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What we will cover
 Tutorial introduces basics of direct probabilistic 

models

 What is a direct model, and how does it relate to speech 
and language processing?

 How do I train a direct model?

 How have direct models been used in speech and 
language processing?
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Overview
 Part 1: Background and Taxonomy
 Generative vs. Direct models

 Descriptions of models for classification, sequence 
recognition (observed and hidden)

 Break

 Part 2: Algorithms & Case Studies
 Training/decoding algorithms

 CRF study using phonological features for ASR

 Segmental CRF study for ASR

 NLP case studies (if time)
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A first thought experiment
 You’re observing a limousine – is a diplomat inside?

 Can observe:

 Whether the car has flashing lights

 Whether the car has flags
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The Diplomat problem
 We have observed Boolean variables: lights and flag

 We want to predict if car contains a diplomat



P(Diplomat |Lights,Flag)
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A generative approach:
Naïve Bayes
 Generative approaches model observations as being 

generated by the underlying class – we observe:

 Limos carrying diplomats have flags 50% of the time

 Limos carrying diplomats have flashing lights 70%

 Limos not carrying diplomats: flags 5%, lights 30%

 NB: Compute posterior by Bayes’ rule



P(Diplomat |Lights,Flag) 
P(Lights,Flag |Diplomat)P(Diplomat)

P(Lights,Flag)
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A generative approach:
Naïve Bayes
 Generative approaches model observations as being 

generated by the underlying class – we observe:

 Limos carrying diplomats have flags 50% of the time

 Limos carrying diplomats have flashing lights 70%

 Limos not carrying diplomats: flags 5%, lights 30%

 NB: Compute posterior by Bayes’ rule

 …and then assume conditional independence



P(Dmat |Lights,Flag) 
P(Lights |Dmat)P(Flag |Dmat)P(Dmat)

P(Lights,Flag)

8



A generative approach:
Naïve Bayes
 NB: Compute posterior by Bayes’ rule

 …and then assume conditional independence

 P(Lights, Flag) is a normalizing term

 Can replace this with normalization constant Z



P(Dmat |Lights,Flag) 
P(Lights |Dmat)P(Flag |Dmat)P(Dmat)

Z
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Graphical model for Naïve Bayes



P(Dmat |Lights,Flag) 
P(Lights |Dmat)P(Flag |Dmat)P(Dmat)

Z

Lights

Diplomat

Flag P(Flag|Dmat)P(Lights|Dmat)

P(Dmat)
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Graphical model for Naïve Bayes



P(Dmat |Lights,Flag) 
P(Lights |Dmat)P(Flag |Dmat)P(Dmat)

Z

Lights

Diplomat

Flag P(Flag|Dmat)P(Lights|Dmat)

P(Dmat)
Lights and Flag are
conditionally independent
given Diplomat
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Correlated evidence in
Naïve Bayes
 Conditional independence says “given a value of 

Diplomat, Lights and Flag are independent”

 Consider the case where lights are always flashing 
when the car has flags

 Evidence gets double counted; NB is overconfident

 May not be a problem in practice – problem dependent

 (HMMs have similar assumptions: observations are 
independent given HMM state sequence.)



P(Dmat |Lights,Flag) 
P(Lights |Dmat)P(Flag |Dmat)P(Dmat)

Z
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Reversing the arrows:
Direct modeling
 P(Diplomat|Lights,Flag) can be directly modeled

 We compute a probability distribution directly without 
Bayes’ rule

 Can handle interactions
between Lights and Flag
evidence

 P(Lights) and P(Flag) 
do not need to be 
modeled

Lights

Diplomat

Flag

P(Dmat|Lights, Flag)
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Direct vs. Discriminative
 Isn’t this just discriminative training?  (No.)

 Direct model: directly predict posterior of hidden variable

 Discriminative training: adjust model parameters to 
{separate classes, improve posterior, 
minimize classification error,…} 

Lights

Diplomat

Flag P(Flag|Dmat)P(Lights|Dmat)

P(Dmat)

Lights

Diplomat

Flag

P(Dmat|Lights, Flag)

Generative model Direct model
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Direct vs. Discriminative

 Generative models can be 
trained discriminatively

 Direct models inherently 
try to discriminate 
between classes

Lights

Diplomat

Flag P(Flag|Dmat)P(Lights|Dmat)

P(Dmat)

Lights

Diplomat

Flag

P(Dmat|Lights, Flag)

Models change to discriminate Diplomat better Direct discriminative optimization



Pros and cons of direct modeling
 Pro:

 Often can allow modeling of interacting data features

 Can require fewer parameters because there is no 
observation model

 Observations are usually treated as fixed and don’t require a 
probabilistic model

 Con:

 Typically slower to train 

 Most training criteria have no closed-form solutions
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A simple direct model:
Maximum Entropy
 Our direct example didn’t have a particular form for 

the probability P(Dmat|Lights, Flag)

 A maximum entropy model uses a log-linear 
combination of weighted features in probability model

Lights

Diplomat

Flag

P(Dmat|Lights, Flag)



P(Dmat  j | Lights,Flag) 

exp( i, j

i

 f i, j )

exp( i, j 

i

 f i, j )
j 



learned weight

feature of the data for class j
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A simple direct model:
Maximum Entropy
 Denominator of the equation is again normalization 

term (replace with Z)

 Question: what are fi,j and how does this correspond to 
our problem?

