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What we will cover
 Tutorial introduces basics of direct probabilistic 

models

 What is a direct model, and how does it relate to speech 
and language processing?

 How do I train a direct model?

 How have direct models been used in speech and 
language processing?
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Overview
 Part 1: Background and Taxonomy
 Generative vs. Direct models

 Descriptions of models for classification, sequence 
recognition (observed and hidden)

 Break

 Part 2: Algorithms & Case Studies
 Training/decoding algorithms

 CRF study using phonological features for ASR

 Segmental CRF study for ASR

 NLP case studies (if time)
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A first thought experiment
 You’re observing a limousine – is a diplomat inside?

 Can observe:

 Whether the car has flashing lights

 Whether the car has flags
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The Diplomat problem
 We have observed Boolean variables: lights and flag

 We want to predict if car contains a diplomat



P(Diplomat |Lights,Flag)
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A generative approach:
Naïve Bayes
 Generative approaches model observations as being 

generated by the underlying class – we observe:

 Limos carrying diplomats have flags 50% of the time

 Limos carrying diplomats have flashing lights 70%

 Limos not carrying diplomats: flags 5%, lights 30%

 NB: Compute posterior by Bayes’ rule



P(Diplomat |Lights,Flag) 
P(Lights,Flag |Diplomat)P(Diplomat)

P(Lights,Flag)
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A generative approach:
Naïve Bayes
 Generative approaches model observations as being 

generated by the underlying class – we observe:

 Limos carrying diplomats have flags 50% of the time

 Limos carrying diplomats have flashing lights 70%

 Limos not carrying diplomats: flags 5%, lights 30%

 NB: Compute posterior by Bayes’ rule

 …and then assume conditional independence



P(Dmat |Lights,Flag) 
P(Lights |Dmat)P(Flag |Dmat)P(Dmat)

P(Lights,Flag)
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A generative approach:
Naïve Bayes
 NB: Compute posterior by Bayes’ rule

 …and then assume conditional independence

 P(Lights, Flag) is a normalizing term

 Can replace this with normalization constant Z



P(Dmat |Lights,Flag) 
P(Lights |Dmat)P(Flag |Dmat)P(Dmat)

Z
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Graphical model for Naïve Bayes



P(Dmat |Lights,Flag) 
P(Lights |Dmat)P(Flag |Dmat)P(Dmat)

Z

Lights

Diplomat

Flag P(Flag|Dmat)P(Lights|Dmat)

P(Dmat)
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Graphical model for Naïve Bayes



P(Dmat |Lights,Flag) 
P(Lights |Dmat)P(Flag |Dmat)P(Dmat)

Z

Lights

Diplomat

Flag P(Flag|Dmat)P(Lights|Dmat)

P(Dmat)
Lights and Flag are
conditionally independent
given Diplomat
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Correlated evidence in
Naïve Bayes
 Conditional independence says “given a value of 

Diplomat, Lights and Flag are independent”

 Consider the case where lights are always flashing 
when the car has flags

 Evidence gets double counted; NB is overconfident

 May not be a problem in practice – problem dependent

 (HMMs have similar assumptions: observations are 
independent given HMM state sequence.)



P(Dmat |Lights,Flag) 
P(Lights |Dmat)P(Flag |Dmat)P(Dmat)

Z
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Reversing the arrows:
Direct modeling
 P(Diplomat|Lights,Flag) can be directly modeled

 We compute a probability distribution directly without 
Bayes’ rule

 Can handle interactions
between Lights and Flag
evidence

 P(Lights) and P(Flag) 
do not need to be 
modeled

Lights

Diplomat

Flag

P(Dmat|Lights, Flag)
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Direct vs. Discriminative
 Isn’t this just discriminative training?  (No.)

 Direct model: directly predict posterior of hidden variable

 Discriminative training: adjust model parameters to 
{separate classes, improve posterior, 
minimize classification error,…} 

Lights

Diplomat

Flag P(Flag|Dmat)P(Lights|Dmat)

P(Dmat)

Lights

Diplomat

Flag

P(Dmat|Lights, Flag)

Generative model Direct model
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Direct vs. Discriminative

 Generative models can be 
trained discriminatively

 Direct models inherently 
try to discriminate 
between classes

Lights

Diplomat

Flag P(Flag|Dmat)P(Lights|Dmat)

P(Dmat)

Lights

Diplomat

Flag

P(Dmat|Lights, Flag)

Models change to discriminate Diplomat better Direct discriminative optimization



Pros and cons of direct modeling
 Pro:

 Often can allow modeling of interacting data features

 Can require fewer parameters because there is no 
observation model

 Observations are usually treated as fixed and don’t require a 
probabilistic model

 Con:

 Typically slower to train 

 Most training criteria have no closed-form solutions
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A simple direct model:
Maximum Entropy
 Our direct example didn’t have a particular form for 

the probability P(Dmat|Lights, Flag)

 A maximum entropy model uses a log-linear 
combination of weighted features in probability model

Lights

Diplomat

Flag

P(Dmat|Lights, Flag)



P(Dmat  j | Lights,Flag) 

exp( i, j

i

 f i, j )

exp( i, j 

i

 f i, j )
j 



learned weight

feature of the data for class j
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A simple direct model:
Maximum Entropy
 Denominator of the equation is again normalization 

term (replace with Z)

 Question: what are fi,j and how does this correspond to 
our problem?

