transfer learning that has been more extensively de-
veloped (and also earlier) in the speech community rather than
the ML community. To be consistent with earlier sections, we
first present adaptive learning from the ML theoretical perspec-
tive, and then discuss how it is applied to ASR.

1) Basics: Atthis point, it is helpful for the readers to review
the notations set up in Section II which will be used intensively
in this section. In this setting, the input space A in the target
task is the same as that in the source task, so is the output space
Y. Most of the ML techniques discussed earlier in this article
assume that the source-task (training) and target-task (test) sam-
ples are generated from the same underlying distribution p(x, y)
over X x ). Often, however, in most ASR applications classi-
fier f° is trained on samples drawn from a source distribution
p°(x,y) that is different from, yet similar to, the target distri-
bution p” (x, y). Moreover, while there may be a large amount
of training data from the source task, only a limited amount of
data (labeled and/or unlabeled) from the target task is available.
The problem of adaptation, then, is to learn a new classifier 7
leveraging the available information from the source and target
tasks, ideally to minimize 12, (f).

Homogeneous adaptation is important to many machine
learning applications. In ASR, a source model (e.g., speaker-in-
dependent HMM for ASR) may be trained on a dataset
consisting of samples from a large number of individuals, but
the target distribution would correspond only to a specific user.
In image classification, the lighting condition at application
time may vary from that when training-set images are collected.
In spam detection, the wording styles of spam emails or web
pages are constantly evolving.

Homogeneous adaptation can be formulated in various ways
depending on the type of source/target information available at
adaptation time. Information from the source task may consist
of the following:

o DY = {(x, y")|(xD, 4D} ~ pS(x,9)}, ie., labeled
training data from the source task. A typical example of D
in ASR is the transcribed speech data for training speaker-
independent and environment-independent HMMs.

« f9: a source model or classifier which is either an accu-
rate representation or an approximately correct estimate
of infrex RR,s(f), i.e., the risk minimizer for the source
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task. A typical example of f° in ASR is the HMM trained
already using speaker-independent and environment-inde-
pendent training data.

For the target task, one or both of the following data sources
may be available:

« DT = {(xD,yD)(x, D) ~ pT(x.9)}, ie., labeled
adaptation data from the target task. A typical example
of DT in ASR is the enrollment data for speech dictation
systems.

o UT = {xDx® ~ pT(x)}, i.e., unlabeled adaptation data
from the target task. A typical example of 47 in ASR is
the actual conversation speech from the users of interactive
voice response systems.

Below we present and analyze two major classes of methods

for homogeneous adaptation.

2) Data Combination: When D is available at adaptation
time, a natural approach is to seek intelligent ways of com-
bining P° and D7 (and sometimes UT"). The work by [185]
derived generalization error bounds for a learner that minimizes
a convex combination of source and target empirical risks,

J(f) = aR3, () + (1 —a)RL(NH++C() (54

where RS, , and RT,  are defined with respect to D° and DT
respectively. Data combination is also implicitly used in many
practical studies on SVM adaptation. In [116], [186], [187], the
support vectors as derived data from f° are combined with D,
with different weights, for retraining a target model.

In many applications, however, it is not always feasible to
use D in adaptation. In ASR, for example, D° may consist of
hundreds or even thousands of hours of speech, making any data
combination approach prohibitive.

3) Model Adaptation: Here we focus on alternative classes
of approaches which attempt to adapt directly from f~. These
approaches can be less optimal (due to the loss of information)
but much more efficient compared with data combination. De-
pending on which target-data source is used, adaptation of f*
can be conducted in a supervised or unsupervised fashion. Un-
supervised adaptation is akin to the semi-supervised learning
setting already discussed in Section V-C, which we do not re-
peat here.

In supervised adaptation, labeled data DT, usually in a very
small amount, is used to adapt f°. The learning objective con-
sists of minimizing the target empirical risk while regularizing
toward the source model,

J(f) = RL (1) +C(f5 1) (55)
Different adaptation techniques essentially differ in how regu-
larization works.

One school of methods are based on Bayesian model selec-
tion. In other words, regularization is achieved by a prior distri-
bution on model parameters, i.c.,

C(f)=—Inp(f; %) (56)
where the hyper-parameters of the prior distribution are usually
derived from source model parameters. The function form of

the prior distribution depends on classification model. For gen-
erative models, it is mathematically convenient to use the con-
jugate prior of the likelihood function such that the posterior
belongs to the same function family as the prior. For example,
normal-Wishart priors have been used in adapting Gaussians
[188], [189]; Dirichlet priors have been used in adapting multi-
nomial [188]-[190]. For discriminative models such as condi-
tional maximum entropy models, SVMs and MLPs, Gaussian
priors are commonly used [116], [191]. A unified view of these
priors can be found in [116], which also relates the general-
ization error bound to the KL divergence of source and target
sample distributions.