Lights

Diplomat

Flag

P(Dmat|Lights, Flag)



P(Dmat  j |Lights,Flag) 

exp( i, j

i

 f i, j )

Z

learned weight

feature of the data for class j
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Diplomat Maximum Entropy
 Here are two features (fi,j) that we can use:
 f0,True=1 if car has a diplomat and has a flag

 f1,False=1 if car has no diplomat but has flashing lights
 (Could have complementary features as well but left out for 

simplification.)

 Example dataset with the following statistics
 Diplomats occur in 50% of cars in dataset

 P(Flag=true|Diplomat=true) = 0.9 in dataset

 P(Flag=true|Diplomat=false) = 0.2 in dataset

 P(Lights=true|Diplomat=false) = 0.7 in dataset

 P(Lights=true|Diplomat=true) = 0.5 in dataset
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Diplomat Maximum Entropy
 The MaxEnt formulation using these two features is:

where true and false are bias terms to adjust for frequency of 
labels.

 Fix the bias terms to both be 1.  What happens to 
probability of Diplomat on dataset as other lambdas vary?



P(Dmat  true |Flag,Light)  exp(true  0,T f0,T ) /Z

P(Dmat  false |Flag,Light)  exp( false  1,F f1,F ) /Z

f0,T=1 if car has a diplomat and has a flag
f1,F=1 if car has no diplomat but has flashing lights
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Log probability of Diplomat over 
dataset as MaxEnt lambdas vary
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Finding optimal lambdas
 Good news: conditional 

probability of dataset is 
convex for MaxEnt

 Bad news: as number of 
features grows, finding 
maximum in so many 
dimensions can be slooow.
 Various gradient search or 

optimization techniques 
can be used 
(coming later).Same picture in 3-d:

Conditional probability of dataset
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MaxEnt-style models in practice
 Several examples of MaxEnt models in speech & 

language processing

 Whole-sentence language models (Rosenfeld, Chen & Zhu, 2001)

 Predict probability of whole sentence given features over 
correlated features (word n-grams, class n-grams, …)

 Good for rescoring hypotheses in speech, MT, etc…

 Multi-layer perceptrons

 MLP can really be thought of as MaxEnt models with 
automatically learned feature functions

 MLP gives local posterior classification of frame

 Sequence recognition through Hybrid or Tandem MLP-HMM

 Softmax-trained Single Layer Perceptron == MaxEnt model
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MaxEnt-style models in practice
 Several examples of MaxEnt models in speech & 

language processing

 Flat Direct Models for ASR (Heigold et al. 2009)

 Choose complete hypothesis from list 
(rather than a sequence of words)

 Doesn’t have to match exact words (auto rental=rent-a-car)

 Good for large-scale list choice tasks, e.g. voice search

 What do features look like?
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Flat Direct Model Features:
Decomposable features
 Decompose features F(W,X) = (W)(X) 

 (W) is a feature of the words
 e.g. “The last word ends in s”

 “The word Restaurant is present”

 (X) is a feature of the acoustics
 e.g. “The distance to the Restaurant template is greater than 

100”

 “The HMM for Washington is among the 10 likeliest”

 (W)(X) is the conjunction; measures consistency
 e.g. “The hypothesis ends is s” and my “s-at-the-end” acoustic 

detector has fired 
25



Generalization
 People normally think of Maximum Entropy for 

classification among a predefined set

 But F(W,X) = (W)(X) essentially measures 
consistency between W and X

 These features are defined for arbitrary W. 

 For example, “Restaurants is present and my s-at-the-
end detector has fired” can be true for either “Mexican 
Restaurants or Italian Restaurants”
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Direct sequence modeling
 In speech and language processing, usually want to 

operate over sequences, not single classifications

 Consider a common generative sequence model – the 
Hidden Markov Model – relating states (S) to obs. (O)

O1

S1

O2

S2

O3

S3



P(S,O)  P(Oi | Si)P(Si | Si1)
i



P(Oi|Si)

P(Si|Si-1)
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Direct sequence modeling
 In speech and language processing, usually want to 

operate over sequences, not single classifications

 What happens if we “change the direction” of arrows 
of an HMM?  A direct model of P(S|O).

O1

S1

O2

S2

O3

S3



P(S |O)  P(S1 |O1) P(Si | Si1,Oi)
i1



P(Si|Si-1,Oi)
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MEMMs
 If a log linear term is used for P(Si|Si-1,Oi) then this is a 

Maximum Entropy Markov Model (MEMM)
(Ratnaparkhi 1996, McCallum, Freitag & Pereira 2000)

 Like MaxEnt, we take features of the observations and 
learn a weighted model

O1

S1

O2

S2

O3

S3



P(S |O)  P(S1 |O1) P(Si | Si1,Oi)
i1

 P(Si|Si-1,Oi)



 exp  j f j (Si1,Si,O,i)
i


j
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MEMMs
 Unlike HMMs, transitions between states can now 

depend on acoustics in MEMMs

 However, unlike HMM, MEMMs can ignore observations

 If P(Si=x|Si-1=y)=1, then P(Si=x|Si-1=y,Oi)=1 for all Oi (label bias)

 Problem in practice?

