
1 

University College London 

Introduction to Machine Learning 

Iasonas Kokkinos 
i.kokkinos@cs.ucl.ac.uk 

Week 2: Logistic Regression 



2 

Week 1: Machine Learning variants 

•  Supervised 
–  Classification 
–  Regression 

•  Unsupervised 
–  Clustering 
–  Dimensionality Reduction 

•  Weakly supervised/semi-supervised 
Some data supervised, some unsupervised 

•  Reinforcement learning  
Supervision: sparse reward for a sequence of decisions 



3 

What we want to learn: a function 

Input 

method 

parameters 

prediction 

y 2 {0, 1}Classification: 

Regression: y 2 R

y = fw(x)



4 

What we want to learn: a function 

method 
prediction 

Linear classifiers, neural networks, decision trees, ensemble models, 
probabilistic classifiers, … 

y = fw(x)
y = fw(x) = f(x,w) = w

T
x

Week 1-4: linear models  



5 

What we want to learn: a function 

Input 

method 

parameters 

prediction 

= f(x;w)y = fw(x)

Sum-of-squared errors loss: 

Least squares estimate: 

L(w) =
NX

i=1

(yi � hw,xii)2

w⇤ = argminwL(w)= (XTX)�1XTy

y =

2

64
y1

...
yN

3

75



6 

  

Linear regression 



7 

  

Generalized linear regression 

x ! ���(x) =

2

64
�1(x)

...
�M (x)

3

75



8 

Ridge regression & cross-validation 

L(w) = ✏✏✏T✏✏✏+ �wTw

New objective:  

“data fidelity” complexity 

w⇤ = (XTX+ �I)�1XTy
Setting λ: cross-validation Setting w: 



9 

 
 
 
 
 
 
 
¨  We should be considering the function’s sign, not its value 

 

Inappropriateness of quadratic loss 

Linear Fit 
Computed Decision Boundary  

Desired decision boundary 

We chose the quadratic cost function for convenience 
Single, global minimum & closed form expression  

But does it indicate classification performance? 



10 

 
 
 
 
 
 
 
¨  We should be considering the function’s sign, not its value 

 

Today’s basic idea 

Linear Discriminant 

Computed Decision Boundary  

Desired decision boundary 

Use squashing function 

The higher, the better 

Our goal today: make this precise 



11 

Probability refresher 



12 

Probability Review -I 



13 

Probability Review -I 



14 

Joint, Marginal, Conditional Probability 



15 

Joint, Marginal, Conditional Probability 



16 

Continuous variables 



17 

Continuous variables 



18 

Gaussian (or Normal) distribution 



19 
Parameter estimation 



20 
Parameter estimation 



21 



22 



23 

Negative (of) log-likelihood 



24 

Negative (of) log-likelihood 



25 

@L(✓)

@✓
= 0



26 
Probabilistic formulation of linear regression-I 

x i ; yi ; i = 1 : : : Nx i

residuals 

✏i = yi �w

T
x

i

Residual: zero-mean Gaussian random variable 

Conditional model on observations: 

p(Y i
= yi|xi

;w

T
) =

1p
2⇡�

exp

✓
� (yi �w

T
x

i
)

2

2�2

◆

Y i = w

T
x

i + Ei
The R.V. its value 

deterministic 

random variables 

p(Ei
= ✏i) =

1p
2⇡�

exp

✓
� (✏i)2

2�2

◆



27 

Probabilistic interpretation of linear regression 

Training set: 

=

NY

i=1

1p
2⇡�

exp

✓
� (yi �w

T
x

i
)

2

2�2

◆

=

1

(

p
2⇡�)N

exp

 
� 1

2�2

NX

i=1

(yi �w

T
x

i
)

2

!

Independence  
assumption 

=> Least squares: Maximum Conditional Likelihood estimation of w 

{(x1, y1), . . . , (xN , yN )},x 2 RD, y 2 R
p(y1, . . . , yn|x1, . . . ,xN ) =

=
NY

i=1

p(yi|xi)



28 

Great, but only for real-valued outputs! 