Lights

Diplomat

Flag

P(Dmat|Lights, Flag)



P(Dmat  j |Lights,Flag) 

exp( i, j

i

 f i, j )

Z

learned weight

feature of the data for class j
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Diplomat Maximum Entropy
 Here are two features (fi,j) that we can use:
 f0,True=1 if car has a diplomat and has a flag

 f1,False=1 if car has no diplomat but has flashing lights
 (Could have complementary features as well but left out for 

simplification.)

 Example dataset with the following statistics
 Diplomats occur in 50% of cars in dataset

 P(Flag=true|Diplomat=true) = 0.9 in dataset

 P(Flag=true|Diplomat=false) = 0.2 in dataset

 P(Lights=true|Diplomat=false) = 0.7 in dataset

 P(Lights=true|Diplomat=true) = 0.5 in dataset
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Diplomat Maximum Entropy
 The MaxEnt formulation using these two features is:

where true and false are bias terms to adjust for frequency of 
labels.

 Fix the bias terms to both be 1.  What happens to 
probability of Diplomat on dataset as other lambdas vary?



P(Dmat  true |Flag,Light)  exp(true  0,T f0,T ) /Z

P(Dmat  false |Flag,Light)  exp( false  1,F f1,F ) /Z

f0,T=1 if car has a diplomat and has a flag
f1,F=1 if car has no diplomat but has flashing lights
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Log probability of Diplomat over 
dataset as MaxEnt lambdas vary
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Finding optimal lambdas
 Good news: conditional 

probability of dataset is 
convex for MaxEnt

 Bad news: as number of 
features grows, finding 
maximum in so many 
dimensions can be slooow.
 Various gradient search or 

optimization techniques 
can be used 
(coming later).Same picture in 3-d:

Conditional probability of dataset
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MaxEnt-style models in practice
 Several examples of MaxEnt models in speech & 

language processing

 Whole-sentence language models (Rosenfeld, Chen & Zhu, 2001)

 Predict probability of whole sentence given features over 
correlated features (word n-grams, class n-grams, …)

 Good for rescoring hypotheses in speech, MT, etc…

 Multi-layer perceptrons

 MLP can really be thought of as MaxEnt models with 
automatically learned feature functions

 MLP gives local posterior classification of frame

 Sequence recognition through Hybrid or Tandem MLP-HMM

 Softmax-trained Single Layer Perceptron == MaxEnt model
23



MaxEnt-style models in practice
 Several examples of MaxEnt models in speech & 

language processing

 Flat Direct Models for ASR (Heigold et al. 2009)

 Choose complete hypothesis from list 
(rather than a sequence of words)

 Doesn’t have to match exact words (auto rental=rent-a-car)

 Good for large-scale list choice tasks, e.g. voice search

 What do features look like?
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Flat Direct Model Features:
Decomposable features
 Decompose features F(W,X) = (W)(X) 

 (W) is a feature of the words
 e.g. “The last word ends in s”

 “The word Restaurant is present”

 (X) is a feature of the acoustics
 e.g. “The distance to the Restaurant template is greater than 

100”

 “The HMM for Washington is among the 10 likeliest”

 (W)(X) is the conjunction; measures consistency
 e.g. “The hypothesis ends is s” and my “s-at-the-end” acoustic 

detector has fired 
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Generalization
 People normally think of Maximum Entropy for 

classification among a predefined set

 But F(W,X) = (W)(X) essentially measures 
consistency between W and X

 These features are defined for arbitrary W. 

 For example, “Restaurants is present and my s-at-the-
end detector has fired” can be true for either “Mexican 
Restaurants or Italian Restaurants”
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Direct sequence modeling
 In speech and language processing, usually want to 

operate over sequences, not single classifications

 Consider a common generative sequence model – the 
Hidden Markov Model – relating states (S) to obs. (O)

O1

S1

O2

S2

O3

S3



P(S,O)  P(Oi | Si)P(Si | Si1)
i



P(Oi|Si)

P(Si|Si-1)
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Direct sequence modeling
 In speech and language processing, usually want to 

operate over sequences, not single classifications

 What happens if we “change the direction” of arrows 
of an HMM?  A direct model of P(S|O).

O1

S1

O2

S2

O3

S3



P(S |O)  P(S1 |O1) P(Si | Si1,Oi)
i1



P(Si|Si-1,Oi)
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MEMMs
 If a log linear term is used for P(Si|Si-1,Oi) then this is a 

Maximum Entropy Markov Model (MEMM)
(Ratnaparkhi 1996, McCallum, Freitag & Pereira 2000)

 Like MaxEnt, we take features of the observations and 
learn a weighted model

O1

S1

O2

S2

O3

S3



P(S |O)  P(S1 |O1) P(Si | Si1,Oi)
i1

 P(Si|Si-1,Oi)



 exp  j f j (Si1,Si,O,i)
i


j











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MEMMs
 Unlike HMMs, transitions between states can now 

depend on acoustics in MEMMs

 However, unlike HMM, MEMMs can ignore observations

 If P(Si=x|Si-1=y)=1, then P(Si=x|Si-1=y,Oi)=1 for all Oi (label bias)

 Problem in practice?