O1

S1

O2

S2

O3

S3

P(Si|Si-1,Oi)
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MEMMs in language processing
 One prominent example in part-of-speech tagging is 

the Ratnaparkhi “MaxEnt” tagger (1996)

 Produce POS tags based on word history features

 Really an MEMM because it includes the previously 
assigned tags as part of its history

 Kuo and Gao (2003-6) developed “Maximum Entropy 
Direct Models” for ASR

 Again, an MEMM, this time over speech frames

 Features: what are the IDs of the closest Gaussians to 
this point?
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Joint sequence models
 Label bias problem: previous “decisions” may restrict 

the influence of future observations
 Harder for the system to know that it was following a 

bad path

 Idea: what if we had one big maximum entropy model 
where we compute the joint probability of hidden 
variables given observations?
 Many-diplomat problem:

P(Dmat1…DmatN|Flag1…FlagN,Lights1…LightsN)

 Problem: State space is exponential in length
 Diplomat problem: O(2N)
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Factorization of joint sequences
 What we want is a factorization that will allow us to 

decrease the size of the state space

 Define a Markov graph to describe factorization:
Markov Random Field (MRF)

 Neighbors in graph contribute to the probability 
distribution

 More formally: probability distribution is factored by the 
cliques in a graph
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Markov Random Fields (MRFs)
 MRFs are undirected (joint) graphical models

 Cliques define probability distribution
 Configuration size of each clique is the effective state space

 Consider 5-diplomat series

D1 D2 D3 D4 D5

D1 D2 D3 D4 D5

D1 D2 D3 D4 D5

One 5-clique (fully connected) 
Effective state space is 25 (MaxEnt)

Three 3-cliques (1-2-3, 2-3-4, 3-4-5)
Effective state space is 23

Four 2-cliques (1-2, 2-3, 3-4, 4-5)
Effective state space is 22
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Hammersley-Clifford Theorem
 Hammersley-Clifford Theorem related MRFs to Gibbs 

probability distributions

 If you can express the probability of a graph 
configuration as a product of potentials on the cliques 
(Gibbs distribution), then the graph is an MRF

 The potentials, however, must be positive

 True if f(c)=exp(Sf(c))  (log linear form)


P(D)  f(c)
ccliques(D)



D1 D2 D3 D4 D5



P(D) f(D1,D2)f(D2,D3)f(D3,D4)f(D4,D5)
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Conditional Random Fields (CRFs)
 When the MRF is conditioned on observations, this is 

known as a Conditional Random Field (CRF)
(Lafferty, McCallum & Pereira, 2001)

 Assuming log-linear form (true of almost all CRFs), then 
probability is determined by weighted functions (fi) of 
the clique (c) and the observations (O)



P(D |O) 
1

Z
exp i f i(c,O)

i












ccliques(D )



P(D |O) 
1

Z
exp i f i(c,O)

i


ccliques(D )












log(P(D |O))  i f i(c,O)
i


ccliques(D )

  log(Z)
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Conditional Random Fields (CRFs)
 When the MRF is conditioned on observations, this is 

known as a Conditional Random Field (CRF)
(Lafferty, McCallum & Pereira, 2001)

 Assuming log-linear form (true of almost all CRFs), then 
probability is determined by weighted functions (fi) of 
the clique (c) and the observations (O)



P(D |O) 
1

Z
exp i f i(c,O)

i












ccliques(D )



P(D |O) 
1

Z
exp i f i(c,O)

i


ccliques(D )












log(P(D |O))  i f i(c,O)
i


ccliques(D )

  log(Z)

For general graphs, computing
this quantity is #P-hard, requiring
approximate inference.

However, for special graphs the
complexity is lower.  For example,
linear chain CRFs have polynomial
time algorithms. 



Log-linear Linear Chain CRFs
 Linear-chain CRFs have a 1st order Markov backbone

 Feature templates for a HMM-like CRF structure for the 
Diplomat problem

 fBias(Di=x, i) is 1 iff Di=x

 fTrans(Di=x,Di+1=y,i) is 1 iff Di=x and Di+1=y

 fFlag(Di=x,Flagi=y,i) is 1 iff Di=x and Flagi=y

 fLights(Di=x,Lightsi=y,i) is 1 iff Di=x and Lightsi=y

 With a bit of subscript liberty, the equation is



P(D1...D5 |F1...5,L1...5) 
1

Z(F,L)
exp B fBias(Di)

i1

5

 F fFlag(Di,Fi)
i1

5

 L fLights(Di,Li) T fTrans(Di,Di1)
i1

4


i1

5












D1 D2 D3 D4 D5
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Log-linear Linear Chain CRFs
 In the previous example, the transitions did not depend on 

the observations (HMM-like)
 In general, transitions may depend on observations (MEMM-like)

 General form of linear chain CRF groups features as state 
features (bias, flag, lights) or transition features
 Let s range over state features, t over transition features

 i indexes into the sequence to pick out relevant observations



P(D |O) 
1

Z(O)
exp s fs(Di,O,i)

i1

n


sstateFtrs

 t f t (Di,Di1,O,i)
i1

n1


ttransFtrs
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A quick note on features for ASR
 Both MEMMs and CRFS require the definition of 

feature functions
 Somewhat obvious in NLP (word id, POS tag, parse 

structure)

 In ASR, need some sort of “symbolic” representation of 
the acoustics
 What are the closest Gaussians (Kuo & Gao, Hifny & Renals)

 Sufficient statistics (Layton & Gales, Gunawardana et al)

 With sufficient statistics, can exactly replicate single Gaussian 
HMM in CRF, or mixture of Gaussians in HCRF (next!)

