Introduction to Machine Learning

Lecture 1: Introduction and Linear Regression Iasonas Kokkinos Iasonas.kokkinos@gmail.com University College London

Lecture outline

Introduction to the course

Introduction to Machine Learning

Least squares

Machine Learning

Principles, methods, and algorithms for learning and prediction based on past evidence

Goal: Machines that perform a task based on experience, instead of explicitly coded instructions

Why?

- Crucial component of every intelligent/autonomous system
- Important for a system's adaptability
- Important for a system's generalization capabilities
- Attempt to understand human learning

Machine Learning variants

- Supervised
 - Classification
 - Regression
- Unsupervised
 - Clustering
 - Dimensionality Reduction
- Weakly supervised/semi-supervised
 Some data supervised, some unsupervised
- Reinforcement learning
 Supervision: sparse reward for a sequence of decisions

Classification

- Based on our experience, should we give a loan to this customer?
 - Binary decision: yes/no

Classification examples

• Digit Recognition

- Spam Detection
- 3333222222

 Petrie

 28/07/200° 02:4

 JUNK MAIL Don't waste your time on disea; est B: health !

 From:
 Petrie < 28/07/200° 02:4</td>

 JUNK MAIL Don't waste your time on disea; est B: health !

 From:
 Petrie < 4socola2007@CleanAirInspections.com>

 Date:
 28/07/2008 02:14

 To:
 ickkin@stat.ucla.edu < (kokkin@stat.ucla.edu>

 5
 reasons of quit smokking! http://www.markthrill.com/
- Face detection

`Faceness function': classifier

Background Decision boundary

Test time: deploy the learned function

- Scan window over image
 - Multiple scales
 - Multiple orientations
- Classify window as either:
 - Face
 - Non-face

Machine Learning variants

- Supervised
 - Classification
 - Regression
- Unsupervised
 - Clustering
 - Dimensionality Reduction
- Weakly supervised

Some data supervised, some unsupervised

Reinforcement learning
 Supervision: reward for a sequence of decisions

Regression

- Output: Continuous
 - E.g. price of a car based on years, mileage, condition,...

x: milage

Computer vision example

• Human estimation: from image to vector-valued pose estimate

Machine Learning variants

- Supervised
 - Classification
 - Regression
- Unsupervised
 - Clustering
 - Dimensionality Reduction
- Weakly supervised

Some data supervised, some unsupervised

Reinforcement learning
 Supervision: reward for a sequence of decisions

Clustering

- Break a set of data into coherent groups
 - Labels are `invented'

Clustering examples

Spotify recommendations

Play the music you love, without the effort. Packed with your favorites and new discoveries.

Clustering examples

• Image segmentation

Machine Learning variants

- Supervised
 - Classification
 - Regression
- Unsupervised
 - Clustering
 - Dimensionality Reduction
- Weakly supervised

Some data supervised, some unsupervised

Reinforcement learning
 Supervision: reward for a sequence of decisions

Dimensionality reduction & manifold learning

- Find a low-dimensional representation of high-dimensional data
 - Continuous outputs are `invented'

Example of nonlinear manifold: faces

Average of two faces is not a face

 \mathbf{x}_1

 $\frac{1}{2}(\mathbf{x}_1 + \mathbf{x}_2)$

 \mathbf{X}_2

Moving along the learned face manifold

 $\mathsf{Male} \to \mathsf{Female}$

 $\mathsf{Female} \to \mathsf{Male}$

Trajectory along the "male" dimension

 $\text{Young} \rightarrow \text{Old}$

 $\mathsf{Old}\to\mathsf{Young}$

Trajectory along the "young" dimension

Lample et. al. Fader Networks, NIPS 2017

19

Machine Learning variants

- Supervised
 - Classification
 - Regression
- Unsupervised
 - Clustering
 - Dimensionality Reduction
- Weakly supervised/semi supervised
 Partially supervised
- Reinforcement learning
 Supervision: reward for a sequence of decisions

Weakly supervised learning: only part of the supervision signal

Supervision signal: "motorcycle" 21

Weakly supervised learning: only part of the supervision signal

Supervision signal: "motorcycle" 22

Inferred localization information

Semi-supervised learning: only part of the data labelled

Labelled data

Labelled + unlabelled data

Machine Learning variants

- Supervised
 - Classification
 - Regression
- Unsupervised
 - Clustering
 - Dimensionality Reduction
- Weakly supervised/semi supervised learning Some data supervised, some unsupervised
- Reinforcement learning