Training set: 

=

NY

i=1

1p
2⇡�

exp

✓
� (yi �w

T
x

i
)

2

2�2

◆

=

1

(

p
2⇡�)N

exp

 
� 1

2�2

NX

i=1

(yi �w

T
x

i
)

2

!

Independence  
assumption 

{(x1, y1), . . . , (xN , yN )},x 2 RD, y 2 R
p(y1, . . . , yn|x1, . . . ,xN ) =

=
NY

i=1

p(yi|xi)



29 

From regression to classification 

Training set: 

Independence  
assumption 

{(x1, y1), . . . , (xN , yN )},x 2 RD, y 2 {0, 1}

? 

p(y1, . . . , yn|x1, . . . ,xN ) =

=
NY

i=1

p(yi|xi)



30 

Bernoulli distribution 

Discrete random variable  Y 2 {0, 1}

Compact form: 

= pc(1� p)1�c

1x2 table, 1 parameter: P (Y = 1) = p
P (Y = 0) = 1� P (Y = 1) = 1� p

P (Y = c) =

⇢
p c = 1

1� p c = 0



31 

Parametric model for posterior  

P (Y = 1|X = x;w) = f(x,w)
P (Y = 0|X = x;w) = 1� f(x,w)

�
!

P (Y = y|X = x;w) = f(x,w)y(1� f(x,w))1�y

What would be a reasonable expression for f? 



32 

Bayes’ rule  



33 

Sum and product rule 



34 

Bayes’ theorem 

P (A = a,B = b) = P (A = a,B = b)

P (A = a|B = b)P (B = b) = P (B = b|A = a)P (A = a)

P (A = a|B = b) = P (B=b|A=a)P (A=a)
P (B=b)

Product rule: 

Sum rule: 

Product rule: 

P (A = a|B = b) =
P (B = b|A = a)P (A = a)P

a0 P (B = b, A = a0)

P (A = a|B = b) =
P (B = b|A = a)P (A = a)P
a0 P (B = b|A = a0)P (A = a0)



35 

Bayes’ theorem 



36 

Binary classification problem 



37 

Binary classification problem 



38 

Binary classification problem 



39 

Binary classification problem 



40 

Binary classification problem 



41 

Binary classification problem 



42 

Binary classification problem 



43 

Binary classification problem 



44 

Binary classification problem 



45 

Binary classification problem 



46 

Binary classification problem 



47 

Bayes’ rule for binary classification problem 

Probability of observation, 
conditioned on class 

Probability of class, 
conditioned on observation 
(‘posterior’) 



48 

Binary Classification for Gaussian distributions 
Assumption: within each class, features follow a Gaussian distribution 

Special case: ⌃ = ⌃0 = ⌃1

Posterior: p(1|x) = p(x|1)p(1)P
c2{0,1} p(x|c)p(c)

p(X = x|y = c) =
1

p
2⇡

N |⌃c|1/2
exp

✓
�1

2

(x� µc)
T
⌃

�1
c (x� µc)

T

◆

Shortcut notation:                   instead of  p(X = x|C = c)p(x|c)

w = ⌃�1(µ1 � µ0) b =
1

2
(µT

0 ⌃
�1µ0 � µT

1 ⌃
�1µ1)

p(1|x) = 1

1 + exp (�(w

T
x+ b))



49 

 
 
 
 
 
 
 
¨  We should be considering the function’s sign, not its value 

 

Back to classification 

Least Squares Fit 
Computed Decision Boundary  

Desired decision boundary 

Linear Discriminant 
Desired & computed decision boundary 



50 

From regression to classification 

Training set: 

Independence  
assumption 

{(x1, y1), . . . , (xN , yN )},x 2 RD, y 2 {0, 1}

? 

p(y1, . . . , yn|x1, . . . ,xN ) =

=
NY

i=1

p(yi|xi)



51 

Form of posterior distribution 

P (Y = 1|X = x;w) = g(wT
x)

g(↵) =
1

1 + exp(�a)Sigmoidal: 

“squashing function”:  
�1 ! 0
+1 ! 1

P (Y = 1|X = x;w) = f(x,w)
P (Y = 0|X = x;w) = 1� f(x,w)

�
!