 Other classifiers (e.g. MLPs) (Morris & Fosler-Lussier)

 Phoneme/Multi-Phone detections (Zweig & Nguyen)
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Sequencing: Hidden Structure (1)

the

DET

dog

N

ran

V

 So far there has been a 1-to-1 correspondence between 
labels and observations

 And it has been fully observed in training
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Sequencing: Hidden Structure (2)
 But this is often not the case for speech recognition

 Suppose we have training data like this:

“The Dog”

Transcript

Audio (spectral representation)
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Sequencing: Hidden Structure (3)

DH IY IY D AH AH G

Is “The dog” segmented like this?
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Sequencing: Hidden Structure (3)

DH DH IY D AH AH G

Or like this?
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Sequencing: Hidden Structure (3)

DH DH IY D AH G G

Or maybe like this?

=> An added layer of complexity
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This Can Apply in NLP as well

Hey John Deb Abrams calling how are you
caller

Hey John Deb Abrams calling how are you
caller

callee

callee

How should this be segmented?
Note that a segment level feature indicating that 
“Deb Abrams” is a ‘good’ name would be useful
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Approaches to Hidden Structure 
 Hidden CRFs (HRCFs) 

 Gunawardana et al., 2005

 Semi-Markov CRFs
 Sarawagi & Cohen, 2005

 Conditional Augmented Models
 Layton, 2006 Thesis – Lattice C-Aug Chapter; Zhang, Ragni & 

Gales, 2010

 Segmental CRFs
 Zweig & Nguyen, 2009

 These differ in 
 Where the Markov assumption is applied 
 What labels are available at training

 Convexity of objective function

 Definition of features
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Approaches to Hidden Structure
Method Markov 

Assumption
Segmentation
known in 
Training

Features 
Prescribed

HCRF Frame level No No

Semi-Markov CRF Segment Yes No

Conditional 
Augmented Models

Segment No Yes

Segmental CRF Segment No No
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One View of Structure

DH AE T

DH TAE

Consider all segmentations consistent with transcription / hypothesis
Apply Markov assumption at frame level to simplify recursions
Appropriate for frame level features 49



Another View of Structure
DH T

o1 on

AE

DH T

o1 on

AE

Consider all segmentations consistent with transcription / hypothesis
Apply Markov assumption at segment level only – “Semi Markov”
This means long-span segmental features can be used 50



Examples of Segment Level 
Features in ASR
 Formant trajectories

 Duration models

 Syllable / phoneme counts

 Min/max energy excursions

 Existence, expectation & levenshtein  features 
described later
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Examples of Segment Level 
Features in NLP
 Segment includes a name

 POS pattern within segment is DET ADJ N

 Number of capitalized words in segment

 Segment is labeled “Name” and has 2 words

 Segment is labeled “Name” and has 4 words

 Segment is labeled “Phone Number and has 7 words”

 Segment is labeled “Phone Number and has 8 words”
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Is Segmental Analysis any Different?
 We are conditioning on all the observations

 Do we really need to hypothesize segment boundaries?

 YES – many features undefined otherwise:

 Duration (of what?)

 Syllable/phoneme count (count where?)

 Difference in C0 between start and end of word

 Key Example: Conditional Augmented Statistical 
Models
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Conditional Augmented Statistical 
Models
 Layton & Gales, “Augmented Statistical Models for 

Speech Recognition,” ICASSP 2006

 As features use

 Likelihood of segment wrt an HMM model

 Derivative of likelihood wrt each HMM model 
parameter

 Frame-wise conditional independence assumptions of 
HMM are no longer present

 Defined only at segment level

54



Now for Some Details
 Will examine general segmental case

 Then relate specific approaches

DH T

o1 on

AE

DH T

o1 on

AE
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Segmental Notation & Fine Print
 We will consider feature functions that cover both 

transitions and observations
 So a more accurate representation actually has diagonal edges
 But we’ll generally omit them for simpler pictures

 Look at a segmentation q in terms of its edges e
 sl

e is the label associated with the left state on an edge
 sr

e is the label associated with the right state on an edge
 O(e) is the span of observations associated with an edge 

sl
e sr

e

o(e)=o3
4

e
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The Segmental Equations
sl

e sr
e

o(e)=o3
4

e
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We must sum over all possible segmentations of the observations consistent
with a hypothesized  state sequence .
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Conditional Augmented Model  
(Lattice version) in this View
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Features precisely defined
HMM model likelihood
Derivatives of HMM model likelihood wrt HMM parameters
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HCRF in this View
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Feature functions are decomposable at the frame level
Leads to simpler computations
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Semi-Markov CRF in this View
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A fixed segmentation is known at training
Optimization of parameters becomes convex
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Structure Summary
 Sometimes only high-level information is available 