Supervision: reward for a sequence of decisions

Reinforcement learning

- Agent interacts with environment repeatedly
 - Take actions, based on state
 - (occasionally) receive rewards
 - Update state
 - Repeat

Goal: maximize cumulative reward

Reinforcement learning examples

• Beat human champions in games

Backgammon, 90's

Robotics

GO, 2015

Focus of first part: supervised learning

- Supervised
 - Classification
 - Regression
- Unsupervised
 - Clustering
 - Dimensionality Reduction, Manifold Learning
- Weakly supervised

Some data supervised, some unsupervised

Reinforcement learning
 Supervision: reward for a sequence of decisions

Classification: yes/no decision

Regression: continuous output

x: milage

• Input-output mapping

$$y = f_w(x)$$

• Input-output mapping

Machine learning: can work also for discrete inputs, strings, trees, graphs,...

Linear classifiers, neural networks, decision trees, ensemble models, probabilistic classifiers, ...

Example of method: K-nearest neighbor classifier

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

- -Compute distance to other training records
- -Identify K nearest neighbors
- -Take majority vote

Training data for NN classifier (in R²)

36
1-nn classifier prediction (in R²)

3-nn classifier prediction

Method example: decision tree

Features: color, shape, size

Machine learning: can work also for discrete inputs, strings, trees, graphs,...

Method example: decision tree

Features: color, shape, size

Method example: decision tree

What is the depth of the decision tree for this problem?

Method example: linear classifier

Method example: neural network

separating hyperplane

Method example: neural network

convex polygon region

Method example: neural network

We have two centuries of material to cover!

https://en.wikipedia.org/wiki/Least_squares

The first clear and concise exposition of the method of least squares was published by Legendre in **1805.**

The technique is described as an **algebraic procedure** for **fitting linear equations to data** and Legendre demonstrates the new method by analyzing the same data as Laplace for the shape of the earth. The value of Legendre's method of least squares was immediately

recognized by leading astronomers and geodesists of the time

What we want to learn: a function

Input-output mapping

 $w \in \mathbb{R}$ $\mathbf{w} \in \mathbb{R}^{K}$

Assumption: linear function

$$y = f_{\mathbf{w}}(\mathbf{x}) = f(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x}$$

Inner product:

$$\mathbf{w}^T \mathbf{x} = \langle \mathbf{w}, \mathbf{x} \rangle = \sum_{d=1}^{D} \mathbf{w}_d \mathbf{x}_d$$

$$\mathbf{x} \in \mathbb{R}^{D}, \mathbf{w} \in \mathbb{R}^{D}$$

Reminder: linear classifier

49

Question: which one?

Linear regression in 1D

Linear regression in 1D

$$y^{i} = w_{0} + w_{1}x_{1}^{i} + \epsilon^{i}$$
$$= w_{0}x_{0}^{i} + w_{1}x_{1}^{i} + \epsilon^{i},$$
$$= \mathbf{w}^{T}\mathbf{x}^{i} + \epsilon^{i}$$

Sum of squared errors criterion

$$y^i = \mathbf{w}^T \mathbf{x}^i + \epsilon^i$$

Loss function: sum of squared errors $L(\mathbf{w}) = \sum_{i=1}^{N} (\epsilon^i)^2$

Expressed as a function of two variables:

$$L(w_0, w_1) = \sum_{i=1}^{N} \left[y^i - \left(w_0 x_0^i + w_1 x_1^i \right) \right]^2$$

Question: what is the best (or least bad) value of w?

Answer: least squares

Calculus 101

Calculus 101

$$x^* = \operatorname{argmax}_x f(x)$$

Condition for maximum: derivative is zero

$$x^* = \operatorname{argmax}_x f(x)$$

Condition for maximum: derivative is zero

 $x^* = \operatorname{argmax}_x f(x) \rightarrow f'(x^*) = 0$

Condition for minimum: derivative is zero

Vector calculus 101

60

Back to least squares..

$$y^i = \mathbf{w}^T \mathbf{x}^i + \epsilon^i$$

Loss function: sum of squared errors

$$L(\mathbf{w}) = \sum_{i=1}^{N} (\epsilon^i)^2$$

Expressed as a function of two variables: training sample

$$L(w_0, w_1) = \sum_{i=1}^{N} \left[y^i - \left(w_0 x_0^i + w_1 x_1^i \right) \right]^2$$
feature dimension
Question: what is the best (or least bad) value of w?

