Introduction to Machine Learning
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Lecture outline

Introduction to the course

Introduction to Machine Learning

Least squares




Machine Learning

Principles, methods, and algorithms for learning and prediction based on
past evidence

Goal: Machines that perform a task based on experience, instead of
explicitly coded instructions

Why?

« Crucial component of every intelligent/autonomous system
« |Important for a system’s adaptability

* Important for a system’s generalization capabilities

« Attempt to understand human learning




Machine Learning variants

Supervised
— Classification
— Regression
Unsupervised
— Clustering
— Dimensionality Reduction
Weakly supervised/semi-supervised
Some data supervised, some unsupervised
Reinforcement learning
Supervision: sparse reward for a sequence of decisions




Classification

« Based on our experience, should we give a loan to this customer?
— Binary decision: yes/no

Low-Risk

— Decision boundary
High-Risk




Classification examples
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Face detection




"Faceness function’: classifier

Background Decision boundary




Test time: deploy the learned function

e Scan window over image
— Multiple scales
— Multiple orientations

» Classify window as either:
— Face
— Non-face

— Face
Window ——| Classifier

— Non-face




Machine Learning variants

Supervised
— Classification
— Regression
Unsupervised
— Clustering
— Dimensionality Reduction
Weakly supervised
Some data supervised, some unsupervised
Reinforcement learning
Supervision: reward for a sequence of decisions




Regression

e QOutput: Continuous
— E.g. price of a car based on years, mileage, condition,...




Computer vision example

 Human estimation: from image to vector-valued pose estimate




Machine Learning variants

Supervised
— Classification
— Regression
Unsupervised
— Clustering
— Dimensionality Reduction
Weakly supervised
Some data supervised, some unsupervised
Reinforcement learning
Supervision: reward for a sequence of decisions




Clustering

« Break a set of data into coherent groups
— Labels are “invented’




Clustering examples

Spotify recommendations

Play the music you love, without the effort. Packed with your favorites and new discoveries.

Daily Mix 1

Daily Mix 1
Agar Agar, Juniore,
L'Impératrice and more

Daily Mix 2

Daily Mix 2
Yo-Yo Ma, Glenn Gould,
Murray Perahia and more

Your
Daily Mix 3

Daily Mix 3
Holy Ghost!, Grimes,
Metronomy and more

Daily Mix 4

Daily Mix 4
The Jesus and Mary Chain,
Belle & Sebastian, The Shins




Clustering examples

* |mage segmentation




Machine Learning variants

Supervised

— Classification

— Regression

Unsupervised

— Clustering

— Dimensionality Reduction
Weakly supervised

Some data supervised, some unsupervised
Reinforcement learning

Supervision: reward for a sequence of decisions




Dimensionality reduction & manifold learning

« Find a low-dimensional representation of high-dimensional data
— Continuous outputs are “invented’




Example of nonlinear manifold: faces

Average of two faces is not a face




Moving along the learned face manifold

Male — Female
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Traject along the “male” dimension

Young — Old

) 000660006000
~AAAAAAAANAA

Trajectory along the “young” dimension

Lample et. al. Fader Networks, NIPS 2017




Machine Learning variants

Supervised
— Classification
— Regression
Unsupervised
— Clustering
— Dimensionality Reduction
Weakly supervised/semi supervised
Partially supervised
Reinforcement learning
Supervision: reward for a sequence of decisions




Weakly supervised learning: only part of the supervision signal

Supervision signal:
“motorcycle”
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Weakly supervised learning: only part of the supervision signal

<

training images

210

train iter.