O1

S1

O2

S2

O3

S3

P(Si|Si-1,Oi)
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MEMMs in language processing
 One prominent example in part-of-speech tagging is 

the Ratnaparkhi “MaxEnt” tagger (1996)

 Produce POS tags based on word history features

 Really an MEMM because it includes the previously 
assigned tags as part of its history

 Kuo and Gao (2003-6) developed “Maximum Entropy 
Direct Models” for ASR

 Again, an MEMM, this time over speech frames

 Features: what are the IDs of the closest Gaussians to 
this point?
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Joint sequence models
 Label bias problem: previous “decisions” may restrict 

the influence of future observations
 Harder for the system to know that it was following a 

bad path

 Idea: what if we had one big maximum entropy model 
where we compute the joint probability of hidden 
variables given observations?
 Many-diplomat problem:

P(Dmat1…DmatN|Flag1…FlagN,Lights1…LightsN)

 Problem: State space is exponential in length
 Diplomat problem: O(2N)
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Factorization of joint sequences
 What we want is a factorization that will allow us to 

decrease the size of the state space

 Define a Markov graph to describe factorization:
Markov Random Field (MRF)

 Neighbors in graph contribute to the probability 
distribution

 More formally: probability distribution is factored by the 
cliques in a graph
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Markov Random Fields (MRFs)
 MRFs are undirected (joint) graphical models

 Cliques define probability distribution
 Configuration size of each clique is the effective state space

 Consider 5-diplomat series

D1 D2 D3 D4 D5

D1 D2 D3 D4 D5

D1 D2 D3 D4 D5

One 5-clique (fully connected) 
Effective state space is 25 (MaxEnt)

Three 3-cliques (1-2-3, 2-3-4, 3-4-5)
Effective state space is 23

Four 2-cliques (1-2, 2-3, 3-4, 4-5)
Effective state space is 22
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Hammersley-Clifford Theorem
 Hammersley-Clifford Theorem related MRFs to Gibbs 

probability distributions

 If you can express the probability of a graph 
configuration as a product of potentials on the cliques 
(Gibbs distribution), then the graph is an MRF

 The potentials, however, must be positive

 True if f(c)=exp(Sf(c))  (log linear form)


P(D)  f(c)
ccliques(D)



D1 D2 D3 D4 D5



P(D) f(D1,D2)f(D2,D3)f(D3,D4)f(D4,D5)
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Conditional Random Fields (CRFs)
 When the MRF is conditioned on observations, this is 

known as a Conditional Random Field (CRF)
(Lafferty, McCallum & Pereira, 2001)

 Assuming log-linear form (true of almost all CRFs), then 
probability is determined by weighted functions (fi) of 
the clique (c) and the observations (O)



P(D |O) 
1

Z
exp i f i(c,O)

i












ccliques(D )



P(D |O) 
1

Z
exp i f i(c,O)

i


ccliques(D )












log(P(D |O))  i f i(c,O)
i


ccliques(D )

  log(Z)
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Conditional Random Fields (CRFs)
 When the MRF is conditioned on observations, this is 

known as a Conditional Random Field (CRF)
(Lafferty, McCallum & Pereira, 2001)

 Assuming log-linear form (true of almost all CRFs), then 
probability is determined by weighted functions (fi) of 
the clique (c) and the observations (O)



P(D |O) 
1

Z
exp i f i(c,O)

i












ccliques(D )



P(D |O) 
1

Z
exp i f i(c,O)

i


ccliques(D )












log(P(D |O))  i f i(c,O)
i


ccliques(D )

  log(Z)

For general graphs, computing
this quantity is #P-hard, requiring
approximate inference.

However, for special graphs the
complexity is lower.  For example,
linear chain CRFs have polynomial
time algorithms. 



Log-linear Linear Chain CRFs
 Linear-chain CRFs have a 1st order Markov backbone

 Feature templates for a HMM-like CRF structure for the 
Diplomat problem

 fBias(Di=x, i) is 1 iff Di=x

 fTrans(Di=x,Di+1=y,i) is 1 iff Di=x and Di+1=y

 fFlag(Di=x,Flagi=y,i) is 1 iff Di=x and Flagi=y

 fLights(Di=x,Lightsi=y,i) is 1 iff Di=x and Lightsi=y

 With a bit of subscript liberty, the equation is



P(D1...D5 |F1...5,L1...5) 
1

Z(F,L)
exp B fBias(Di)

i1

5

 F fFlag(Di,Fi)
i1

5

 L fLights(Di,Li) T fTrans(Di,Di1)
i1

4


i1

5












D1 D2 D3 D4 D5
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Log-linear Linear Chain CRFs
 In the previous example, the transitions did not depend on 

the observations (HMM-like)
 In general, transitions may depend on observations (MEMM-like)

 General form of linear chain CRF groups features as state 
features (bias, flag, lights) or transition features
 Let s range over state features, t over transition features

 i indexes into the sequence to pick out relevant observations



P(D |O) 
1

Z(O)
exp s fs(Di,O,i)

i1

n


sstateFtrs

 t f t (Di,Di1,O,i)
i1

n1


ttransFtrs











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A quick note on features for ASR
 Both MEMMs and CRFS require the definition of 

feature functions
 Somewhat obvious in NLP (word id, POS tag, parse 

structure)

 In ASR, need some sort of “symbolic” representation of 
the acoustics
 What are the closest Gaussians (Kuo & Gao, Hifny & Renals)

 Sufficient statistics (Layton & Gales, Gunawardana et al)

 With sufficient statistics, can exactly replicate single Gaussian 
HMM in CRF, or mixture of Gaussians in HCRF (next!)