Answer: least squares

Fitting a line

$$L(w_{0}, w_{1}) = \sum_{i=1}^{N} \left[y^{i} - \left(w_{0}x_{0}^{i} + w_{1}x_{1}^{i}\right)\right]^{2}$$

$$\frac{\partial L(w_{0}, w_{1})}{\partial w_{0}} = \sum_{i=1}^{N} \frac{\partial \left[y^{i} - \left(w_{0}x_{0}^{i} + w_{1}x_{1}^{i}\right)\right]^{2}}{\partial w_{0}}$$

$$= \sum_{i=1}^{N} 2\left[y^{i} - \left(w_{0}x_{0}^{i} + w_{1}x_{1}^{i}\right)\right]\left(-x_{0}^{i}\right)$$

$$= -2\sum_{i=1}^{N} \left(y^{i}x_{0}^{i} - w_{0}x_{0}^{i}x_{0}^{i} - w_{1}x_{1}^{i}x_{0}^{i}\right)$$

$$\frac{\partial L(w_{0}, w_{1})}{\partial w_{0}} = 0_{N} \Leftrightarrow \sum_{i=1}^{N} y^{i}x_{0}^{i} = w_{0}\sum_{i=1}^{N} x_{0}^{i}x_{0}^{i} + w_{1}\sum_{i=1}^{N} x_{1}^{i}x_{0}^{i}$$

Fitting a line, continued

$$\frac{\partial L(w_0, w_1)}{\partial w_0} = \underset{i=1}{\overset{N}{\longrightarrow}} \Leftrightarrow \sum_{i=1}^{N} y^i x_0^i = w_0 \sum_{i=1}^{N} x_0^i x_0^i + w_1 \sum_{i=1}^{N} x_1^i x_0^i$$
$$\frac{\partial L(w_0, w_1)}{\partial w_1} = \underset{N}{\overset{O}{\longrightarrow}} \Leftrightarrow \sum_{i=1}^{N} y^i x_1^i = w_0 \sum_{i=1}^{N} x_0^i x_1^i + w_1 \sum_{i=1}^{N} x_1^i x_1^i$$

2 linear equations, 2 unknowns

63

Fitting a line, continued

2x2 system of equations:

$$\begin{bmatrix} \sum_{i=1}^{N} y^{i} x_{0}^{i} \\ \sum_{i=1}^{N} y^{i} x_{1}^{i} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{0}^{i} x_{0}^{i} & \sum_{i=1}^{N} x_{0}^{i} x_{1}^{i} \\ \sum_{i=1}^{N} x_{0}^{i} x_{1}^{i} & \sum_{i=1}^{N} x_{1}^{i} x_{1}^{i} \end{bmatrix} \begin{bmatrix} w_{0} \\ w_{1} \end{bmatrix}$$

That's it!

Fitting a line, continued

2x2 system of equations:

$$\begin{bmatrix} \sum_{i=1}^{N} y^{i} x_{0}^{i} \\ \sum_{i=1}^{N} y^{i} x_{1}^{i} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} x_{0}^{i} x_{0}^{i} & \sum_{i=1}^{N} x_{0}^{i} x_{1}^{i} \\ \sum_{i=1}^{N} x_{0}^{i} x_{1}^{i} & \sum_{i=1}^{N} x_{1}^{i} x_{1}^{i} \end{bmatrix} \begin{bmatrix} w_{0} \\ w_{1} \end{bmatrix}$$

Or, without summations:

$$\begin{split} \mathbf{X}^{T}\mathbf{y} &= \mathbf{X}^{T}\mathbf{X}\mathbf{w} \\ \mathbf{y} &= \begin{bmatrix} y^{1} \\ \vdots \\ y^{N} \end{bmatrix} \mathbf{X} = \begin{bmatrix} x_{0}^{1} & x_{1}^{1} \\ \vdots & \vdots \\ x_{0}^{N} & x_{2}^{N} \end{bmatrix} \\ \end{split}$$
Solution: $\mathbf{w} &= (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y}$

65

Linear regression in 1D

Linear regression in 2D (or ND)

D: problem dimension

$y = Xw + \epsilon$

Loss function:
$$L(\mathbf{w}) = \sum_{i=1}^{N} (y^{i} - \mathbf{w}^{T} \mathbf{x}^{i})^{2} = \sum_{i=1}^{N} (\epsilon^{i})^{2}$$

Loss function:
$$L(\mathbf{w}) = \sum_{i=1}^{N} (y^{i} - \mathbf{w}^{T} \mathbf{x}^{i})^{2} = \sum_{i=1}^{N} (\epsilon^{i})^{2}$$