Another group of methods adapt model parameters in a more
structured way by forcing the target model to be a transforma-
tion of the source model. The regularization term can be ex-
pressed as follows,

C(f)=6(f = ¢(f%))

where ¢ represents a transform function. For example, max-
imum likelihood linear regression (MLLR) [192], [193] adapts
Gaussian parameters through shared transform functions. In
[194], [195], the target MLP is obtained by augmenting the
source MLP with an additional linear input layer.

Finally, other studies on model adaptation have related the
source and target models via shared components. Both [196]
and [197] proposed to construct MLPs whose input-to-hidden
layer is shared by multiple related tasks. This layer represents
an “internal representation” which, once learned, is fixed during
adaptation. In [198], the source and target distributions were
each assumed to a mixture of two components, with one mixture
component shared between source and target tasks. [199], [200]
assumed that the target distribution is a mixture of multiple
source distributions. They proposed to combine source models
weighted by source distributions, which has an expected loss
guarantee with respect to any mixture.

(57)

B. Homogeneous Transfer in Speech Recognition

The ASR community is actually among the first to systemati-
cally investigate homogeneous adaptation, mostly in the context
of speaker or noise adaptation. A recent survey on noise adap-
tation techniques for ASR can be found in [201].

One of the commonly used homogeneous adaptation tech-
niques in ASR is maximum a posteriori (MAP) method [188],
[189], [202], which places adaptation within the Bayesian
learning framework and involves using a prior distribution on
the model parameters as in (56). Specifically, to adapt Gaussian
mixture models, MAP method applies a normal-Wishart prior
on Gaussian means and covariance matrices, and a Dirichlet
prior on mixture component weights.

Maximum likelihood linear regression (MLLR) [192], [193]
regularizes the model space in a more structured way than MAP
in many cases. MLLR adapts Gaussian mixture parameters in
HMMs through shared affine transforms such that each HMM
state is more likely to generate the adaptation data and hence
the target distribution. There are various techniques to combine
the structural information captured by linear regression with the
prior knowledge utilized in the Bayesian learning framework.



20 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 5, MAY 2013

Maximum a posteriori linear regression (MAPLR) and its vari-
ations [203], [204] improve over MLLR by assuming a prior
distribution on affine transforms.

Yet another important family of adaptation techniques have
been developed, unique in ASR and not seen in the ML liter-
ature, in the frameworks of speaker adaptive training (SAT)
[205] and noise adaptive training (NAT) [201], [206], [207].
These frameworks utilize speaker or acoustic-environment
adaptation techniques, such as MLLR [192], [193], SPLICE
[206], [208], [209], and vector Taylor series approximation
[210], [211], during training to explicitly address speaker-in-
duced or environment-induced variations. Since speaker and
acoustic-environment variability has been explicitly accounted
for by the transformations in training, the resulting speaker-in-
dependent and environment-independent models only need
to address intrinsic phonetic variability and are hence more
compact than conventional models.

There are a few extensions to the SAT and NAT frameworks
based on the notion of “speaker clusters” or “environment clus-
ters” [212], [213]. For example, [213] proposed cluster adap-
tive training where all Gaussian components in the system are
partitioned into Gaussian classes, and all training speakers are
partitioned into speaker clusters. It is assumed that a speaker-de-
pendent model (either in adaptive training or in recognition)
is a linear combination of cluster-conditional models, and that
all Gaussian components in the same Gaussian class share the
same set of weights. In a similar spirit, eigenvoice [214] con-
strains a speaker-dependent model to be a linear combination of
a number of basis models. During recognition, a new speaker’s
super-vector is a linear combination of eigen-voices where the
weights are estimated to maximize the likelihood of the adapta-
tion data.

C. Heterogeneous Transfer

1) Basics: Heterogeneous transfer involves a higher level of
generalization. The goal is to transfer knowledge learned from
one task to a new task of a different nature. For example, an
image classification task may benefit from a text classification
task although they do not have the same input spaces. Speech
recognition of a low-resource language can borrow information
from a resource-rich language ASR system, despite the differ-
ence in their output spaces (i.e., different languages).

