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Lecture outline 
Introduction to the course 

Introduction to Machine Learning 

Least squares 
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Machine Learning   
Principles, methods, and algorithms for learning and prediction based on 
past evidence  
 
Goal: Machines that perform a task based on experience, instead of 
explicitly coded instructions 
 
Why? 
 
•  Crucial component of every intelligent/autonomous system  

•  Important for a system’s adaptability 
 

•  Important for a system’s generalization capabilities 
 

•  Attempt to understand human learning  
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Machine Learning variants 

•  Supervised 
–  Classification 
–  Regression 

•  Unsupervised 
–  Clustering 
–  Dimensionality Reduction 

•  Weakly supervised/semi-supervised 
Some data supervised, some unsupervised 

•  Reinforcement learning  
Supervision: sparse reward for a sequence of decisions 
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Classification 
•  Based on our experience, should we give a loan to this customer? 

–  Binary decision: yes/no 

 

 

Decision boundary 
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Classification examples 
 
•  Digit Recognition 

 
•  Spam Detection 

 
•  Face detection 
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Decision boundary 

Face 

Background 

`Faceness function’: classifier 
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•  Scan window over image  
–  Multiple scales 
–  Multiple orientations 

•  Classify window as either: 
–  Face 
–  Non-face 

 
Classifier 
 

Window 
Face 

Non-face 

Test time: deploy the learned function 
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Machine Learning variants 

•  Supervised 
–  Classification 
–  Regression 

•  Unsupervised 
–  Clustering 
–  Dimensionality Reduction 

•  Weakly supervised 
Some data supervised, some unsupervised 

•  Reinforcement learning  
Supervision: reward for a sequence of decisions 
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Regression 

•  Output: Continuous 
–  E.g. price of a car based on years, mileage, condition,…  
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Computer vision example 

•  Human estimation: from image to vector-valued pose estimate 
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Machine Learning variants 

•  Supervised 
–  Classification 
–  Regression 

•  Unsupervised 
–  Clustering 
–  Dimensionality Reduction 

•  Weakly supervised 
Some data supervised, some unsupervised 

•  Reinforcement learning  
Supervision: reward for a sequence of decisions 
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Clustering 

•  Break a set of data into coherent groups 
–  Labels are `invented’ 
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Clustering examples 
•  Spotify recommendations 
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Clustering examples 
•  Image segmentation 
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Machine Learning variants 

•  Supervised 
–  Classification 
–  Regression 

•  Unsupervised 
–  Clustering 
–  Dimensionality Reduction 

•  Weakly supervised 
Some data supervised, some unsupervised 

•  Reinforcement learning  
Supervision: reward for a sequence of decisions 
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Dimensionality reduction & manifold learning 

•  Find a low-dimensional representation of high-dimensional data 
–  Continuous outputs are `invented’ 
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Example of nonlinear manifold: faces 

x2
1

2
(x1 + x2)

Average of two faces is not a face 
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Moving along the learned face manifold 

Trajectory along the “male” dimension 

Trajectory along the “young” dimension 

Lample et. al. Fader Networks, NIPS 2017 
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Machine Learning variants 

•  Supervised 
–  Classification 
–  Regression 

•  Unsupervised 
–  Clustering 
–  Dimensionality Reduction 

•  Weakly supervised/semi supervised 
Partially supervised 

•  Reinforcement learning  
Supervision: reward for a sequence of decisions 
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Weakly supervised learning: only part of the supervision signal 

Supervision signal: 
“motorcycle” 

Inferred localization 
information 
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Weakly supervised learning: only part of the supervision signal 

Supervision signal: 
“motorcycle” 

Inferred localization 
information 
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Semi-supervised learning: only part of the data labelled 

Labelled data 

Labelled  + unlabelled data 
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Machine Learning variants 

•  Supervised 
–  Classification 
–  Regression 

•  Unsupervised 
–  Clustering 
–  Dimensionality Reduction 

•  Weakly supervised/semi supervised learning 
Some data supervised, some unsupervised 

•  Reinforcement learning  
Supervision: reward for a sequence of decisions 
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Reinforcement learning 

•  Agent interacts with environment repeatedly 
–  Take actions, based on state 
–  (occasionally) receive rewards 
–  Update state 
–  Repeat 