 Other classifiers (e.g. MLPs) (Morris & Fosler-Lussier)

 Phoneme/Multi-Phone detections (Zweig & Nguyen)
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Sequencing: Hidden Structure (1)

the

DET

dog

N

ran

V

 So far there has been a 1-to-1 correspondence between 
labels and observations

 And it has been fully observed in training
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Sequencing: Hidden Structure (2)
 But this is often not the case for speech recognition

 Suppose we have training data like this:

“The Dog”

Transcript

Audio (spectral representation)
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Sequencing: Hidden Structure (3)

DH IY IY D AH AH G

Is “The dog” segmented like this?
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Sequencing: Hidden Structure (3)

DH DH IY D AH AH G

Or like this?
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Sequencing: Hidden Structure (3)

DH DH IY D AH G G

Or maybe like this?

=> An added layer of complexity
45



This Can Apply in NLP as well

Hey John Deb Abrams calling how are you
caller

Hey John Deb Abrams calling how are you
caller

callee

callee

How should this be segmented?
Note that a segment level feature indicating that 
“Deb Abrams” is a ‘good’ name would be useful
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Approaches to Hidden Structure 
 Hidden CRFs (HRCFs) 

 Gunawardana et al., 2005

 Semi-Markov CRFs
 Sarawagi & Cohen, 2005

 Conditional Augmented Models
 Layton, 2006 Thesis – Lattice C-Aug Chapter; Zhang, Ragni & 

Gales, 2010

 Segmental CRFs
 Zweig & Nguyen, 2009

 These differ in 
 Where the Markov assumption is applied 
 What labels are available at training

 Convexity of objective function

 Definition of features
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Approaches to Hidden Structure
Method Markov 

Assumption
Segmentation
known in 
Training

Features 
Prescribed

HCRF Frame level No No

Semi-Markov CRF Segment Yes No

Conditional 
Augmented Models

Segment No Yes

Segmental CRF Segment No No

48



One View of Structure

DH AE T

DH TAE

Consider all segmentations consistent with transcription / hypothesis
Apply Markov assumption at frame level to simplify recursions
Appropriate for frame level features 49



Another View of Structure
DH T

o1 on

AE

DH T

o1 on

AE

Consider all segmentations consistent with transcription / hypothesis
Apply Markov assumption at segment level only – “Semi Markov”
This means long-span segmental features can be used 50



Examples of Segment Level 
Features in ASR
 Formant trajectories

 Duration models

 Syllable / phoneme counts

 Min/max energy excursions

 Existence, expectation & levenshtein  features 
described later
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Examples of Segment Level 
Features in NLP
 Segment includes a name

 POS pattern within segment is DET ADJ N

 Number of capitalized words in segment

 Segment is labeled “Name” and has 2 words

 Segment is labeled “Name” and has 4 words

 Segment is labeled “Phone Number and has 7 words”

 Segment is labeled “Phone Number and has 8 words”
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Is Segmental Analysis any Different?
 We are conditioning on all the observations

 Do we really need to hypothesize segment boundaries?

 YES – many features undefined otherwise:

 Duration (of what?)

 Syllable/phoneme count (count where?)

 Difference in C0 between start and end of word

 Key Example: Conditional Augmented Statistical 
Models
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Conditional Augmented Statistical 
Models
 Layton & Gales, “Augmented Statistical Models for 

Speech Recognition,” ICASSP 2006

 As features use

 Likelihood of segment wrt an HMM model

 Derivative of likelihood wrt each HMM model 
parameter

 Frame-wise conditional independence assumptions of 
HMM are no longer present

 Defined only at segment level
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Now for Some Details
 Will examine general segmental case

 Then relate specific approaches

DH T

o1 on

AE

DH T

o1 on

AE
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Segmental Notation & Fine Print
 We will consider feature functions that cover both 

transitions and observations
 So a more accurate representation actually has diagonal edges
 But we’ll generally omit them for simpler pictures

 Look at a segmentation q in terms of its edges e
 sl

e is the label associated with the left state on an edge
 sr

e is the label associated with the right state on an edge
 O(e) is the span of observations associated with an edge 

sl
e sr

e

o(e)=o3
4

e
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The Segmental Equations
sl

e sr
e

o(e)=o3
4

e

  

 

 

 


' ||||

||||

))(,','(exp(

))(,,(exp(

)|(

s s 'qq q ,

sqq q ,
os

st ie

e

r

e

lii

st ie

e

r

e

lii

eossf

eossf

P




We must sum over all possible segmentations of the observations consistent
with a hypothesized  state sequence .
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Conditional Augmented Model  
(Lattice version) in this View