Formally, we define the input spaces X° and X7 for the
source and target tasks, respectively. Similarly, we define the
corresponding output spaces as J° and Y7, respectively. While
homogeneous adaptation assumes that X° = X7 and Y° =
Y7 heterogeneous adaptation assumes that either X5 # X7,
or V° * YT, or both spaces are different. Let ps denote the
joint distribution over X° x Y*, and Let p” denote the joint
distribution over X7 x YT The goal of heterogeneous adap-
tation is then to minimize R,r (f) leveraging two data sources:
(1) source task information in the form of D° and/or f°; (2)
target task information in the form of D7 and/or 247 .

Below we discuss the methods associated with two main
conditions under which heterogeneous adaptation is typically
applied.

2) X% £ XT and Y° = YT In this case, we often leverage
the relationship between X'° and X7 for knowledge transfer.
The basic idea is to map X' and X7 to the same space where
homogeneous adaptation can be applied. The mapping can be
done directly from X° to X7, i.e.,

x5 = xT (58)
For example, a bilingual dictionary represents such a mapping
that can be used in cross-language text categorization or re-
trieval [139], [215], where two languages are considered as two
different domains or tasks.

Alternatively, both X5 to X7 can be transformed to a
common latent space [216], [217]:

p1: XS = Loy XT S L (59)
The mapping can also be modeled probabilistically in the form
of a “translation” model [218],

plaa|z1) 21 € X%, 20 X7 (60)
The above relationships can be estimated if we have a large
number of correspondence data {(z\" € X5, z{? € AT)}. For
example, the study of [218] uses images with text annotations as
aligned input pairs to estimate p(x2|z1). When correspondence
data is not available, the study of [217] learns the mappings to
the latent space that preserve the local geometry and neighbor-
hood relationship.

3) &% = XT and Y° # YT : In this scenario, it is the re-
lationship between the output spaces that methods of hetero-
geneous adaptation will leverage. Often, there may exist direct
mappings between output spaces. For example, phone recogni-
tion (source task) has an output space consisting of phoneme
sequences. Word recognition (target task), then, can be cast into
a phone recognition problem followed by a phoneme-to-word
transducer:

y¥ =yt (61)

Alternatively, the output spaces J° and Y’ can also be made

related to each other via a latent space:

b1 L=V gy L= YT (62)
For example, V4 and YT can be both transformed from a hidden
layer space using MLPs [196]. Additionally, the relationship can
be modeled in the form of constraints. In [219], the source task is
part-of-speech tagging and the target task is named-entity recog-
nition. By imposing constraints on the output variables, e.g.,
named entities should not be part of verb phrases, the author
showed both theoretically and experimentally that it is possible
to learn f7 with fewer samples from D7 .

D. Multi-Task Learning

Finally, we briefly discuss the multi-task learning setting.
While adaptive learning just described aims at transferring
knowledge sequentially from a source task to a target task,
multi-task learning focuses on learning different yet related
tasks simultaneously. Let’s index the individual tasks in the
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multi-task learning setting by £ = 1,2,.... K. We denote
the input and output spaces of task & by X* and V¥, respec-
tively, and denote the joint input/output distribution for task
k by p¥(x*,y*). Note that the tasks are homogeneous if the
input/output spaces are the same across tasks, i.e., ¥* = X and
Yk =Y for any k; and are otherwise heterogeneous. Multi-task
learning described in ML literature is usually heterogeneous in
nature. Furthermore, we assume a training set D¥ is available
for each task & with samples drawn from the corresponding
joint distribution. The tasks relate to each other via a meta-pa-
rameter ¢, the form of which will be discussed shortly. The goal
of multi-task learning is to jointly find a meta-parameter # and

a set of decision functions £ = (f!, f2...., f¥) that minimize
the average expected risk, i.e.,
1 !
min 2= > By (1) (63)

It has been theoretically proved that learning multiple tasks
jointly is guaranteed to have better generalization performance
than learning them independently, given that these tasks are re-
lated [197], [220]-[223]. A common approach is to minimize
the empirical risk of each task while applying regularization that
captures the relatedness between tasks, i.e.,

. 1 k k .

where RE,(f*) denotes the empirical risk on data set D*, and
C(f; 8) is a regularization term that is parameterized by 4.