P (Y = y|X = x;w) = f(x,w)y(1� f(x,w))1�y

Bernoulli-type conditional distribution 

Particular choice of form of f: 



52 

From regression to classification, continued 

Training set: 

Independence  
assumption 

{(x1, y1), . . . , (xN , yN )},x 2 RD, y 2 {0, 1}

=
NY

i=1

g(wT
x

i)y
i

(1� g(wT
x

i))1�yi

Q1: How does this behave? Q2: How to optimize it with respect to w? 

p(y1, . . . , yn|x1, . . . ,xN ) =

logP (y|X;w) =

NX

i=1

log

⇣
g(wT

x

i
)

yi
⌘
+ log

✓�
1� g(wT

x

i
)

�(1�yi)
◆

=

NX

i=1

yi log g(wT
x

i
) + (1� yi) log(1� g(wT

x

i
))

=
NY

i=1

P (yi|xi)



53 

Loss function for linear regression 
Training: given         , estimate optimal  

Loss function: quantify appropriateness of  

w

w

L(S,w) =
NX

i=1

l(yi, fw(xi))

S = {(xi, yi)}, i = 1, . . . , N

=
NX

i=1

(yi �w

T
x

i)2 =
NX

i=1

(✏i)2



54 

Loss function for classification 
Training: given         , estimate optimal  wS = {(xi, yi)}, i = 1, . . . , N

L(S,w) = � logP (y|X;w)

= �
NX

i=1

yi log g(wT
x

i
) + (1� yi) log(1� g(wT

x

i
))

Loss function: quantify appropriateness of  w

=
NX

i=1

l(yi, fw(xi))

fw(xi) = w

T
x

iLinear discriminant: 

= �
NX

i=1

logP (yi|xi
;w)



55 

Rewriting the quadratic loss 

Consider transformation: 

l(y, fw(x)) = (y � fw(x))2

y2=1
= y2(y � fw(x))2

= (y2 � yfw(x))2

y2=1
= (1� yfw(x))2



56 

Inappropriateness of quadratic loss for classification 

Quadratic loss is not robust to outliers and penalizes outputs that are `too good’ 

Last slide: 



57 

Rewriting the cross-entropy loss 
As before: hw(x) = w

T
x

= 1� 1

1 + exp(�hw(x))

=

exp(�hw(x))

1 + exp(�hw(x))

=

1

1 + exp(hw(x))

P (Y = 1|X = x;w) =

1

1 + exp(�hw(x))

P (Y = �1|X = x;w) = 1� P (Y = 1|X = x;w)



58 

Rewriting the cross-entropy loss 
As before: hw(x) = w

T
x

P (Y = 1|X = x;w) =

1

1 + exp(�hw(x))

P (Y = �1|X = x;w) =

1

1 + exp(hw(x))

P (Y = y|X = x;w) =

1

1 + exp(�yhw(x))

L(S,w) =

NX

i=1

� logP (Y = yi|X = x

i
;w)

Last slide: 

Compact form: 

=

NX

i=1

log(1 + exp(�yihw(x

i
)))



59 

Log loss: 
a.k.a. “cross entropy” loss 



60 

Log loss vs. quadratic loss 

Log loss Quadratic loss 



61 

Logistic vs Linear Regression 

Logistic Regression 

Linear Regression Logistic regression is more robust 



62 

From two to many 

•  So far: binary classification 

•  How about multi-class classification? 



63 

Multiple classes & linear regression 
C classes: one-of-c coding (or one-hot encoding) 

4 classes, i-th sample is in 3rd class: 

Matrix notation: 

Loss function: 

Least squares fit (decouples per class): 

Y =

2

64
y1

...
yN

3

75

w⇤
c =

�
XTX

��1
XTyc

L(W) =
CX

c=1

(yc �Xwc)
T (yc �Xwc)

=
⇥
y1 . . . yC

⇤
yc =

2

64
y1c
...

yNc

3

75

W =
⇥
w1 . . . wC

⇤

where 



64 

 
 

Class 1 Class 2 Class 3 

Linear regression: masking problem 

Nothing ever gets assigned to class 2! 