  

 

 

 


' ||||

||||

))(,','(exp(

))(,,(exp(

)|(

s s 'qq q ,

sqq q ,
os

st ie

e

r

e

lii

st ie

e

r

e

lii

eossf

eossf

P




Features precisely defined
HMM model likelihood
Derivatives of HMM model likelihood wrt HMM parameters

 



qq , e

T

sHMMsHMMs
ie

e

r

e

lii eoLeoLeossf e
r

e
r

e
r

))(())((exp())(,,(exp(
)()(



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HCRF in this View

  

 
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Feature functions are decomposable at the frame level
Leads to simpler computations
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Semi-Markov CRF in this View
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A fixed segmentation is known at training
Optimization of parameters becomes convex
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Structure Summary
 Sometimes only high-level information is available 

 E.g. the words someone said (training)
 The words we think someone said (decoding)

 Then we must consider all the segmentations of the 
observations consistent with this

 HCRFs do this using a frame-level Markov assumption
 Semi-CRFs / Segmental CRFs do not assume independence 

between frames
 Downside:  computations more complex
 Upside:  can use segment level features 

 Conditional Augmented Models prescribe a set of HMM 
based features
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 Compute optimal label sequence (decoding)

 Compute likelihood of a label sequence

 Compute optimal parameters (training)

Key Tasks


d

dd osP ),|(maxarg 


),|( osP

),|(maxarg osP
s
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Key Cases

Viterbi  Assumption Hidden Structure Model

NA NA Log-linear classification

Frame-level No CRF

Frame-level Yes HCRF

Segment-level Yes (decode only) Semi-Markov CRF

Segment-level Yes (train & decode) C-Aug, Segmental CRF
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Decoding
 The simplest of the algorithms

 Straightforward DP recursions

Viterbi  Assumption Hidden Structure Model

NA NA Log-linear classification

Frame-level No CRF

Frame-level Yes HCRF

Segment-level Yes (decode only) Semi-Markov CRF

Segment-level Yes (train & decode) C-Aug, Segmental CRF

Cases we will go over
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Flat log-linear Model
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Simply enumerate the possibilities and pick the best.
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A Chain-Structured CRF
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Since s is a sequence there might be too many to enumerate.
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Chain-Structured Recursions

… …
sm=qsm-1=q’

om

d(m,q) is the best label sequence score that ends in position m with label q
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dd
i

mii
q

oqqfqmqm

Recursively compute the ds 
Keep track of the best q’ decisions to recover the sequence

The best way of getting here
is the best way of getting here
somehow and then making the 
transition and accounting for
the observation
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Segmental/Semi-Markov CRF
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Segmental/Semi-Markov 
Recursions

d(m,y) is the best label sequence score that ends at observation m 
with state label y
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dmii
dy

oyyfydmym

Recursively compute the ds 
Keep track of the best q’ and d decisions to recover the sequence

o1 on

y

omom-d
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Computing Likelihood of a State 
Sequence

Viterbi  Assumption Hidden Structure Model

NA NA Flat log-linear

Frame-level No CRF

Frame-level Yes HCRF

Segment-level Yes (decode only) Semi-Markov CRF

Segment-level Yes (train & decode) C-Aug, Segmental CRF

Cases we will go over
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Flat log-linear Model
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A Chain-Structured CRF
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Plug in and compute

Need a clever way of
summing over all hypotheses
To get normalizer Z
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CRF Recursions

a(m,q) is the sum of the label sequence scores
that end in position m with label q
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Segmental/Semi-Markov CRF
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Both Semi-CRF and
segmental CRF
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SCRF Recursions: Denominator
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that end in position m with label y
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SCRF Recursions: Numerator
sy

o1 onomom-d

Recursion is similar with the state sequence fixed.
a*(m,y) will now be the sum of the scores of all segmentations ending in 
an assignment of observation m to the yth state.

Note the  value of the yth state is given!
y is now a positional index rather than state value.

78

sy-1



Numerator (con’t.)
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Note again that here  y is the position into a given state sequence s
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Summary: SCRF Probability
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Compute alphas and numerator-constrained alphas with forward recursions
Do the division
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Training

Viterbi  Assumption Hidden Structure Model

NA NA Log-linear classification

Frame-level No CRF

Frame-level Yes HCRF

Segment-level Yes (decode only) Semi-Markov CRF

Segment-level Yes (train & decode) C-Aug, Segmental CRF

Will go over simplest cases.  See also
• Gunawardana et al., Interspeech 2005 (HCRFs)
• Mahajan et al., ICASSP 2006 (HCRFs)
• Sarawagi & Cohen, NIPS 2005 (Semi-Markov)
• Zweig & Nguyen, ASRU 2009 (Segmental CRFs)
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Training 
 Specialized approaches

 Exploit form of Max-Ent Model
 Iterative Scaling (Darroch & Ratcliff, 1972)

 fi(x,y) >= 0 and Si fi(x,y)=1

 Improved Iterative Scaling (Berger, Della Pietra & Della Pietra, 1996)