Generalized linear regression

1D Example: 2nd degree polynomial fitting

$$\boldsymbol{\phi}(x) = \begin{bmatrix} 1 \\ x \\ (x)^2 \end{bmatrix}$$

 $\langle \mathbf{w}, \boldsymbol{\phi}(x) \rangle = w_0 + w_1 x + w_2 (x)^2$

1D Example: k-th degree polynomial fitting

 $\langle \mathbf{w}, \boldsymbol{\phi}(x) \rangle = w_0 + w_1 x + \ldots + w_k (x)^K$

74

2D example: second-order polynomials

$$\mathbf{x} = (x_1, x_2)$$

 $\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}) \rangle = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_2^2 + w_5 x_1 x_2$

Reminder: linear regression

Loss function:
$$L(\mathbf{w}) = \sum_{i=1}^{N} (y^{i} - \mathbf{w}^{T} \mathbf{x}^{i})^{2} = \sum_{i=1}^{N} (\epsilon^{i})^{2}$$

Reminder: linear regression

Loss function:
$$L(\mathbf{w}) = \sum_{i=1}^{N} (y^{i} - \mathbf{w}^{T} \mathbf{x}^{i})^{2} = \sum_{i=1}^{N} (\epsilon^{i})^{2}$$

Generalized linear regression

Loss function:
$$L(\mathbf{w}) = \sum_{i=1}^{N} (y^i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}^i))^T = \sum_{i=1}^{N} (\epsilon^i)^2$$

78

Least squares solution for linear regression

$$\mathbf{y} = \mathbf{X}\mathbf{w} + \boldsymbol{\epsilon} \qquad \mathbf{X} = \begin{bmatrix} \mathbf{x}^{1} \mathbf{x}^{T} \\ \mathbf{x}^{2} \mathbf{x}^{T} \\ \vdots \\ \mathbf{L}(\mathbf{w}) = \boldsymbol{\epsilon}^{T} \boldsymbol{\epsilon} \end{bmatrix}$$

Minimize:

 $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

Least squares solution for generalized linear regression

$$\mathbf{y} = \mathbf{\Phi}\mathbf{w} + \mathbf{e}$$
$$L(\mathbf{w}) = \mathbf{e}^T \mathbf{e}$$

Minimize:

 $\mathbf{w}^* = (\mathbf{\Phi}^{T}\mathbf{\Phi})^{-1}\mathbf{\Phi}\mathbf{y}$

80

2D example: second-order polynomials

$$\mathbf{x} = (x_1, x_2)$$

 $\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}) \rangle = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_2^2 + w_5 x_1 x_2$

5D Example: fourth-order polynomials in 5D

$$\mathbf{x} = (x_1, \dots, x_5)$$
$$\mathbf{a} \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_5 \\ \vdots \\ (x_1 x_2 x_3 x_4 x_5)^4 \end{bmatrix}$$

15625 Dimensions =>15625 parameters

What was happening before: approximations

Training:
$$S = \{(\mathbf{x}^i, y^i)\}, i = 1, \dots, N$$

$$y^{1} \simeq w_{0}x_{0}^{1} + w_{1}x_{1}^{1} + \dots + w_{D}x_{D}^{1}$$
$$y^{2} \simeq w_{0}x_{0}^{2} + w_{1}x_{1}^{2} + \dots + w_{D}x_{D}^{2}$$
$$\vdots$$
$$y^{N} \simeq w_{0}x_{0}^{N} + w_{1}x_{1}^{N} + \dots + w_{D}x_{D}^{N}$$

If N>D (e.g. 30 points, 2 dimensions) we have more equations than unknowns: **overdetermined** system!

Input-output relations can only hold approximately!

What is happening now: overfitting

Training:
$$S = \{(\mathbf{x}^{i}, y^{i})\}, i = 1, ..., N$$

$$y^{1} = w_{0}x_{0}^{1} + w_{1}x_{1}^{1} + \dots + w_{D}x_{D}^{1}$$
$$y^{2} = w_{0}x_{0}^{2} + w_{1}x_{1}^{2} + \dots + w_{D}x_{D}^{2}$$
$$\vdots$$
$$y^{N} = w_{0}x_{0}^{N} + w_{1}x_{1}^{N} + \dots + w_{D}x_{D}^{N}$$

If N<D (e.g. 30 points, 15265 dimensions) we have more unknowns than equations: **underdetermined** system!