2D version: 

One linear discriminant per class: sc(x) = w

T
c x



65 

Multiple classes & logistic regression 

Soft maximum (softmax) of competing classes: 

Softmax (outputs) Discriminants (inputs) 

P (y = c|x;W) =

exp(w

T
c x)PC

c0=1 exp(w
T
c0x)

.
= gc(x,W)



66 

Loss function for single-class classification 
Training: given         , estimate optimal  wS = {(xi, yi)}, i = 1, . . . , N

L(S,w) = � logP (y|X;w)

= �
NX

i=1

yi log g(wT
x

i
) + (1� yi) log(1� g(wT

x

i
))

Loss function: quantify appropriateness of  w

P (Y = y|X = x;w) = g(wT
x)y(1� g(wT

x))1�y

Bernoulli model for posterior distribution: 



67 

Bernoulli & Categorical distribution 

Binary random variable  Y 2 {0, 1}
Bernoulli Distribution: 

= pc(1� p)1�c

P (Y = c) =

⇢
p c = 1

1� p c = 0

Discrete random variable  Y 2 {1, . . . ,K}

P (Y = c) =

8
><

>:

p1, c = 1
...

pK , c = K

=
KY

k=1

p[c=k]
k

(where []: Iverson bracket) 



68 

Parameter estimation, multi-class case 

One-hot label encoding: 

(yi,xi)

L(W) = �
NX

i=1

CX

c=1

y

i
c log (gc(x,W))

Likelihood of training sample: 

Optimization criterion: 

P (yi|xi;w) =
CY

c=1

(gc(x,W))y
i
c



69 

Logistic vs Linear Regression, n>2 classes 

Logistic regression does not exhibit the masking problem 

Linear regression Logistic regression 



70 

70	  

Non-‐linear	  detec0on	  boundaries	  

•  Datasets	  that	  are	  linearly	  separable	  (with	  some	  noise)	  work	  out	  great:	  

•  But	  what	  are	  we	  going	  to	  do	  if	  the	  dataset	  is	  just	  too	  hard?	  	  

•  How	  about	  …	  mapping	  data	  to	  a	  higher-‐dimensional	  space:	  

0 

x2 

x 

0 x 

0 x 

Sec. 15.2.3 



71 

71	  

Non-‐linear	  decision	  boundaries	  

Φ:  x → φ(x) 

Sec. 15.2.3 



72 

Parameter estimation, non-linear case 

Linear case: 

Nonlinear case: 

L(W) = �
NX

i=1

CX

c=1

y

i
c log (gc(x,W))

L(W0
) = �

NX

i=1

CX

c=1

y

i
c log (gc(�(x),W

0
))



73 

Lecture outline 
Recap & problems of linear regression 

Logistic Regression 

Training criterion formulation 

Optimization 

Interpretation 



74 

  

Recap: Sum of squared errors criterion 

L(w0, w1) =
NX

i=1

⇥
y

i �
�
w0x

i
0 + w1x

i
1

�⇤2

L(w) =
NX

i=1

(✏i)2

yi = w

T
x

i + ✏i

Loss function: sum of squared errors 

Expressed as a function of two variables: 

Question: what is the best (or least bad) value of w? 
Answer: least squares 



75 

Gradient-based optimization 

2D function graph isocontours gradient field 

at minimum of function: 

f(x) f(x) = c rf(x) =

"
@f

@x1
@f

@x2

#

rf(x) = 0



76 

Recap: condition for optimum 

@L(w0, w1)