As in the case of adaptation, regularization is the key to the
success of multi-task learning. There have been many regular-
ization strategies that exploit different types of relatedness. A
large body of work is based on hierarchical Bayesian inference
[220], [224]-[228]. The basic idea is to assume that (1) fj are
each generated from a prior p( f; 6 ); and (2) 6 are each gener-
ated from the same hyper prior p(#; fy). Another approach, and
probably one of the earliest to multi-task learning, is to let the
decision functions of different tasks share common structures.
For example, in [196], [197], some layers of MLPs are shared
by all tasks while the remaining layers are task-dependent. With
a similar motivation, other works apply various forms of regu-
larization such that f; of similar tasks are close to each other in
the model parameter space [223], [229], [230].

Recently, multi-task learning, and transfer learning in gen-
eral, has been approached by the ML community using a new,
deep learning framework. The basic idea is that the feature rep-
resentations learned in an unsupervised manner at higher layers
in the hierarchical architectures tend to share the properties
common among different tasks; e.g., [231]. We will briefly dis-
cuss an application of this new approach to multi-task learning
to ASR next, and will devote the final section of this article to
a more general introduction of deep learning.

E. Heterogeneous Transfer and Multi-Task Learning in Speech
Recognition

The terms heterogeneous transfer and multi-task learning
are often used exchangeably in the ML literature, as multi-task

learning usually involves heterogeneous inputs or outputs, and
the information transfer can go both directions between tasks.

One most interesting application of heterogeneous transfer
and multi-task learning is multimodal speech recognition and
synthesis, as well as recognition and synthesis of other sources
of modality information such as video and image. In the recent
study of [231], an instance of heterogeneous multi-task learning
architecture of [196] is developed using more advanced hier-
archical architectures and deep learning techniques. This deep
learning model is then applied to a number of tasks including
speech recognition, where the audio data of speech (in the form
of spectrogram) and video data are fused to learn the shared rep-
resentation of both speech and video in the mid layers of a deep
architecture. This multi-task deep architecture extends the ear-
lier deep architectures developed for single-task deep learning
architecture for image pixels [133], [134] and for speech spec-
trograms [232] alone. The preliminary results reported in [231]
show that both video and speech recognition tasks are improved
with multi-task learning based on the deep architectures en-
abling shared speech and video representations.

Another successful example of heterogeneous transfer and
multi-task learning in ASR is multi-lingual or cross-lingual
speech recognition, where speech recognition for different
languages is considered as different tasks. Various approaches
have been taken to attack this rather challenging acoustic
modeling problem for ASR, where the difficulty lies in low
resources in either data or transcriptions or both due to eco-
nomic considerations in developing ASR for all languages
of the world. Cross-language data sharing and data weighing
are common and useful approaches [233]. Another successful
approach is to map pronunciation units across languages either
via knowledge-based or data-driven methods [234].

Finally, when we consider phone recognition and word recog-
nition as different tasks, e.g., phone recognition results are used
not for producing text outputs but for language-type identifica-
tion or for spoken document retrieval, then the use of pronun-
ciation dictionary in almost all ASR systems to bridge phones
to words can constitute another excellent example of heteroge-
neous transfer. More advanced frameworks in ASR have pushed
this direction further by advocating the use of even finer units
of speech than phones to bridge the raw acoustic information
of speech to semantic content of speech via a hierarchy of lin-
guistic structure. These atomic speech units include “speech at-
tributes” [235], [236] in the detection-based and knowledge-
rich modeling framework, and overlapping articulatory features
in the framework that enables the exploitation of articulatory
constraints and speech co-articulatory mechanisms for fluent
speech recognition; e.g., [130], [237], [238]. When the articula-
tory information during speech can be recovered during speech
recognition using articulatory based recognizers, such informa-
tion can be usefully applied to a different task of pronunciation
training.

VII. EMERGING MACHINE LEARNING PARADIGMS

In this final section, we will provide an overview on two
emerging and rather significant developments within both ASR
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and ML communities in recent years: learning with deep ar-
chitectures and learning with sparse representations. These de-
velopments share the commonality that they focus on learning
input representations of the signals including speech, as shown
in the last column of Fig. 1. Deep learning is intrinsically linked
to the use of multiple layers of nonlinear transformations to
derive speech features, while learning with sparsity involves
the use of examplar-based representations for speech features
which have high dimensionality but mostly empty entries.
Connections between the emerging learning paradigms re-
viewed in this section and those discussed in previous sections
can be drawn. Deep learning described in Section VII-A below
is an excellent example of hybrid generative and discrimina-
tive learning paradigms elaborated in Sections Il and IV, where
generative learning is used as “pre-training” and discrimina-
tive learning is used as “fine tuning”. Since the “pre-training”
phase typically does not make use of labels for classification,
this also falls into the unsupervised learning paradigm discussed
in Section V-B. Sparse representation in Section VII-B below is
also linked to unsupervised learning; i.e. learning feature repre-
sentations in absence of classification labels. It further relates to
regularization in supervised or semi-supervised learning.