 E.g. the words someone said (training)
 The words we think someone said (decoding)

 Then we must consider all the segmentations of the 
observations consistent with this

 HCRFs do this using a frame-level Markov assumption
 Semi-CRFs / Segmental CRFs do not assume independence 

between frames
 Downside:  computations more complex
 Upside:  can use segment level features 

 Conditional Augmented Models prescribe a set of HMM 
based features
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 Compute optimal label sequence (decoding)

 Compute likelihood of a label sequence

 Compute optimal parameters (training)

Key Tasks


d

dd osP ),|(maxarg 


),|( osP

),|(maxarg osP
s
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Key Cases

Viterbi  Assumption Hidden Structure Model

NA NA Log-linear classification

Frame-level No CRF

Frame-level Yes HCRF

Segment-level Yes (decode only) Semi-Markov CRF

Segment-level Yes (train & decode) C-Aug, Segmental CRF
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Decoding
 The simplest of the algorithms

 Straightforward DP recursions

Viterbi  Assumption Hidden Structure Model

NA NA Log-linear classification

Frame-level No CRF

Frame-level Yes HCRF

Segment-level Yes (decode only) Semi-Markov CRF

Segment-level Yes (train & decode) C-Aug, Segmental CRF

Cases we will go over
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Flat log-linear Model
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Simply enumerate the possibilities and pick the best.
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A Chain-Structured CRF

… …
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Since s is a sequence there might be too many to enumerate.
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Chain-Structured Recursions

… …
sm=qsm-1=q’

om

d(m,q) is the best label sequence score that ends in position m with label q

1),0(

)),,'(exp()',1(maxarg),(
'



 

d

dd
i

mii
q

oqqfqmqm

Recursively compute the ds 
Keep track of the best q’ decisions to recover the sequence

The best way of getting here
is the best way of getting here
somehow and then making the 
transition and accounting for
the observation
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Segmental/Semi-Markov CRF

  

 

 

 


' ||||

||||

))(,','(exp(

))(,,(exp(

)|(

s s 'qq q ,

sqq q ,
os

st ie

e

r

e

lii

st ie

e

r

e

lii

eossf

eossf

P




o1 on

sr
e

omom-d

o(e)

sl
e

e

70



Segmental/Semi-Markov 
Recursions

d(m,y) is the best label sequence score that ends at observation m 
with state label y

1),0(

)),,'(exp()',(maxarg),( 1
',



  

d

dd
i

m

dmii
dy

oyyfydmym

Recursively compute the ds 
Keep track of the best q’ and d decisions to recover the sequence

o1 on

y

omom-d
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Computing Likelihood of a State 
Sequence

Viterbi  Assumption Hidden Structure Model

NA NA Flat log-linear

Frame-level No CRF

Frame-level Yes HCRF

Segment-level Yes (decode only) Semi-Markov CRF

Segment-level Yes (train & decode) C-Aug, Segmental CRF

Cases we will go over
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Flat log-linear Model
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Enumerate the possibilities and sum.
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A Chain-Structured CRF
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Single hypothesis s
Plug in and compute

Need a clever way of
summing over all hypotheses
To get normalizer Z
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CRF Recursions

a(m,q) is the sum of the label sequence scores
that end in position m with label q
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Segmental/Semi-Markov CRF
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SCRF Recursions: Denominator
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SCRF Recursions: Numerator
sy

o1 onomom-d

Recursion is similar with the state sequence fixed.
a*(m,y) will now be the sum of the scores of all segmentations ending in 
an assignment of observation m to the yth state.

Note the  value of the yth state is given!
y is now a positional index rather than state value.
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Numerator (con’t.)
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Summary: SCRF Probability
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Training

Viterbi  Assumption Hidden Structure Model

NA NA Log-linear classification

Frame-level No CRF

Frame-level Yes HCRF

Segment-level Yes (decode only) Semi-Markov CRF

Segment-level Yes (train & decode) C-Aug, Segmental CRF

Will go over simplest cases.  See also
• Gunawardana et al., Interspeech 2005 (HCRFs)
• Mahajan et al., ICASSP 2006 (HCRFs)
• Sarawagi & Cohen, NIPS 2005 (Semi-Markov)
• Zweig & Nguyen, ASRU 2009 (Segmental CRFs)
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Training 
 Specialized approaches

 Exploit form of Max-Ent Model
 Iterative Scaling (Darroch & Ratcliff, 1972)

 fi(x,y) >= 0 and Si fi(x,y)=1

 Improved Iterative Scaling (Berger, Della Pietra & Della Pietra, 1996)

 Only relies on non-negativity

 General approach: Gradient Descent
 Write down the log-likelihood for one data sample