Input-output equations hold exactly, but we are simply memorizing data

Overfitting, in images

Classification

Underfitting

Overfitting

Regression

Tuning the model's complexity

A flexible model approximates the target function well in the training set but can "overtrain" and have poor performance on the test set ("variance")

A rigid model's performance is more predictable in the test set

but the model may not be good even on the training set ("bias")

Regularization: keeping it simple

In high dimensions: too many solutions for the same problem

Regularization: prefer the least complex among them

How? Penalize complexity

How to control complexity?

Observation: problem started with high-dimensional embeddings Guess: Number of dimensions relates to "complexity"

(Week 4: we will guess again!)

Intuition: with many parameters, we can fit anything

But what if we force the classifier not to use all of the parameters?

Idea: penalize the use of large parameter values

How do we measure "large"?

How do we enforce small values?

How do we measure "large"?
Method parameters: D-dimensional vector

$$\mathbf{w} = [w_1, w_2, \dots, w_D]$$

"Large" vector: vector norm
L2, ("euclidean") norm: $\|\mathbf{w}\|_2 \doteq \sqrt{\sum_{d=1}^D w_d^2} = \sqrt{\langle \mathbf{w}, \mathbf{w} \rangle}$
L1, ("manhattan") norm: $\|\mathbf{w}\|_1 \doteq \sum_{d=1}^D |w_d|$
Lp norm, p>1: $\|\mathbf{w}\|_p \doteq \left(\sum_{d=1}^D w_d^p\right)^{1/p}$

Regularized linear regression

$$oldsymbol{\epsilon} = \mathbf{y} - oldsymbol{\Phi} \mathbf{w}$$
 residual vector

 $L(\mathbf{w}) = \boldsymbol{\epsilon}^T \boldsymbol{\epsilon}$ linear regression: minimize model error

Complexity term:
$$R(\mathbf{w}) \doteq \|\mathbf{w}\|_2^2 = \mathbf{w}^T \mathbf{w}$$
 (regularizer)

Least squares solution

$$L(\mathbf{w}) = \boldsymbol{\epsilon}^T \boldsymbol{\epsilon}$$

= $(\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$
= $\mathbf{y}^T \mathbf{y} - 2\mathbf{y}^T \mathbf{X}\mathbf{w} + \mathbf{w}^T \mathbf{X}^T \mathbf{X}\mathbf{w}$

Condition for minimum:

$$\nabla L(\mathbf{w}^*) = \mathbf{0}$$
$$-2\mathbf{X}^T\mathbf{y} + 2\mathbf{X}^T\mathbf{X}\mathbf{w}^* = \mathbf{0}$$
$$\mathbf{w}^* = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

Ridge regression: L2-regularized linear regression

$$\begin{split} L(\mathbf{w}) &= \boldsymbol{\epsilon}^T \boldsymbol{\epsilon} + \lambda \mathbf{w}^T \mathbf{w} \\ &= \mathbf{y}^T \mathbf{y} - 2 \mathbf{y}^T \mathbf{X} \mathbf{w} + \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} + \lambda \mathbf{w}^T \mathbf{I} \mathbf{w} \\ & \text{as before, for linear regression} & \text{identity matrix} \\ &= \mathbf{y}^T \mathbf{y} - 2 \mathbf{y}^T \mathbf{X} \mathbf{w} + \mathbf{w}^T \left(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I} \right) \mathbf{w} \end{split}$$

Condition for minimum:

$$\nabla L(\mathbf{w}^*) = \mathbf{0}$$

-2 $\mathbf{X}^T \mathbf{y}$ + 2($\mathbf{X}^T \mathbf{X}$ + λI) $\mathbf{w}^* = \mathbf{0}$
 $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$

Ridge regression, continued

Regularizer:
$$R(\mathbf{w}) \doteq \|\mathbf{w}\|_2^2 = \mathbf{w}^T \mathbf{w}$$

New objective:
 $L(\mathbf{w}) = \boldsymbol{\epsilon}^T \boldsymbol{\epsilon} + \lambda \mathbf{w}^T \mathbf{w}$
"data fidelity" complexity
We just determined
minimum scalar, remains to
be determined

λ: "hyperparameter"

Note: direct minimization w.r.t. it would lead to $\lambda=0$

Bias-Variance tradeoff as a function of λ

Selecting λ with cross-validation

- Cross validation technique
 - Exclude part of the training data from parameter estimation
 - Use them only to predict the test error
- K-fold cross validation:
 - K splits, average K errors
- Use cross-validation for different values of λ parameter
 - pick value that minimizes crossvalidation error

Least glorious, most effective of all methods