•  Goal: maximize cumulative reward 



26 

Reinforcement learning examples 
•  Beat human champions in games 

•  Robotics  

 Backgammon, 90’s              GO, 2015 
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Focus of first part: supervised learning 

•  Supervised 
–  Classification 
–  Regression 

•  Unsupervised 
–  Clustering 
–  Dimensionality Reduction, Manifold Learning 

•  Weakly supervised 
Some data supervised, some unsupervised 

•  Reinforcement learning  
Supervision: reward for a sequence of decisions 
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Classification: yes/no decision 
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Regression: continuous output 
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What we want to learn: a function 

•  Input-output mapping  
 
 
 
 
 
 
 

 

y = fw(x)
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What we want to learn: a function 

•  Input-output mapping  
 
 
 
 
 
 
 

 

Input 

method 

parameters 

prediction 

y = fw(x)
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What we want to learn: a function 

Input 

method 

parameters 

prediction 

x 2 RCalculus 

Vector calculus 

Machine learning: can work also for discrete inputs, strings, trees, graphs,… 

x 2 RD

y = fw(x)
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What we want to learn: a function 

Input 

method 

parameters 

prediction 

y 2 {0, 1}Classification: 

Regression: y 2 R

y = fw(x)
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What we want to learn: a function 

method 
prediction 

Linear classifiers, neural networks, decision trees, ensemble models, 
probabilistic classifiers, … 

y = fw(x)
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X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

Example of method: K-nearest neighbor classifier 

– Compute distance to other training records 
– Identify K nearest neighbors  
– Take majority vote 
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Training data for NN classifier (in R2) 



37 
1-nn classifier prediction (in R2) 
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3-nn classifier prediction 
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Method example: decision tree 

Machine learning: can work also for discrete inputs, strings, trees, graphs,… 
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Method example: decision tree 
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Method example: decision tree 

What is the depth of the decision tree for this problem? 
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Method example: linear classifier 

Feature coordinate i 

Fe
at

ur
e 

co
or

di
na

te
 j 
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Method example: neural network 
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Method example: neural network 
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Method example: neural network 
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We have two centuries of material to cover! 

The first clear and concise exposition of the method of least squares was 
published by Legendre in 1805.  
The technique is described as an algebraic procedure for fitting linear 
equations to data and Legendre demonstrates the new method by 
analyzing the same data as Laplace for the shape of the earth.  
The value of Legendre's method of least squares was immediately 
recognized by leading astronomers and geodesists of the time 

https://en.wikipedia.org/wiki/Least_squares 



47 

What we want to learn: a function 

•  Input-output mapping  
 
 
 
 
 
 
 

 

Input 

method 

parameters 

prediction 

w 2 R
w 2 RK

= f(x;w)y = fw(x)
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y = fw(x) = f(x,w) = w

T
x

Assumption: linear function 

x 2 RD,w 2 RD

w

T
x = hw,xi =

DX

d=1

wdxd

Inner product: 
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Reminder: linear classifier 

Feature coordinate i 

Fe
at

ur
e 

co
or

di
na

te
 j 

0:negative
0:positive

<+⋅
≥+⋅
b
b

ii

ii

wxx
wxx

Each data point has 

a class label: 

 +1 (  ) 
-1 (  ) 

yt = 
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0:negative
0:positive

<+⋅
≥+⋅
b
b

ii

ii

wxx
wxx

Each data point has 

a class label: 

 +1 (  ) 
-1 (  ) 

yt = 

Feature coordinate i 

Fe
at

ur
e 

co
or

di
na

te
 j 

Question: which one? 
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Linear regression in 1D 



52 

  

Linear regression in 1D 

Training set: input–output pairs S = {(xi
, y

i)}, i = 1 . . . , N

x

i 2 R, y

i 2 R
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Linear regression in 1D 

y

i = w0 + w1x
i
1 + ✏

i

= w0x
i
0 + w1x

i
1 + ✏

i
, x

i
0 = 1, 8i

= w

T
x

i + ✏i
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Sum of squared errors criterion 

L(w0, w1) =
NX

i=1

⇥
y

i �
�
w0x

i
0 + w1x

i
1

�⇤2

L(w) =
NX

i=1

(✏i)2

yi = w

T
x

i + ✏i

Loss function: sum of squared errors 

Expressed as a function of two variables: 