 Differentiate it wrt the model parameters

 Do your favorite form of gradient descent
 Conjugate gradient

 Newton method

 R-Prop

 Applicable regardless of convexity
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Training with Multiple Examples
 When multiple examples are present, the 

contributions to the log-prob (and therefore gradient) 
are additive

 To minimize notation, we omit the indexing and 
summation on data samples
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Flat log-linear model
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Flat log-linear Model Con’t.
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A Chain-Structured CRF
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Chain-Structured CRF (con’t.)
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* Cannot enumerate s’ because it is now a sequence
* And must sum over positions j

Easy to compute first term
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Forward/Backward Recursions
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path scores starting
at position m, with
label q (exclusive of 
observation m)

a(m,q) is sum of partial
path scores ending
at position m, with
label q (inclusive of
observation m)
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Gradient Computation

1) Compute Alphas
2) Compute Betas
3) Compute gradient
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Segmental Versions
 More complex; See

 Sarawagi & Cohen, 2005

 Zweig & Nguyen, 2009

 Same basic process holds

 Compute alphas on forward recursion

 Compute betas on backward recursion

 Combine to compute gradient
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Once We Have the Gradient
 Any gradient descent technique possible

1) Find a direction to move the parameters 

 Some combination of information from first and 
second derivative values

2) Decide how far to move in that direction

 Fixed or adaptive step size

 Line search

3) Update the parameter values and repeat
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Conventional Wisdom 
 Limited Memory BFGS often works well

 Liu & Nocedal, Mathematical Programming (45) 1989

 Sha & Pereira, HLT-NAACL 2003

 Malouf, CoNLL 2002

 For HCRFs stochastic gradient descent and Rprop are 
as good or better

 Gunawardana et al., Interspeech 2005

 Mahajan, Gunawardana & Acero, ICASSP 2006

 Rprop is exceptionally simple
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Rprop Algorithm
 Martin Riedmiller, “Rprop – Description and 

Implementation Details” Technical Report, January 
1994, University of Karlsruhe.

 Basic idea:
 Maintain a step size for each parameter 
 Identifies the “scale” of the parameter

 See if the gradient says to increase or decrease the 
parameter 
 Forget about the exact value of the gradient

 If you move in the same direction twice, take a bigger 
step!

 If you flip-flop, take a smaller step!
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Regularization
 In machine learning, often want to simplify models

 Objective function can be changed to add a penalty term for 
complexity

 Typically this is an L1 or L2 norm of the weight (lambda vector)

 L1 leads to sparser models than L2

 For speech processing, some studies have found 
regularization

 Necessary: 
L1-ACRFs by Hifny & Renals, Speech Communication 2009

 Unnecessary if using weight averaging across time: 
Morris & Fosler-Lussier, ICASSP 2007
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CRF Speech Recognition with Phonetic Features

Acknowledgements to Jeremy Morris



Top-down vs. bottom-up processing
 State-of-the-art ASR takes a top-down approach to this 

problem

 Extract acoustic features from the signal

 Model a process that generates these features

 Use these models to find the word sequence that best 
fits the features

“speech”
/ s p iy ch/
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Bottom-up: detector combination
 A bottom-up approach using CRFs

 Look for evidence of speech in the signal

 Phones, phonological features

 Combine this evidence together in log-linear model to 
find the most probable sequence of words in the signal

“speech”
/ s p iy ch/

voicing?
burst?
frication?

evidence
detection

evidence
combination
via CRFs

(Morris & Fosler-Lussier, 2006-2010)
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Phone Recognition
 What evidence do we have to combine?

 MLP ANN trained to estimate frame-level posteriors for 
phonological features

 MLP ANN trained to estimate frame-level posteriors for 
phone classes

P(voicing|X)
P(burst|X)
P(frication|X
)
…

P( /ah/ | X)
P( /t/ | X)
P( /n/ | X)
…
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Phone Recognition
 Use these MLP outputs to build state feature functions

otherwise
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Phone Recognition
 Use these MLP outputs to build state feature functions

otherwise

tyifxMLP
xys

xtP

xtPt
,0

//),(
),(

)|/(/

)|/(//,/ { 


otherwise

tyifxMLP
xys

xdP

xdPt
,0

//),(
),(

)|/(/

)|/(//,/ { 


100



Phone Recognition
 Use these MLP outputs to build state feature functions

otherwise
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Phone Recognition
 Pilot task – phone recognition on TIMIT

 ICSI Quicknet MLPs trained on TIMIT, used as inputs to 
the CRF models

 Compared to Tandem and a standard PLP HMM 
baseline model

 Output of ICSI Quicknet MLPs as inputs

 Phone class attributes (61 outputs)

 Phonological features attributes (44 outputs)
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Phone Recognition

*Signficantly (p<0.05) better than comparable Tandem system (Morris & Fosler-Lussier 08)

Model Accuracy

HMM (PLP inputs) 68.1%

CRF (phone classes) 70.2%

HMM Tandem16mix (phone classes) 70.4%

CRF (phone classes +phonological features) 71.5%*

HMM Tandem16mix (phone classes+ phonological 

features)

70.2%
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What about word recognition?
 CRF predicts phone labels for each frame

 Two methods for converting to word recognition:

1. Use CRFs to generate local frame phone posteriors for 
use as features in an HMM (ala Tandem)

 CRF + Tandem = CRANDEM

2. Develop a new decoding mechanism for direct word 
decoding

 More detail on this method
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CRANDEM observations
 The Crandem approach worked well in phone 

recognition studies but did not immediately work as 
well as Tandem (MLP) for word recognition