510

train iter.

train iter. 4200

Supervision signal:
“motorcycle”

Inferred localization
information



Semi-supervised learning: only part of the data labelled

Labelled data

Labelled + unlabelled data




Machine Learning variants

Supervised

— Classification

— Regression

Unsupervised

— Clustering

— Dimensionality Reduction
Weakly supervised/semi supervised learning
Some data supervised, some unsupervised
Reinforcement learning

Supervision: reward for a sequence of decisions




Reinforcement learning

« Agent interacts with environment repeatedly
— Take actions, based on state
— (occasionally) receive rewards
— Update state
— Repeat
» Goal: maximize cumulative reward

State 1 State 2 State 3

HEE
o e




Reinforcement learning examples

« Beat human champions in games

Backgammon, 90’s GO, 2015

Google DeepM ﬂ@
Challenge Ma

BREAKTHROUGH
TECHNOLOGIES

« Robotics




Focus of first part: supervised learning

Supervised

— Classification

— Regression

Unsupervised

— Clustering

— Dimensionality Reduction, Manifold Learning
Weakly supervised

Some data supervised, some unsupervised
Reinforcement learning

Supervision: reward for a sequence of decisions




Classification: yes/no decision

Low-Risk

High-Risk




Regression: continuous output




What we want to learn: a function

Input-output mapping

Y= f,w(il?)




What we want to learn: a function

* |nput-output mapping

method

fw( )
/

predlctlon

N

parameters Input




What we want to learn: a function

method

fw( )
/

predlctlon

N

parameters Input

Calculus €T & R

D
Vector calculus X & R

Machine learning: can work also for discrete inputs, strings, trees, graphs,...



What we want to learn: a function

method
prediction 1

\@ — ffw(aj)

N

parameters  Input

Classification: Y {O, 1}
Regression: Y c R




What we want to learn: a function

method
prediction 1

~

y:::fw(x)

’ ::::.a;:." ﬁ / \
LL;, ¥ NN

Linear classifiers, neural networks, decision trees, ensemble models,
probabilistic classifiers, ...




Example of method: K-nearest neighbor classifier

R
+ +

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

—Compute distance to other training records
—Identify K nearest neighbors
—Take majority vote




Training data for NN classifier (in R?)

o
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1-nn classifier prediction (in R?)




3-nn classifier prediction




Method example: decision tree

Features: color, shape, size

Machine learning: can work also for discrete inputs, strings, trees, graphs,...



Method example: decision tree

color

blue other
red

shape size < 10

(lllps(/ \otlm / \

0,9

Features: color, shape, size




Method example: decision tree

What is the depth of the decision tree for this problem?

Low-Risk

High-Risk




Method example: linear classifier
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Method example: neural network

1 layer of

trainable
weights E)

separating hyperplane




Method example: neural network
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Method example: neural network

_

et % /////%%//

composition of polygons:
convex regi




We have two centuries of material to cover!

https://en.wikipedia.org/wiki/Least_squares

The first clear and concise exposition of the method of least squares was
published by Legendre in 1805.

The technique is described as an algebraic procedure for fitting linear
equations to data and Legendre demonstrates the new method by
analyzing the same data as Laplace for the shape of the earth.

The value of Legendre's method of least squares was immediately
recognized by leading astronomers and geodesists of the time




What we want to learn: a function

Input-output mapping

method

fw( ) = f(z;w)
/

predlctlon

N

parameters Input

w e R
w c RE




Assumption: linear function

y = fw(x)=f(x,w) =w

Inner product:




Reminder: linear classifier

X; positive: X.-w+b=0

X, negative: X,-w+b<0

Each data point has

a class label:
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Feature coordinate i




Question: which one?