A. Learning Deep Architectures

Learning deep architectures, or more commonly called deep
learning or hierarchical learning, has emerged since 2006 ig-
nited by the publications of [133], [134]. It links and expands a
number of ML paradigms that we have reviewed so far in this
paper, including generative, discriminative, supervised, unsu-
pervised, and multi-task learning. Within the past few years, the
techniques developed from deep learning research have already
been impacting a wide range of signal and information pro-
cessing including notably ASR; e.g., [20], [108], [239]-[256].

Deep learning refers to a class of ML techniques, where
many layers of information processing stages in hierarchical
architectures are exploited for unsupervised feature learning
and for pattern classification. It is in the intersections among
the research areas of neural network, graphical modeling,
optimization, pattern recognition, and signal processing. Two
important reasons for the popularity of deep learning today are
the significantly lowered cost of computing hardware and the
drastically increased chip processing abilities (e.g., GPU units).
Since 2006, researchers have demonstrated the success of deep
learning in diverse applications of computer vision, phonetic
recognition, voice search, spontaneous speech recognition,
speech and image feature coding, semantic utterance classifica-
tion, hand-writing recognition, audio processing, information
retrieval, and robotics.

1) A Brief Historical Account: Until recently, most ML tech-
niques had exploited shallow-structured architectures. These ar-
chitectures typically contain a single layer of nonlinear fea-
ture transformations and they lack multiple layers of adaptive
non-linear features. Examples of the shallow architectures are
conventional HMMs which we discussed in Section II1, linear or
nonlinear dynamical systems, conditional random fields, max-
imum entropy models, support vector machines, logistic regres-
sion, kernel regression, and multi-layer perceptron with a single
hidden layer. A property common to these shallow learning
models is the simple architecture that consists of only one layer

responsible for transforming the raw input signals or features
into a problem-specific feature space, which may be unobserv-
able. Take the example of a SVM. It is a shallow linear separa-
tion model with one or zero feature transformation layer when
kernel trick is and is not used, respectively. Shallow architec-
tures have been shown effective in solving many simple or well-
constrained problems, but their limited modeling and represen-
tational power can cause difficulties when dealing with more
complicated real-world applications involving natural signals
such as human speech, natural sound and language, and natural
image and visual scenes.

Historically, the concept of deep learning was originated
from artificial neural network research. It was not until recently
that the well known optimization difficulty associated with
the deep models was empirically alleviated when a reasonably
efficient, unsupervised learning algorithm was introduced in
[133],[134]. A class of deep generative models was introduced,
called deep belief networks (DBNs, not to be confused with
Dynamic Bayesian Networks discussed in Section III). A core
component of the DBN is a greedy, layer-by-layer learning
algorithm which optimizes DBN weights at time complexity
linear to the size and depth of the networks. The building block
of the DBN is the restricted Boltzmann machine, a special type
of Markov random field, discussed in Section III-A, that has
one layer of stochastic hidden units and one layer of stochastic
observable units.

The DBN training procedure is not the only one that makes
deep learning possible. Since the publication of the seminal
work in [133], [134], a number of other researchers have been
improving and developing alternative deep learning techniques
with success. For example, one can alternatively pre-train the
deep networks layer by layer by considering each pair of layers
as a de-noising auto-encoder [257].

2) A Review of Deep Architectures and Their Learning: A
brief overview is provided here on the various architectures of
deep learning, including and beyond the original DBN. As de-
scribed earlier, deep learning refers to a rather wide class of ML
techniques and architectures, with the hallmark of using many
layers of non-linear information processing stages that are hier-
archical in nature. Depending on how the architectures and tech-
niques are intended for use, e.g., synthesis/generation or recog-
nition/classification, one can categorize most of the work in this
area into three types summarized below.

The first type consists of generative deep architectures, which
are intended to characterize the high-order correlation proper-
ties of the data or joint statistical distributions of the visible data
and their associated classes. Use of Bayes rule can turn this type
of architecture into a discriminative one. Examples of this type
are various forms of deep auto-encoders, deep Boltzmann ma-
chine, sum-product networks, the original form of DBN and its
extension to the factored higher-order Boltzmann machine in
its bottom layer. Various forms of generative models of hidden
speech dynamics discussed in Section III-D and III-E, the deep
dynamic Bayesian network model discussed in Fig. 2, also be-
long to this type of generative deep architectures.