@w0
= 0 ó NX

i=1

y

i
x

i
0 = w0

NX

i=1

x

i
0x

i
0 + w1

NX

i=1

x

i
1x

i
0

ó 
NX

i=1

y

i
x

i
1 = w0

NX

i=1

x

i
0x

i
1 + w1

NX

i=1

x

i
1x

i
1

2 linear equations, 2 unknowns 

@L(w0, w1)

@w1
= 0



77 

Least squares solution, in vector form 

L(w) = ✏✏✏T✏✏✏
= (y �Xw)T (y �Xw)

= yTy � 2yTXw +wTXTXw

rL(w⇤) = 0

w⇤ = (XTX)�1XTy

Condition for minimum:  

�2XTy + 2XTXw⇤ = 0



78 
Gradient of cross-entropy los 

g(x) =

1

1 + exp(�x)

! dg

dx

= g(x)(1� g(x))

L(w) = �
X

i=1

yi log g(wT
x

i
) + (1� yi) log(1� g(wT

x

i
))

@L(w)

@wk
= �

NX

i=1


yi

1

g(wT
x

i)

@g(wT
x

i)

@wk
+ (1� yi)

1

1� g(wT
x

i)
(�@g(wT

x

i)

@wk
)

�

= �
NX

i=1


yi

1

g(wT
x

i)
� (1� yi)

1

1� g(wT
x

i)

�
g(wT

x

i)(1� g(wT
x

i))
@wT

x

i

@wk

Fact: 

= �
NX

i=1

⇥
y

i(1� g(wT
x

i))� (1� y

i)g(wT
x

i)
⇤
x

i
k

= �
NX

i=1

⇥
yi � g(wT

x

i)
⇤
x

i
k

Nonlinear system 
of equations!! 

N

rL(w⇤) = 0



79 

Gradient-based minimization 

rf(x) =

"
@f

@x1
@f

@x2

#

Fact: gradient at any point gives direction of fastest increase 



80 

Gradient-based minimization 

Idea: start at a point and move in the direction opposite to the gradient 

rf(x) =

"
@f

@x1
@f

@x2

#

Fact: gradient at any point gives direction of fastest increase 



81 

Gradient-based minimization 

rf(x) =

"
@f

@x1
@f

@x2

#

Idea: start at a point and move in the direction opposite to the gradient 

Fact: gradient at any point gives direction of fastest increase 



82 

Gradient-based minimization 

rf(x) =

"
@f

@x1
@f

@x2

#

Idea: start at a point and move in the direction opposite to the gradient 

Fact: gradient at any point gives direction of fastest increase 



83 

Gradient-based minimization 

Idea: start at a point and move in the direction opposite to the gradient 

rf(x) =

"
@f

@x1
@f

@x2

#

Fact: gradient at any point gives direction of fastest increase 

x0Initialize: 
Update: xi+1 = xi � ↵rf(xi) i=0 



84 

Gradient-based minimization 

rf(x) =

"
@f

@x1
@f

@x2

#

Update: xi+1 = xi � ↵rf(xi) i=1 



85 

Gradient-based minimization 

rf(x) =

"
@f

@x1
@f

@x2

#

Update: xi+1 = xi � ↵rf(xi) i=1 



86 

Gradient-based minimization 

rf(x) =

"
@f

@x1
@f

@x2

#

Update: xi+1 = xi � ↵rf(xi) i=2 



87 

Gradient-based minimization 

rf(x) =

"
@f

@x1
@f

@x2

#

Update: xi+1 = xi � ↵rf(xi) i=2 



88 

Gradient-based minimization 

rf(x) =

"
@f

@x1
@f

@x2

#

Update: xi+1 = xi � ↵rf(xi) i=3 



89 

Gradient descent minimization method 

x0Initialize: 
Update: xi+1 = xi � ↵rf(xi)

We can always make it converge for a convex function 

convex non-convex 



90 

Problems of gradient descent 

x0Initialize: 
Update: xi+1 = xi � ↵rf(xi)

How to set this? 

Step-size selection: 

Zig-zagging behavior: 



91 

Thought experiment: least squares 

x0Initialize: 
Update: xi+1 = xi � ↵rf(xi)

Sum of squared errors minimization: 

f(x) = (y �Dx)T (y �Dx)

We know solution can be obtained in single step – what is missing now?  