X; positive: X.-w+b=0

X, negative: X,-w+b<0

Each data point has

a class label:
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Linear regression in 1D

| @ ®Data
—— curve fit




Linear regression in 1D

[ ® ®Data
—— curve fit

Training set: input—output pairs S = {(:CZ, yz)},

' eR, y'€R




| ® ®Data

Linear regression in 1D | — curve fit

Yy = wo+wizr] +€

= woxy +wiry + €,

_ WTXZ + EZ




Sum of squared errors criterion

i ® ®Data
| = curve fit

yz _ WTXZ 1+ Ez

Loss function: sum of squared errors

Expressed as a function of two variables:
N

L(wg,wy) = Z [yz — (w0x6 + wlx?i)]
1=1
Question: what is the best (or least bad) value of w?
Answer: least squares




Calculus 101




Calculus 101

f(z)

x*

r" = argmax,, f(x)




Condition for maximum: derivative is zero

f(z)

x*

X

= argmax., f (x)




Condition for maximum: derivative is zero

f(z)

x” r

X

= argmax, f(z) — f'(z*)=0




Condition for minimum: derivative is zero

&

= argmin,, f(x)




Vector calculus 101
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Back to least squares..

i ® ®Data
—— curve fit

yz _ WTXZ 1+ Ez

Loss function: sum of squared errors

1=1

N

Expressed as a function of two variAabIes:% training sample

2

L{wo,wn) =Y [y - (wo%%ﬂ)]
1=1 feature dimension

Question: what is the best (or least bad) value of w?
Answer: least squares




[yi — (wga:é -+ wlxi)]Q

O ly" — (woxf + wla:'?l)]Q

6‘w0

y' — (wozh + wiz})] (—xf

1 N
2 g (y Ty — WoLyTy — wlazlajo)
i=1

Zy ZEO —wOZxOxO—i—wl Zazlxo




Fitting a line, continued
(9L(UJO, wl)

2 linear equations, 2 unknowns




Fitting a line, continued
N

2x2 system of equations:

N . . N . .
21 Y 0 211 T0%0
D im1 Y2 D _im1 ToL

That’s it!




Fitting a line, continued

2x2 system of equations:

N . . N . .
21 Y0 | | 2 Yo%
D im1 Y2 D _im1 ToL

Or, without summations:

X'y = X Xw
A

y = :
Lyt _
Solution: W — (XTX)_ley




Linear regression in 1D

® @®Data
— curve fit
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Least squares solution for linear regression

D: problem dimension
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Least squares solution for linear regression

y = XW €




Least squares solution for linear regression
N N

Loss function: L(W) Z(y _ WTXZ)Z _ Z(ei)z

1=1




Least squares solution for linear regression
N N

Loss function: L(W) Z(y _ WTXZ)Z _ Z(ei)z

1=1




Generalized linear regression




1D Example: 2nd degree polynomial fitting

(w,¢(z)) = wy + wix + wa(x)?




1D Example: k-th degree polynomial fitting

350

« Raw Data

300 - 34 Order Polynomial Fit
i —— 5th Order Polynomial Fit
250 ——— 9th Order Polynomial Fit

200
> 5
150




2D example: second-order polynomials

X = ($1, ZL‘Q)

1
(1)
(22)°

L1L2

(W, (%)) = wo + w1 L1 + Wals + W3T] + WaTs + WsT1To




Reminder: linear regression

Loss function: L(W)




Reminder: linear regression
N N

Loss function: L (W) = Z(yz — WTXi)Q _ Z(Ei)z

1=1




Generalized linear regression
N

Loss function: L(W) = Z(yi—WTﬁb(Xi))T

1=1




Least squares solution for linear regression

y = XW

L(w)=¢€¢"€
Minimize:

W* _ (XTX) —1xTy




Least squares solution for generalized linear regression

y = Ow

L(w)=¢€¢"€
Minimize:

w* = (®T®) dy




2D example: second-order polynomials

X = ($1, ZL‘Q)

1
(1)
(22)°

L1L2

(W, (%)) = wo + w1 L1 + Wals + W3T] + WaTs + WsT1To




5D Example: fourth-order polynomials in 5D

X = (561,...,2135)
I 1
L1

L5

- (r1mox3T4TE)t

15625 Dimensions =>15625 parameters



What was happening before: approximations
Training: S = {(x",y")},i=,1,...,N

1 1 1 1
Y X woxy+ wiry +... +WpTp

2 2 2 2

N N

N N
Yy X wory +wixry +...+WDITp

If N>D (e.g. 30 points, 2 dimensions) we have more equations than
unknowns: overdetermined system!