The second type of deep architectures are discriminative in
nature, which are intended to provide discriminative power for
pattern classification and to do so by characterizing the poste-
rior distributions of class labels conditioned on the visible data.
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Examples include deep-structured CRF, tandem-MLP architec-
ture [94], [258], deep convex or stacking network [248] and its
tensor version [242], [243], [259], and detection-based ASR ar-
chitecture [235], [236], [260].

In the third type, or hybrid deep architectures, the goal is dis-
crimination but this is assisted (often in a significant way) with
the outcomes of generative architectures. In the existing hybrid
architectures published in the literature, the generative com-
ponent is mostly exploited to help with discrimination as the
final goal of the hybrid architecture. How and why generative
modeling can help with discriminative can be examined from
two viewpoints: 1)The optimization viewpoint where genera-
tive models can provide excellent initialization points in highly
nonlinear parameter estimation problems (The commonly used
term of “pre-training” in deep learning has been introduced for
this reason); and/or 2) The regularization perspective where
generative models can effectively control the complexity of
the overall model. When the generative deep architecture of
DBN is subject to further discriminative training, commonly
called “fine-tuning” in the literature, we obtain an equivalent
architecture of deep neural network (DNN, which is sometimes
also called DBN or deep MLP in the literature). In a DNN, the
weights of the network are “pre-trained” from DBN instead
of the usual random initialization. The surprising success of
this hybrid generative-discriminative deep architecture in the
form of DNN in large vocabulary ASR was first reported in
[20], [250], soon verified by a series of new and bigger ASR
tasks carried out vigorously by a number of major ASR labs
worldwide.

Another typical example of the hybrid deep architecture was
developed in [261]. This is a hybrid of DNN with a shallow dis-
criminative architecture of CRF. Here, the overall architecture
of DNN-CRF is learned using the discriminative criterion of
sentence-level conditional probability of labels given the input
data sequence. It can be shown that such DNN-CRF is equiva-
lent to a hybrid deep architecture of DNN and HMM, whose pa-
rameters are learned jointly using the full-sequence maximum
mutual information (MMI) between the entire label sequence
and the input data sequence. This architecture is more recently
extended to have sequential connections or temporal depen-
dency in the hidden layers of DBN, in addition to the output
layer [244].

3) Analysis and Perspectives: As analyzed in Section III,
modeling structured speech dynamics and capitalizing on the
essential temporal properties of speech are key to high accu-
racy ASR. Yet the DBN-DNN approach, while achieving dra-
matic error reduction, has made little use of such structured dy-
namics. Instead, it simply accepts the input of a long window
of speech features as its acoustic context and outputs a very
large number of context-dependent sub-phone units, using many
hidden layers one on top of another with massive weights.

The deficiency in temporal aspects of the DBN-DNN ap-
proach has been recognized and much of current research has
focused on recurrent neural network using the same massive-
weight methodology. It is not clear such a brute-force approach
can adequately capture the underlying structured dynamic prop-
erties of speech, but it is clearly superior to the earlier use of
long, fixed-sized windows in DBN-DNN. How to integrate the
power of generative modeling of speech dynamics, elaborated

in Section III-D and Section III-E, into the discriminative deep
architectures explored vigorously by both ML and ASR com-
munities in recent years is a fruitful research direction.

Active research is currently ongoing by a growing number of
groups, both academic and industrial, in applying deep learning
to ASR. New and more effective deep architectures and related
learning algorithms have been reported in every major ASR-
related and ML-related conferences and workshops since 2010.
This trend is expected to continue in coming years.

B. Sparse Representations

1) A Review of Recent Work: In recent years, another ac-
tive area of ASR research that is closely related to ML has
been the use of sparse representation. This refers to a set of
techniques used to reconstruct a structured signal from a lim-
ited number of training examples, a problem which arises in
many ML applications where reconstruction relates to adap-
tively finding a dictionary which best represents the signal on
a per-sample basis. The dictionary can either include random
projections, as is typically done for signal reconstruction, or in-
clude actual training samples from the data, as explored also in
many ML applications. Like deep learning, sparse representa-
tion is another emerging and rapidly growing area with contri-
butions in a variety of signal processing and ML conferences,
including ASR in recent years.