 Only relies on non-negativity

 General approach: Gradient Descent
 Write down the log-likelihood for one data sample

 Differentiate it wrt the model parameters

 Do your favorite form of gradient descent
 Conjugate gradient

 Newton method

 R-Prop

 Applicable regardless of convexity
82



Training with Multiple Examples
 When multiple examples are present, the 

contributions to the log-prob (and therefore gradient) 
are additive

 To minimize notation, we omit the indexing and 
summation on data samples
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Flat log-linear model
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Flat log-linear Model Con’t.
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A Chain-Structured CRF
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Chain-Structured CRF (con’t.)
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* Cannot enumerate s’ because it is now a sequence
* And must sum over positions j

Easy to compute first term
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Forward/Backward Recursions
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Gradient Computation

1) Compute Alphas
2) Compute Betas
3) Compute gradient
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Segmental Versions
 More complex; See

 Sarawagi & Cohen, 2005

 Zweig & Nguyen, 2009

 Same basic process holds

 Compute alphas on forward recursion

 Compute betas on backward recursion

 Combine to compute gradient
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Once We Have the Gradient
 Any gradient descent technique possible

1) Find a direction to move the parameters 

 Some combination of information from first and 
second derivative values

2) Decide how far to move in that direction

 Fixed or adaptive step size

 Line search

3) Update the parameter values and repeat
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Conventional Wisdom 
 Limited Memory BFGS often works well

 Liu & Nocedal, Mathematical Programming (45) 1989

 Sha & Pereira, HLT-NAACL 2003

 Malouf, CoNLL 2002

 For HCRFs stochastic gradient descent and Rprop are 
as good or better

 Gunawardana et al., Interspeech 2005

 Mahajan, Gunawardana & Acero, ICASSP 2006

 Rprop is exceptionally simple
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Rprop Algorithm
 Martin Riedmiller, “Rprop – Description and 

Implementation Details” Technical Report, January 
1994, University of Karlsruhe.

 Basic idea:
 Maintain a step size for each parameter 
 Identifies the “scale” of the parameter

 See if the gradient says to increase or decrease the 
parameter 
 Forget about the exact value of the gradient

 If you move in the same direction twice, take a bigger 
step!

 If you flip-flop, take a smaller step!
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Regularization
 In machine learning, often want to simplify models

 Objective function can be changed to add a penalty term for 
complexity

 Typically this is an L1 or L2 norm of the weight (lambda vector)

 L1 leads to sparser models than L2

 For speech processing, some studies have found 
regularization

 Necessary: 
L1-ACRFs by Hifny & Renals, Speech Communication 2009

 Unnecessary if using weight averaging across time: 
Morris & Fosler-Lussier, ICASSP 2007
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CRF Speech Recognition with Phonetic Features

Acknowledgements to Jeremy Morris



Top-down vs. bottom-up processing
 State-of-the-art ASR takes a top-down approach to this 

problem

 Extract acoustic features from the signal

 Model a process that generates these features

 Use these models to find the word sequence that best 
fits the features

“speech”
/ s p iy ch/
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Bottom-up: detector combination
 A bottom-up approach using CRFs

 Look for evidence of speech in the signal

 Phones, phonological features

 Combine this evidence together in log-linear model to 
find the most probable sequence of words in the signal

“speech”
/ s p iy ch/

voicing?
burst?
frication?

evidence
detection

evidence
combination
via CRFs

(Morris & Fosler-Lussier, 2006-2010)
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Phone Recognition
 What evidence do we have to combine?

 MLP ANN trained to estimate frame-level posteriors for 
phonological features

 MLP ANN trained to estimate frame-level posteriors for 
phone classes

P(voicing|X)
P(burst|X)
P(frication|X
)
…

P( /ah/ | X)
P( /t/ | X)
P( /n/ | X)
…
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Phone Recognition
 Use these MLP outputs to build state feature functions

otherwise
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Phone Recognition
 Use these MLP outputs to build state feature functions

otherwise
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Phone Recognition
 Use these MLP outputs to build state feature functions

otherwise
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Phone Recognition
 Pilot task – phone recognition on TIMIT

 ICSI Quicknet MLPs trained on TIMIT, used as inputs to 
the CRF models

 Compared to Tandem and a standard PLP HMM 
baseline model

 Output of ICSI Quicknet MLPs as inputs

 Phone class attributes (61 outputs)

 Phonological features attributes (44 outputs)
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Phone Recognition

*Signficantly (p<0.05) better than comparable Tandem system (Morris & Fosler-Lussier 08)

Model Accuracy

HMM (PLP inputs) 68.1%

CRF (phone classes) 70.2%

HMM Tandem16mix (phone classes) 70.4%

CRF (phone classes +phonological features) 71.5%*

HMM Tandem16mix (phone classes+ phonological 

features)

70.2%
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What about word recognition?
 CRF predicts phone labels for each frame

 Two methods for converting to word recognition:

1. Use CRFs to generate local frame phone posteriors for 
use as features in an HMM (ala Tandem)

 CRF + Tandem = CRANDEM

2. Develop a new decoding mechanism for direct word 
decoding

 More detail on this method
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CRANDEM observations
 The Crandem approach worked well in phone 

recognition studies but did not immediately work as 
well as Tandem (MLP) for word recognition