Question: what is the best (or least bad) value of w? 
Answer: least squares 
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Calculus 101 

x

f(x)

x

⇤
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Calculus 101 

x

f(x)

x

⇤

x

⇤
= argmax

x

f(x)
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Condition for maximum: derivative is zero 

x

f(x)

x

⇤
= argmax

x

f(x)

x

⇤
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Condition for maximum: derivative is zero 

x

f(x)

x

⇤
= argmax

x

f(x)

f

0(x⇤) = 0!

x

⇤
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Condition for minimum: derivative is zero 

x

⇤ = argmin
x

f(x)
f

0(x⇤) = 0!
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Vector calculus 101 

2D function graph isocontours gradient field 

at minimum of function: 

f(x) f(x) = c rf(x) =

"
@f

@x1
@f

@x2

#

rf(x) = 0
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Back to least squares.. 

L(w0, w1) =
NX

i=1

⇥
y

i �
�
w0x

i
0 + w1x

i
1

�⇤2

L(w) =
NX

i=1

(✏i)2

yi = w

T
x

i + ✏i

Loss function: sum of squared errors 

Expressed as a function of two variables: 

Question: what is the best (or least bad) value of w? 
Answer: least squares 

training sample 
 
 
 
feature dimension 
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L(w0, w1) =
NX

i=1

⇥
y

i �
�
w0x

i
0 + w1x

i
1

�⇤2

@L(w0, w1)

@w0
=

NX

i=1

@

⇥
y

i �
�
w0x

i
0 + w1x

i
1

�⇤2

@w0

Fitting a line 

@L(w0, w1)

@w0
= 0 ó NX

i=1

y

i
x

i
0 = w0

NX

i=1

x

i
0x

i
0 + w1

NX

i=1

x

i
1x

i
0

= �2
NX

i=1

�
y

i
x

i
0 � w0x

i
0x

i
0 � w1x

i
1x

i
0

�

=
NX

i=1

2
⇥
y

i �
�
w0x

i
0 + w1x

i
1

�⇤
(�x

i
0)
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Fitting a line, continued 

@L(w0, w1)

@w0
= 0 ó NX

i=1

y

i
x

i
0 = w0

NX

i=1

x

i
0x

i
0 + w1

NX

i=1

x

i
1x

i
0

ó 
NX

i=1

y

i
x

i
1 = w0

NX

i=1

x

i
0x

i
1 + w1

NX

i=1

x

i
1x

i
1

2 linear equations, 2 unknowns 

@L(w0, w1)

@w1
= 0
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Fitting a line, continued 
NX

i=1

y

i
x

i
0 = w0

NX

i=1

x

i
0x

i
0 + w1

NX

i=1

x

i
1x

i
0

NX

i=1

y

i
x

i
1 = w0

NX

i=1

x

i
0x

i
1 + w1

NX

i=1

x

i
1x

i
1

" PN
i=1 y

i
x

i
0PN

i=1 y
i
x

i
1

#
=

" PN
i=1 x

i
0x

i
0

PN
i=1 x

i
0x

i
1PN

i=1 x
i
0x

i
1

PN
i=1 x

i
1x

i
1

# 
w0

w1

�
2x2 system of equations: 

That’s it! 
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Fitting a line, continued 

" PN
i=1 y

i
x

i
0PN

i=1 y
i
x

i
1

#
=

" PN
i=1 x

i
0x

i
0

PN
i=1 x

i
0x

i
1PN

i=1 x
i
0x

i
1

PN
i=1 x

i
1x

i
1

# 
w0

w1

�

XTy = XTXw

y =

2

64
y1

...
yN

3

75 X =

2

64
x

1
0 x

1
1

...
...

x

N
0 x

N
2

3

75

2x2 system of equations: 

Or, without summations: 

w = (XTX)�1XTySolution: 
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Linear regression in 1D 
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Linear regression in 2D (or ND) 



68 

Least squares solution for linear regression 

Nx1 NxD Dx1 Nx1 

2

6664

y

1

y

2

...
y

N

3

7775
=

2

6664

x

1
1 . . . x

1
D

x

2
1 . . . x

2
D

...
x

N
1 . . . x

N
D

3

7775

2

6664

w1

w2
...