 Posteriors from CRF are smoother than MLP posteriors

 Can improve Crandem performance by flattening the 
distribution

MLP:

CRF:
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CRF Word Recognition

 The standard model of ASR uses likelihood based 
acoustic models

 But CRFs provide a conditional acoustic model P(Φ|O)



argmax
W

P(W |O)  argmax
W ,

P(O |)P( |W )P(W )

Acoustic
Model

Lexicon
Model

Language
Model
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CRF Word Recognition



argmax
W

P(W |O)  argmax
W ,

P( |O)

P()
P( |W )P(W )

CRF
Acoustic
Model

Lexicon
Model

Language
Model

Phone
Penalty
Model
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CRF Word Recognition
 Models implemented using OpenFST

 Viterbi beam search to find best word sequence

 Word recognition on WSJ0

 WSJ0 5K Word Recognition task

 Same bigram language model used for all systems

 Same MLPs used for CRF-HMM (Crandem) experiments

 CRFs trained using 3-state phone model instead of 1-
state model

 Compare to original MFCC baseline (ML trained!)
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NB: Eval improvement is not significant at p<0.05

CRF Word Recognition

 Transition features are important in CRF word decoding

 Combining features via CRF still improves decoding

Model Dev

WER

Eval

WER

MFCC HMM reference 9.3% 8.7%

CRF (state only) – phone MLP input 11.3% 11.5%

CRF (state+trans) – phone MLP input 9.2% 8.6%

CRF (state+trans) –

phone+phonological ftr MLPs input

8.3% 8.0%
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Toolkit
 The above experiments were done with the ASR-

CRaFT toolkit, developed at OSU for the long 
sequences found in ASR

 Primary author: Jeremy Morris

 Interoperable with the ICSI Quicknet MLP library

 Uses same I/O routines

 Will be available from OSU Speech & Language 
Technology website

 www.cse.ohio-state.edu/slate
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Speech Recognition with a Segmental CRF



The Problem
 State-of-the-art speech recognizers look at speech in 

just one way

 Frame-by-frame

 With one kind of feature

 And often the output is wrong

Recognizer Output words

“Oh but he has a big challenge”

“ALREADY  AS  a big challenge”

What we want (what was said)

What we get
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The Goal
 Look at speech in multiple ways

 Extract information from multiple sources

 Integrate them in a segmental, log-linear model

States represent whole words (not phonemes)
Baseline system can constrain possibilities

Log-linear model relates
words to observations

Multiple information sources,
e.g. phoneme, syllable detections
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Model Structure

Observations blocked into groups corresponding
to words. Observations typically detection events.

o1 on

States represent whole words (not phonemes)

Log-linear model relates
words to observations

sl
e sr

e

e

o(e)

For a hypothesized word sequence s, 
we must sum over all possible segmentations q of observations

Training done to maximize product of label probabilities in the training data (CML).
114



The Meaning of States: ARPA LM

sl
e sr

e

o(e)=o3
4

e

States are actually language model states
States imply the last word
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S=1
dog

S=6
nipped

S=7
the. . .

Embedding a Language Model

“the dog” “dog barked”

“dog wagged”

“dog” “dog nipped”

“hazy”

“the”

“ ”

“nipped”

1

2

3

6

7

At minimum, we can use the state sequence
to look up LM scores from the finite state
graph. These can be features.

And we also know the actual arc sequence.
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The SCARF Toolkit
 http://research.microsoft.com/en-us/projects/scarf/

 A toolkit which implements this model

 Talk on Thursday --

 Zweig & Nguyen, “SCARF: A Segmental Conditional 
Random Field Toolkit for Speech Recognition” 
Interspeech 2010
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Inputs (1)
 Detector streams

 (detection time) +

 Optional dictionaries

 Specify the expected sequence of detections for a word

on
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Inputs (2)
 Lattices to constrain search
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Inputs (3)
 User-defined features
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Detector-Based Features
 Array of features automatically constructed

 Measure forms of consistency between expected and 
observed detections

 Differ in use of ordering information and generalization 
to unseen words

 Existence Features

 Expectation Features

 Levenshtein Features

 Baseline Feature
on
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Existence Features
 Does unit X exist within the span of word Y?

 Created for all X,Y pairs in the dictionary and in the 
training data

 Can automatically be created for unit n-grams

 No generalization, but arbitrary detections OK

o1 on

Hypothesized word, e.g. “kid”

Spanned units, e.g. “k ae d’’ 122



Expectation Features
 Use dictionary to get generalization ability across words!
 Correct Accept of u

 Unit is in pronunciation of hypothesized word in dictionary, and it 
is detected in the span of the hypothesized word

 ax k or d    (dictionary pronunciation of accord)
 ih k or        (units seen in span)

 False Reject of u
 Unit  is in pronunciation of hypothesized word, but it is not in the 

span of the hypothesized word
 ax k or d
 ih k or

 False Accept of u
 Unit is not in pronunciation of hypothesized  word,  and it is 

detected
 ax k or d
 ih k or

 Automatically created for  unit n-grams
123



 Match of u

 Substitution of u

 Insertion of u

 Deletion of u

 Align the detector sequence in a hypothesized word’s 
span with the dictionary sequence that’s expected

 Count the number of each type of edits

 Operates only on the atomic units

 Generalization ability across words!