 Posteriors from CRF are smoother than MLP posteriors

 Can improve Crandem performance by flattening the 
distribution

MLP:

CRF:
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CRF Word Recognition

 The standard model of ASR uses likelihood based 
acoustic models

 But CRFs provide a conditional acoustic model P(Φ|O)



argmax
W

P(W |O)  argmax
W ,

P(O |)P( |W )P(W )

Acoustic
Model

Lexicon
Model

Language
Model
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CRF Word Recognition



argmax
W

P(W |O)  argmax
W ,

P( |O)

P()
P( |W )P(W )

CRF
Acoustic
Model

Lexicon
Model

Language
Model

Phone
Penalty
Model
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CRF Word Recognition
 Models implemented using OpenFST

 Viterbi beam search to find best word sequence

 Word recognition on WSJ0

 WSJ0 5K Word Recognition task

 Same bigram language model used for all systems

 Same MLPs used for CRF-HMM (Crandem) experiments

 CRFs trained using 3-state phone model instead of 1-
state model

 Compare to original MFCC baseline (ML trained!)
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NB: Eval improvement is not significant at p<0.05

CRF Word Recognition

 Transition features are important in CRF word decoding

 Combining features via CRF still improves decoding

Model Dev

WER

Eval

WER

MFCC HMM reference 9.3% 8.7%

CRF (state only) – phone MLP input 11.3% 11.5%

CRF (state+trans) – phone MLP input 9.2% 8.6%

CRF (state+trans) –

phone+phonological ftr MLPs input

8.3% 8.0%
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Toolkit
 The above experiments were done with the ASR-

CRaFT toolkit, developed at OSU for the long 
sequences found in ASR

 Primary author: Jeremy Morris

 Interoperable with the ICSI Quicknet MLP library

 Uses same I/O routines

 Will be available from OSU Speech & Language 
Technology website

 www.cse.ohio-state.edu/slate
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Speech Recognition with a Segmental CRF



The Problem
 State-of-the-art speech recognizers look at speech in 

just one way

 Frame-by-frame

 With one kind of feature

 And often the output is wrong

Recognizer Output words

“Oh but he has a big challenge”

“ALREADY  AS  a big challenge”

What we want (what was said)

What we get
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The Goal
 Look at speech in multiple ways

 Extract information from multiple sources

 Integrate them in a segmental, log-linear model

States represent whole words (not phonemes)
Baseline system can constrain possibilities

Log-linear model relates
words to observations

Multiple information sources,
e.g. phoneme, syllable detections
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Model Structure

Observations blocked into groups corresponding
to words. Observations typically detection events.

o1 on

States represent whole words (not phonemes)

Log-linear model relates
words to observations

sl
e sr

e

e

o(e)

For a hypothesized word sequence s, 
we must sum over all possible segmentations q of observations

Training done to maximize product of label probabilities in the training data (CML).
114



The Meaning of States: ARPA LM

sl
e sr

e

o(e)=o3
4

e

States are actually language model states
States imply the last word
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S=1
dog

S=6
nipped

S=7
the. . .

Embedding a Language Model

“the dog” “dog barked”

“dog wagged”

“dog” “dog nipped”

“hazy”

“the”

“ ”

“nipped”

1

2

3

6

7

At minimum, we can use the state sequence
to look up LM scores from the finite state
graph. These can be features.

And we also know the actual arc sequence.
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The SCARF Toolkit
 http://research.microsoft.com/en-us/projects/scarf/

 A toolkit which implements this model

 Talk on Thursday --

 Zweig & Nguyen, “SCARF: A Segmental Conditional 
Random Field Toolkit for Speech Recognition” 
Interspeech 2010
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Inputs (1)
 Detector streams

 (detection time) +

 Optional dictionaries

 Specify the expected sequence of detections for a word

on
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Inputs (2)
 Lattices to constrain search
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Inputs (3)
 User-defined features
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Detector-Based Features
 Array of features automatically constructed

 Measure forms of consistency between expected and 
observed detections

 Differ in use of ordering information and generalization 
to unseen words

 Existence Features

 Expectation Features

 Levenshtein Features

 Baseline Feature
on
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Existence Features
 Does unit X exist within the span of word Y?

 Created for all X,Y pairs in the dictionary and in the 
training data

 Can automatically be created for unit n-grams

 No generalization, but arbitrary detections OK

o1 on

Hypothesized word, e.g. “kid”

Spanned units, e.g. “k ae d’’ 122



Expectation Features
 Use dictionary to get generalization ability across words!
 Correct Accept of u

 Unit is in pronunciation of hypothesized word in dictionary, and it 
is detected in the span of the hypothesized word

 ax k or d    (dictionary pronunciation of accord)
 ih k or        (units seen in span)

 False Reject of u
 Unit  is in pronunciation of hypothesized word, but it is not in the 

span of the hypothesized word
 ax k or d
 ih k or

 False Accept of u
 Unit is not in pronunciation of hypothesized  word,  and it is 

detected
 ax k or d
 ih k or

 Automatically created for  unit n-grams
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 Match of u

 Substitution of u

 Insertion of u

 Deletion of u

 Align the detector sequence in a hypothesized word’s 
span with the dictionary sequence that’s expected

 Count the number of each type of edits

 Operates only on the atomic units

 Generalization ability across words!