wD

3

7775
+

2

6664

✏

1

✏

2

...
✏

N

3

7775

D: problem dimension 

N
: t

ra
in

in
g 

se
t s

iz
e 

 



69 

Least squares solution for linear regression  

y = Xw + ✏✏✏
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Least squares solution for linear regression  

Loss function: L(w) =
NX

i=1

(yi �w

T
x

i)2 =
NX

i=1

(✏i)2

L(w) =
⇥
✏1 ✏2 . . . ✏N

⇤

2

6664

✏1

✏2

...
✏N

3

7775
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Least squares solution for linear regression  

Loss function: L(w) =
NX

i=1

(yi �w

T
x

i)2 =
NX

i=1

(✏i)2

L(w) =
⇥
✏1 ✏2 . . . ✏N

⇤

2

6664

✏1

✏2

...
✏N

3

7775

L(w) = ✏✏✏T✏✏✏ y = Xw + ✏✏✏
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Generalized linear regression 

x ! ���(x) =

2

64
�1(x)

...
�M (x)

3

75
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1D Example: 2nd degree polynomial fitting 

�

�

�(x) =

2

4
1
x

(x)2

3

5

hw,�

�

�(x)i = w0 + w1x+ w2(x)
2
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1D Example: k-th degree polynomial fitting 

hw,�

�

�(x)i = w0 + w1x+ . . .+ wk(x)
K

�

�

�(x) =

2

6664

1
x

...
(x)K

3

7775
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2D example: second-order polynomials 

x = (x1, x2)

hw,�

�

�(x)i = w0 + w1x1 + w2x2 + w3x
2
1 + w4x

2
2 + w5x1x2

�

�

�(x) =

2

6666664

1
x1

x2

(x1)2

(x2)2

x1x2

3

7777775
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Reminder: linear regression  

Loss function: L(w) =
NX

i=1

(yi �w

T
x

i)2 =
NX

i=1

(✏i)2

2

6664

y

1

y

2

...
y

N

3

7775
=

2

6664

x

1
1 . . . x

1
D

x

2
1 . . . x

2
D

...
x

N
1 . . . x

N
D

3

7775

2

6664

w1

w2
...

wD

3

7775
+

2

6664

✏

1

✏

2

...
✏

N

3

7775
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Reminder: linear regression  

Loss function: L(w) =
NX

i=1

(yi �w

T
x

i)2 =
NX

i=1

(✏i)2

2

6664

y1

y2

...
yN

3

7775
=

2

6664

(x1)T

(x2)T

...
(xN )T

3

7775

2

6664

w1

w2
...

wD

3

7775
+

2

6664

✏1

✏2

...
✏N

3

7775
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Generalized linear regression  

Loss function: 

Nx1 NxM Mx1 Nx1 

���(x) : RD ! RM

L(w) =
NX

i=1

(yi–wT���(xi))T =
NX

i=1

(✏i)2

2

6664

y1

y2

...
yN

3

7775
=

2

6664

���(x1)T

���(x2)T

...
���(xN )T

3

7775

2

6664

w1

w2
...

wM

3

7775
+

2

6664

✏1

✏2

...
✏N

3

7775
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Least squares solution for linear regression 

L(w) = ✏✏✏T✏✏✏

Minimize: 

y = Xw + ✏✏✏ X =

2

6664

(x1)T

(x2)T

...
(xN )T

3

7775

w⇤ = (XTX)�1XTy
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Least squares solution for generalized linear regression 

y = ���w + ✏✏✏ ��� =

2

6664

���(x1)T

���(x2)T

...
���(xN )T

3

7775

w⇤ = (���T���)�1���y

L(w) = ✏✏✏T✏✏✏

Minimize: 
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2D example: second-order polynomials 

x = (x1, x2)

hw,�

�

�(x)i = w0 + w1x1 + w2x2 + w3x
2
1 + w4x

2
2 + w5x1x2

�

�

�(x) =

2

6666664

1
x1

x2

(x1)2

(x2)2

x1x2

3

7777775
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5D Example: fourth-order polynomials in 5D 

x = (x1, . . . , x5)

15625  Dimensions =>15625 parameters 

�

�

�(x) =

2

666666664

1
x1
...
x5
...

(x1x2x3x4x5)4

3

777777775
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What was happening before: approximations 
Training:         ,  S = {(xi, yi)}, i = 1, . . . , N

...