Levenshtein Features
ax  k or d
ih  k or  *
Sub-ax = 1
Match-k = 1
Match-or = 1
Del-d = 1

Detected:

Expected:
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Language Model Features
 Basic LM:

 Language model cost of transitioning between states.

 Discriminative LM training:

 A binary feature for each arc in the language model

 Indicates if the arc is traversed in transitioning between states

Training will result in a weight for each
arc in LM – discriminatively trained, and
jointly trained with AM
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A Few Results from 2010 JHU 
Summer Workshop
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Data Sets
 Wall Street Journal
 Read newspaper articles

 81 hrs. training data

 20k open vocabulary test set

 Broadcast News
 430 hours training data

 ~80k vocabulary

 World class baselines for both
 7.3% error rate WSJ (Leuven University)

 16.3% error rate BN (IBM Attila system)
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Bottom Line Results

Broadcast News WER % Possible Gain

Baseline (HMMw/ VTLN, HLDA, 
fMLLR, fMMI, mMMI, MLLR)

16.3% 0%

+ SCARF, word, phoneme 
detectors, scores

15.0 25

(Lattice Oracle – best achievable) 11.2 100

Wall Street Journal WER % Possible Gain

Baseline (SPRAAK / HMM) 7.3%               0%

+ SCARF, template features 6.7 14

(Lattice Oracle – best achievable) 2.9 100

128



A Sampling of NLP Applications



Intention of Case Studies

 Provide a sense of

 Types of problems that have been tackled

 Types of features that have been used

 Not any sort of extensive listing!

 Main point is ideas not experimental results (all good)
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MEMM POS
 Reference: A. Ratnaparkhi, “A Maximum Entropy 

Model for Part-of-Speech Tagging,” Proc. EMNLP, 1996

 Task: Part-of-Speech Tagging

 Model: Maximum Entropy Markov Model

 Details Follow

 Features

 Details Follow
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MEMM POS Model
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MEMM POS Features
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Voicemail Information Extraction
 Reference: Zweig, Huang & Padmanabhan, “Extracting 

Caller Information from Voicemail”, Eurospeech 2001

 Task: Identify caller and phone number in voicemail

 “Hi it’s Peggy Cole Reed Balla’s Secretary… reach me at 
x4567 Thanks”

 Model: MEMM

 Features:

 Standard, plus class information:

 Whether words belong to numbers

 Whether a word is part of a stock phrase, e.g. “Talk to you 
later”
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Shallow Parsing
 Reference: Sha & Pereira, “Shallow Parsing with 

Conditional Random Fields,” Proc. North American 
Chapter of ACL on HLT 2003

 Task: Identify noun phrases in text

 Rockwell said it signed a tentative agreement.

 Label each word as beginning a chunk (B), continuing a 
chunk (I), or external to a chunk (O)

 Model: CRF

 Features: Factored into transition and observation

 See following overhead
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Shallow Parsing Features

),(),(),,,( 11 iiii yyqipiyyf   xx

Examples:

“The current label is ‘OB’ and
the next word is “company”.

“The current label is ‘BI’ and the
POS of the current word is ‘DET’”
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Named Entity Recognition
 Reference: Sarawagi & Cohen, “Semi-Markov Conditional Random Fields for 

Information Extraction,” NIPS 2005
 Task: NER

 City/State from addresses
 Company names and job titles from job postings
 Person names from email messages

 Model: Semi-Markov CRF
 Features:

 Word identity/position
 Word capitalization

 Segmental Features:
 Phrase presence
 Capitalization patterns in segment
 Combination non-segment features with segment initial/final indicator
 Segment length
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Whole Sentence Language Models
 Reference: Rosenfeld, Chen & Zhu, “Whole-Sentence 

Exponential Language Models: A Vehicle for Linguistic-
Statistical Integration,” Computer Speech & Language, 2001

 Task: Rescoring speech recognition nbest lists with a 
whole-sentence language model

 Model: Flat Maximum Entropy 

 Features:
 Word ngrams

 Class ngrams

 Leave-one-out ngrams (skip ngrams)

 Presence of constituent sequences in a parse
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Tutorial summary
 Provided an overview of direct models for 

classification and sequence recognition

 MaxEnt, MEMM, (H)CRF, Segmental CRFs

 Training & recognition algorithms

 Case studies in speech & NLP

 Fertile area for future research

 Methods are flexible enough to incorporate different 
representation strategies

 Toolkits are available to start working with ASR or NLP 
problems
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Future Research Directions
 Feature design for ASR – have only scratched the 

surface of different acoustic representations

 Feature induction – MLPs induce features using 
hidden nodes, can look at backprop methods for direct 
models
 Multilayer CRFs (Prabhavalkar & Fosler-Lussier 2010)

 Deep Belief Networks (Hinton, Osindero & Teh 2006)

 Algorithmic design
 Exploration of Segmentation algorithms for CRFs

 Performance Guarantees
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