We review the recent applications of sparse representation
to ASR here, highlighting the relevance to and contributions
from ML. In [262], [263], exemplar-based sparse representa-
tions are systematically explored to map test features into the
linear span of training examples. They share the same “non-
parametric” ML principle as the nearest-neighbor approach ex-
plored in [264] and the SVM method in directly utilizing infor-
mation about individual training examples. Specifically, given
a set of acoustic-feature sequences from the training set that
serve as a dictionary, the test data is represented as a linear com-
bination of these training examples by solving a least square
regression problem constrained by sparseness on the weight
solution. The use of such constraints is typical of regulariza-
tion techniques, which are fundamental in ML and discussed in
Section II. The sparse features derived from the sparse weights
and dictionary are then used to map the test samples back into
the linear span of training examples in the dictionary. The re-
sults show that the frame-level speech classification accuracy
using sparse representations exceeds that of Gaussian mixture
model. In addition, sparse representations not only move test
features closer to training, they also move the features closer
to the correct class. Such sparse representations are used as ad-
ditional features to the existing high-quality features and error
rate reduction is reported in both phone recognition and large
vocabulary continuous speech recognition tasks with detailed
experimental conditions provided in [263].

In the studies of [265], [266], various uncertainty measures
are developed to characterize the expected accuracy of a sparse
imputation, an exemplar-based reconstruction method based on
representing segments of the noisy speech signal as linear com-
binations of as few clean speech example segments as possible.
The exemplars used are time-frequency patches of real speech,
each spanning multiple time frames. Then after the distorted
speech is modeled as a linear combination of noise and speech
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exemplars, an algorithm is developed and applied to recover the
sparse linear combination of exemplars from the observed noisy
speech. In experiments on noisy large vocabulary speech data,
the use of observation uncertainties and sparse representations
improves ASR performance significantly.

In a further study reported in [232], [267], [268], in deriving
sparse feature representations for speech, an auto-associative
neural network is used, whose internal hidden-layer output is
constrained to be sparse. In [268], the fundamental concept of
regularization in ML is used, where a sparse regularization term
is added to the original reconstruction error or a cross-entropy
cost function and by updating the parameters of the network to
minimize the overall cost. Significant phonetic recognition error
reduction is reported.

Finally, motivated by the sparse Bayesian learning technique
and relevance vector machines developed by the ML commu-
nity (e.g. [269]), an extension is made from the generic unstruc-
tured data to structured data of speech and to ASR applications
by ASR researchers. In the Bayesian-sensing HMM reported
in [270], speech feature sequences are represented using a set
of HMM state-dependent basis vectors. Again, model regular-
ization is used to perform sparse Bayesian sensing in face of
heterogeneous training data. By incorporating a prior density
on sensing weights, the relevance of different bases to a feature
vector is determined by the corresponding precision parameters.
The model parameters that consist of the basis vectors, the pre-
cision matrices of sensing weights and the precision matrices of
reconstruction errors, are jointly estimated using a recursive so-
lution, in which the standard Bayesian technique of marginal-
ization (over the weight priors) is exploited. Experimental re-
sults reported in [270] as well as in a series of earlier work on a
large-scale ASR task show consistent improvements.

2) Analysis and Perspectives: Sparse representation has
close links to fundamental ML concepts of regularization and
unsupervised feature learning, and also has a deep root in
neuroscience. However, its applications to ASR are quite recent
and their success, compared with deep learning, is more limited
in scope and size, despite the huge success of sparse coding
and (sparse) compressive sensing in ML and signal/image
processing with a relatively long history.

One possible limiting factor is that the underlying structure of
speech features is less prone to sparsification and compression
than the image counterpart. Nevertheless, the initial promising
ASR results as reviewed above should encourage more work in
this direction. It is possible that different types of raw speech
features from what have been experimented will have greater
potential and effectiveness for sparse representations. As an ex-
ample, speech waveforms are obviously not a natural candidate
for sparse representation but the residual signals after linear pre-
diction would be.