Levenshtein Features
ax  k or d
ih  k or  *
Sub-ax = 1
Match-k = 1
Match-or = 1
Del-d = 1

Detected:

Expected:
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Language Model Features
 Basic LM:

 Language model cost of transitioning between states.

 Discriminative LM training:

 A binary feature for each arc in the language model

 Indicates if the arc is traversed in transitioning between states

Training will result in a weight for each
arc in LM – discriminatively trained, and
jointly trained with AM
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A Few Results from 2010 JHU 
Summer Workshop
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Data Sets
 Wall Street Journal
 Read newspaper articles

 81 hrs. training data

 20k open vocabulary test set

 Broadcast News
 430 hours training data

 ~80k vocabulary

 World class baselines for both
 7.3% error rate WSJ (Leuven University)

 16.3% error rate BN (IBM Attila system)
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Bottom Line Results

Broadcast News WER % Possible Gain

Baseline (HMMw/ VTLN, HLDA, 
fMLLR, fMMI, mMMI, MLLR)

16.3% 0%

+ SCARF, word, phoneme 
detectors, scores

15.0 25

(Lattice Oracle – best achievable) 11.2 100

Wall Street Journal WER % Possible Gain

Baseline (SPRAAK / HMM) 7.3%               0%

+ SCARF, template features 6.7 14

(Lattice Oracle – best achievable) 2.9 100
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A Sampling of NLP Applications



Intention of Case Studies

 Provide a sense of

 Types of problems that have been tackled

 Types of features that have been used

 Not any sort of extensive listing!

 Main point is ideas not experimental results (all good)
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MEMM POS
 Reference: A. Ratnaparkhi, “A Maximum Entropy 

Model for Part-of-Speech Tagging,” Proc. EMNLP, 1996

 Task: Part-of-Speech Tagging

 Model: Maximum Entropy Markov Model

 Details Follow

 Features

 Details Follow
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MEMM POS Model
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MEMM POS Features
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Voicemail Information Extraction
 Reference: Zweig, Huang & Padmanabhan, “Extracting 

Caller Information from Voicemail”, Eurospeech 2001

 Task: Identify caller and phone number in voicemail

 “Hi it’s Peggy Cole Reed Balla’s Secretary… reach me at 
x4567 Thanks”

 Model: MEMM

 Features:

 Standard, plus class information:

 Whether words belong to numbers

 Whether a word is part of a stock phrase, e.g. “Talk to you 
later”
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Shallow Parsing
 Reference: Sha & Pereira, “Shallow Parsing with 

Conditional Random Fields,” Proc. North American 
Chapter of ACL on HLT 2003

 Task: Identify noun phrases in text

 Rockwell said it signed a tentative agreement.

 Label each word as beginning a chunk (B), continuing a 
chunk (I), or external to a chunk (O)

 Model: CRF

 Features: Factored into transition and observation

 See following overhead
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Shallow Parsing Features

),(),(),,,( 11 iiii yyqipiyyf   xx

Examples:

“The current label is ‘OB’ and
the next word is “company”.

“The current label is ‘BI’ and the
POS of the current word is ‘DET’”
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Named Entity Recognition
 Reference: Sarawagi & Cohen, “Semi-Markov Conditional Random Fields for 

Information Extraction,” NIPS 2005
 Task: NER

 City/State from addresses
 Company names and job titles from job postings
 Person names from email messages

 Model: Semi-Markov CRF
 Features:

 Word identity/position
 Word capitalization

 Segmental Features:
 Phrase presence
 Capitalization patterns in segment
 Combination non-segment features with segment initial/final indicator
 Segment length
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Whole Sentence Language Models
 Reference: Rosenfeld, Chen & Zhu, “Whole-Sentence 

Exponential Language Models: A Vehicle for Linguistic-
Statistical Integration,” Computer Speech & Language, 2001

 Task: Rescoring speech recognition nbest lists with a 
whole-sentence language model

 Model: Flat Maximum Entropy 

 Features:
 Word ngrams

 Class ngrams

 Leave-one-out ngrams (skip ngrams)

 Presence of constituent sequences in a parse
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Tutorial summary
 Provided an overview of direct models for 

classification and sequence recognition

 MaxEnt, MEMM, (H)CRF, Segmental CRFs

 Training & recognition algorithms

 Case studies in speech & NLP

 Fertile area for future research

 Methods are flexible enough to incorporate different 
representation strategies

 Toolkits are available to start working with ASR or NLP 
problems
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Future Research Directions
 Feature design for ASR – have only scratched the 

surface of different acoustic representations

 Feature induction – MLPs induce features using 
hidden nodes, can look at backprop methods for direct 
models
 Multilayer CRFs (Prabhavalkar & Fosler-Lussier 2010)

 Deep Belief Networks (Hinton, Osindero & Teh 2006)

 Algorithmic design
 Exploration of Segmentation algorithms for CRFs

 Performance Guarantees
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