Gradient descent: 

May require many steps! 



92 

Least squares solution, in vector form 

L(w) = ✏✏✏T✏✏✏
= yTy � 2yTXw +wTXTXw

w⇤ = (XTX)�1XTy



93 
Second-order methods 

First- order Taylor series approximation: 

Second-order Taylor series approximation: 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6 blue: 
f(x) = x

2 � log(b) + exp(

x

20

)

f(x) ' f(a) + (x� a)f 0(a) + e(x)

f(x) = f(a) + (x� a)f 0(a) +
1

2
(x� a)2f 00(a) + e(x)

green: linear approximation 
l(x) = f(a) + (x� a)f 0(a)

red: quadratic approximation 

q(x) = f(a) + (x� a)f 0(a) +
1

2
(x� a)2f 00(a)



94 
Second-order minimization, 1D 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6



95 
Second-order minimization, 1D 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6



96 
Second-order minimization, 1D 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6



97 
Second-order minimization, 1D 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6



98 
Second-order minimization, 1D 

At any point, form quadratic approximation:  

Condition for minimum of quadratic approximation:  

Until update is too small  

f(x) ' q(x) = f(xi) + (x� xi)f
0(xi) +

1

2
(x� xi)

2
f

00(xi)

q

0(x) = 0 ! f

0(xi) + (x� xi)f
00(xi) = 0

Set point in next iteration to be at the minimum of present approximation 

xi+1 = xi �
f

0(xi)

f

00(xi)

x0Start from some inititial position, 

Note: f’’ sets the update rate α as the inverse of curvature 



99 
Second-order methods, multivariate case 

First- order Taylor series approximation: 

Second-order Taylor series approximation: 

f(x) ' f(xi) + (x� xi)
Trf(xi)

f(x) ' f(xi) + (x� xi)
Trf(xi) +

1

2
(x� xi)

TH(x� xi)
.
= q(x)

Hi,j =
@2f

@xi@xj



100 
Second-order minimization, 1D 

At any point, form quadratic approximation:  

Condition for minimum of quadratic approximation:  

Until update is too small  

f(x) ' q(x) = f(xi) + (x� xi)f
0(xi) +

1

2
(x� xi)

2
f

00(xi)

q

0(x) = 0 ! f

0(xi) + (x� xi)f
00(xi) = 0

Set point in next iteration to be at the minimum of present approximation 

xi+1 = xi �
f

0(xi)

f

00(xi)

x0Start from some inititial position, 



101 
Second-order minimization, N-D (Newton-Raphson) 

At any point, form quadratic approximation:  

Condition for minimum of quadratic approximation:  

Until update is too small  

Set point in next iteration to be at the minimum of present approximation 

Start from some inititial position, x0

f(x) ' q(x) = f(xi) + (x� xi)
Trf(xi) +

1

2
(x� xi)

TH(xi)(x� xi)

xi+1 = xi � (H(xi))
�1rf(xi)

rq(x) = 0 ! rf(xi) + (x� xi)
TH(xi) = 0



102 

Newton-Raphson for Logistic Regression 

Gradient: 

Hessian: 

@L(w)

@wk
= �

NX

i=1

⇥
yi � g(wT

x

i)
⇤
x

i
k

@2L(w)

@wk@wj
=

@
⇣
�
PN

i=1

⇥
yi � g(wT

x

i)
⇤
x

i
k

⌘

@wj

=
NX

i=1

x

i
k
@g(wT

x

i)

@wj
=

NX

i=1

x

i
kg(w

T
x

i)(1� g(wT
x

i))xi
j



103 

Summation- and matrix-based expressions 

H(w) = X

T
RX, Ri,i = g(wT

x

i)(1� g(wT
x

i))
Matrix version of same result: 

Hk,j =
@2L(w)

@wk@wj
=

NX

i=1

x

i
kg(w

T
x

i)(1� g(wT
x

i)xi
j