If N>D (e.g. 30 points, 2 dimensions) we have more equations than  
unknowns: overdetermined system!  

Input-output relations can only hold approximately! 

y

1 ' w0x
1
0 + w1x

1
1 + . . .+ wDx

1
D

y

2 ' w0x
2
0 + w1x

2
1 + . . .+ wDx

2
D

y

N ' w0x
N
0 + w1x

N
1 + . . .+ wDx

N
D
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What is happening now: overfitting 
Training:         ,  S = {(xi, yi)}, i = 1, . . . , N

If N<D (e.g. 30 points, 15265 dimensions) we have more unknowns 
than equations: underdetermined system!  

Input-output equations hold exactly, but we are simply memorizing data 

y

1 = w0x
1
0 + w1x

1
1 + . . .+ wDx

1
D

y

2 = w0x
2
0 + w1x

2
1 + . . .+ wDx

2
D

y

N = w0x
N
0 + w1x

N
1 + . . .+ wDx

N
D

...
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Overfitting, in images 
Classification 

Regression 

just right 
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Tuning the model’s complexity 
A flexible model approximates the target function well in the training set 

  but can “overtrain” and have poor performance on the test set (“variance”) 

A rigid model’s performance is more predictable in the test set 

 but the model may not be good even on the training set (“bias”) 
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Regularization: keeping it simple 
 

In high dimensions: too many solutions for the same problem 

How? Penalize complexity 

Regularization: prefer the least complex among them  
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How to control complexity? 

Observation: problem started with high-dimensional embeddings 

Guess: Number of dimensions relates to “complexity” 

But what if we force the classifier not to use all of the parameters? 

(Week 4: we will guess again!) 

Intuition: with many parameters, we can fit anything 

Idea: penalize the use of large parameter values 

How do we measure “large”? 

How do we enforce small values? 
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How do we measure “large”? 

Method parameters: D-dimensional vector  

w = [w1, w2, . . . , wD]
“Large” vector: vector norm  

L2, (“euclidean”) norm: kwk2
.
=

vuut
DX

d=1

w2
d =

p
hw,wi

kwk1
.
=

DX

d=1

|wd|L1, (“manhattan”) norm: 

Lp norm, p>1: kwkp
.
=

 
DX

d=1

wp
d

!1/p
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Regularized linear regression 

L(w) = ✏✏✏T✏✏✏

✏✏✏ = y ����w residual vector 

linear regression: minimize model error 

Complexity term: 
(regularizer)  

R(w)
.
= kwk22 = wTw

L(w) = ✏✏✏T✏✏✏+ �wTw

scalar, remains to 
be determined 

minimum remains 
to be determined 

“data fidelity” complexity 
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Least squares solution 

L(w) = ✏✏✏T✏✏✏
= (y �Xw)T (y �Xw)

= yTy � 2yTXw +wTXTXw

rL(w⇤) = 0

w⇤ = (XTX)�1XTy

Condition for minimum:  

�2XTy + 2XTXw⇤ = 0
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Ridge regression: L2-regularized linear regression 

L(w) = ✏✏✏T✏✏✏+ �wTw

= yTy � 2yTXw +wTXTXw + �wT Iw
as before, for linear regression identity matrix 

= yTy � 2yTXw +wT
�
XTX+ �I

�
w

rL(w⇤) = 0

Condition for minimum:  

�2XTy + 2(XTX+ �I)w⇤ = 0

w⇤ = (XTX+ �I)�1XTy
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Ridge regression, continued 

Regularizer:  

L(w) = ✏✏✏T✏✏✏+ �wTw

R(w)
.
= kwk22 = wTw

New objective:  

scalar, remains to 
be determined 

We just determined 
minimum 

“data fidelity” complexity 

λ: “hyperparameter” 
Νοτε: direct minimization w.r.t. it would lead to λ=0 
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Bias-Variance tradeoff as a function of λ 

(function of λ) 

sweet spot! 
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•  Cross validation technique 
–  Exclude part of the training data 

from parameter estimation 
–  Use them only to predict the 

test error  
•  K-fold cross validation: 

–  K splits, average K errors 
 
•  Use cross-validation for different 

values of λ parameter 
–  pick value that minimizes cross-

validation error 

Selecting λ with cross-validation 

Least glorious, most effective 
of all methods 