Further, sparseness may not necessarily be exploited for rep-
resentation purposes only in the unsupervised learning setting.
Just as the success of deep learning comes from hybrid between
unsupervised generative learning (pre-training) and supervised
discriminative learning (fine-tuning), sparseness can be ex-
ploited in a similar way. The recent work reported in [271]
formulates parameter sparseness as soft regularization and
convex constrained optimization problems in a DNN system.
Instead of placing sparseness constraint in the DNN’s hidden

nodes for feature representations as done in [232], [267], [268],
sparseness is exploited for reducing non-zero DNN weights.
The experimental results in [271] on a large scale ASR task
show not only the DNN model size is reduced by 66% to 88%,
the error rate is also slightly reduced by 0.2-0.3%. It is a fruitful
research direction to exploit sparseness in multiple ways for
ASR, and the highly successful deep sparse coding schemes
developed by ML and computer vision researchers have yet to
enter ASR.

VIII. DISCUSSION AND CONCLUSIONS

In this overview article, we introduce a set of prominent ML
paradigms that are motivated in the context of ASR technology
and applications. Throughout this review, readers can see that
ML is deeply ingrained within ASR technology, and vice versa.
On the one hand, ASR can be regarded only as an instance of a
ML problem, just as is any “application” of ML such as com-
puter vision, bioinformatics, and natural language processing.
When seen in this way, ASR is a particularly useful ML appli-
cation since it has extremely large training and test corpora, it
is computationally challenging, it has a unique sequential struc-
ture in the input, it is also an instance of ML with structured
output, and, perhaps most importantly, it has a large commu-
nity of researchers who are energetically advancing the under-
lying technology. On the other hand, ASR has been the source
of many critical ideas in ML, including the ubiquitous HMM,
the concept of classifier adaptation, and the concept of discrim-
inative training on generative models such as HMM—all these
were developed and used in the ASR community long before
they caught the interest of the ML community. Indeed, our main
hypothesis in this review is that these two communities can and
should be communicating regularly with each other. Our belief
is that the historical and mutually beneficial influence that the
communities have had on each other will continue, perhaps at
an even more fruitful pace. It is hoped that this overview paper
will indeed foster such communication and advancement.

To this end, throughout this overview we have elaborated on
the key ML notion of structured classification as a fundamental
problem in ASR—with respect to both the symbolic sequence
as the ASR classifier’s output and the continuous-valued vector
feature sequence as the ASR classifier’s input. In presenting
each of the ML paradigms, we have highlighted the most
relevant ML concepts to ASR, and emphasized the kind of
ML approaches that are effective in dealing with the special
difficulties of ASR including deep/dynamic structure in human
speech and strong variability in the observations. We have
also paid special attention to discussing and analyzing the
major ML paradigms and results that have been confirmed
by ASR experiments. The main examples discussed in this
article include HMM-related and dynamics-oriented generative
learning, discriminative learning for HMM-like generative
models, complexity control (regularization) of ASR systems
by principled parameter tying, adaptive and Bayesian learning
for environment-robust and speaker-robust ASR, and hybrid
supervised/unsupervised learning or hybrid generative/dis-
criminative learning as exemplified in the more recent “deep
learning” scheme involving DBN and DNN. However, we have
also discussed a set of ASR models and methods that have not
become mainstream but that have solid theoretical foundation
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in ML and speech science, and in combination with other
learning paradigms, they offer a potential to make significant
contributions. We provide sufficient context and offer insight
in discussing such models and ASR examples in connection
with the relevant ML paradigms, and analyze their potential
contributions.

ASR technology is fast changing in recent years, partly
propelled by a number of emerging applications in mobile
computing, natural user interface, and Al-like personal as-
sistant technology. So is the infusion of ML techniques into
ASR. A comprehensive overview on the topic of this nature
unavoidably contains bias as we suggest important research
problems and future directions where the ML paradigms would
offer the potential to spur next waves of ASR advancement,
and as we take position and carry out analysis on a full range of
the ASR work spanning over 40 years. In the future, we expect
more integrated ML paradigms to be usefully applied to ASR
as exemplified by the two emerging ML schemes presented and
analyzed in Section VII. We also expect new ML techniques
that make an intelligent use of large supply of training data with
wide diversity and large-scale optimization (e.g., [272]) to im-
pact ASR, where active learning, semi-supervised learning, and
even unsupervised learning will play more important roles than
in the past and at present as surveyed in Section V. Moreover,
effective exploration and exploitation of deep, hierarchical
structure in conjunction with spatially invariant and temporary
dynamic properties of speech is just beginning (e.g., [273]).
The recent renewed interest in recurrent neural network with
deep, multiple-level representations from both ASR and ML
communities using more powerful optimization techniques
than in the past is an example of the research moving towards
this direction. To reap full fruit by such an endeavor will require
integrated ML methodologies within and possibly beyond the
paradigms we have covered in this paper.
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