Input-output relations can only hold approximately!




What is happening now: overfitting
Training: S = {(x",y")},i=,1,...,N

1 1 1 1
Yy = woxy+ wiry{ +... +WpDTp

2 2 2 2
Y~ = wory +wi1r{ +... +WpDIpH

N N

N N
Yy = wory +wiry +...+WDITp

If N<D (e.g. 30 points, 15265 dimensions) we have more unknowns
than equations: underdetermined system!

Input-output equations hold exactly, but we are simply memorizing data




Overfitting, in images

Classification

Underfitting justﬂ't Overfitting

Regression




Tuning the model’s complexity

A flexible model approximates the target function well in the training set

but can “overtrain” and have poor performance on the test set (“variance”

A rigid model’s performance is more predictable in the test set

but the model may not be good even on the training set (“bias”)

High Bias Low Bias

Low Variance High Variance

Test Sample

Prediction Error

/

Training Sample

Model Complexity




Regularization: keeping it simple

In high dimensions: too many solutions for the same problem

i

X

Regularization: prefer the least complex among them

How? Penalize complexity




How to control complexity?

Observation: problem started with high-dimensional embeddings
Guess: Number of dimensions relates to “complexity”
(Week 4: we will guess again!)

Intuition: with many parameters, we can fit anything

But what if we force the classifier not to use all of the parameters?

|dea: penalize the use of large parameter values
How do we measure “large”?

How do we enforce small values?




How do we measure “large”?

Method parameters: D-dimensional vector

W = [w:[’ w2, “ e wD] —= Euclidean distance

- Manhattan distance
“Large” vector: vector norm

D
L2, (“euclidean”) norm: [wll2 = \ Zw?i — \/<W7 w)
d=1

L1, (*manhattan”) norm: HW H 1

Lp norm, p>1: HWHP




Regularized linear regression

€ — y — (I)W residual vector

T
L (W) — € € linear regression: minimize model error

Complexity term: R(W) — HWH% — WTW

(regularizer)

Lw)=€¢ €+ Iw'w
' “data fidelity” ' complexity

minimum remains scalar, remains to
to be determined be determined




Least squares solution

L(w)=¢€'€
= (y — Xw)" (y — Xw)
=yly — 2y Xw + wi X! Xw

Condition for minimum:

VL(w*) =0
X!ty 4+ 2XIXw* =0
W* _ (XTX)_1XTy




Ridge regression: L2-regularized linear regression

Liw)=€e+\w'w

= yly — 2y Xw + wi X! Xw + A\wlIw

as before, for linear regression identity matrix

—yly — 2y Xw +w! (XTX -+ )\I) W
Condition for minimum:
VL(w*) =0
X'y +2( XX + A)w* =0
w* = (X'X + M) ' X'y




Ridge regression, continued

Regularizer: R(W) — HWH% — WTW

New objective:

L(w)=€¢€e+ W' w

t “data fidelity” t complexity

We just determined scalar, remains to
minimum be determined

A: “hyperparameter”

Nore: direct minimization w.r.t. it would lead to A=0




Bias-Variance tradeoff as a function of A

High Bias sweet SpOt! Low Bias

Low Variance High Variance

Test Sample

—
Q
-
-
&
g
Q
o
2
Q
o=
=
)
=
—

/

Training Sample

High
Model Complexity (function of A)




Selecting A with cross-validation

« Cross validation technique

— Exclude part of the training data
from parameter estimation

— Use them only to predict the
test error

» K-fold cross validation: Training
— K splits, average K errors

 Use cross-validation for different
values of A parameter

— pick value that minimizes cross-
validation error

Least glorious, most effective
of all methods




