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Week 1: Machine Learning variants

Supervised
— Classification
— Regression
Unsupervised
— Clustering
— Dimensionality Reduction
Weakly supervised/semi-supervised
Some data supervised, some unsupervised
Reinforcement learning
Supervision: sparse reward for a sequence of decisions




What we want to learn: a function

Classification: Y € {07 1}
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What we want to learn: a function

method Week 1-4: linear models
prediction 1

~
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Linear classifiers, neural networks, decision trees, ensemble models,
probabilistic classifiers, ...




What we want to learn: a function

method

fw( ):
/

predlctlon

N

parameters Input

Sum-of-squared errors loss:
N

Lw) =) (y' — (w,x))?

1=1

Least squares estimate:

w" = argmin,L(w) =

(X*TX) " X"y
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Generalized linear regression




Ridge regression & cross-validation

New objective:

Lw)=€'€e+\w' w
“data fidelity” t complexity

Setting w: t Setting A: cross-validation

w* = (XTX +AI)" ' X'y




Inappropriateness of quadratic loss

We chose the quadratic cost function for convenience
Single, global minimum & closed form expression

But does it indicate classification performance?

Computed Decision Boundary
Y Linear Fit

/

whww

Desired decision boundary




Today’s basic idea

Y =by+ DbyX 4= Linear Mode

~

Use squashing function

The higher, the better

Computed Decision Boundary

Y

8 R

Logistic Model

1
p=

&3

& 88

Linear Discriminant

Desired decision boundary

Our goal today: make this precise

1

1+ e—(bo+byix)




Probability refresher




Probability Review -l

e Example: apples and
- We have two boxes to pick from.
» Each box contains both types of fruit.
> What is the probability of picking an apple?




Probability Review -l

e Example: apples and 00
- We have two boxes to pick from. oool lo
- Each box contains both types of fruit. o000l loo®
- What is the probability of picking an apple?

 Formalization
. Let Be {r,b} be arandom variable for the box we pick.
Let F e {a,o} be a random variable for the type of fruit we get.
- Suppose we pick the red box 40% of the time. We write this as
p(B=r)=04 p(B=b)=0.6

. The probability of picking an apple given a choice for the box is
p(F=alB=r)=0.25 p(F=alB=b)=0.75

- What is the probability of picking an apple?
p(F=a)="




Joint, Marginal, Conditional Probability

* More general case

» Consider two random variables
Xe{x} and Ye {yj}

» Consider N trials and let
= #{X =2;AY =y;}
= #{X =}
= #{Y =y,}




Joint, Marginal, Conditional Probability

* More general case

» Consider two random variables
Xe{x} and Ye {)'j}

» Consider N trials and let
= #HX =2, NY =y;}
= #{X =z}
#{Y = y;}

e Then we can derive
> Joint probability

> Marginal probability

> Conditional probability




Continuous variables

e Probabilities over continuous
variables are defined over their
probability density function

(pdf) p(x). b

p(z € (a,b)) = / p(z) da

a




Continuous variables

e Probabilities over continuous
variables are defined over their
probability density function

(pdf) p(z). b

p(z € (a,b)) = / p(z) da

a

>

ox T

e The probability that = lies in the interval (—oo, 7) is given
by the cumulative distribution function




Gaussian (or Normal) distribution

One-dimensional case
> Mean u
> variance o2

N(z|p,0?) =

2mo

Multi-dimensional case
> Mean y
> Covariance Y

N(x|p, =) =

(2m)D/2|x|1/2




Parameter estimation

Given
> Data X = {331,1132,...,33]\[}

> Parametric form of the distribution
with parameters 0

» E.g. for Gaussian distrib.: 0 = (u, o)

Learning
> Estimation of the parameters 0




Parameter estimation

Given
> Data X = {5131,332,...,581\[}

> Parametric form of the distribution
with parameters 0

» E.g. for Gaussian distrib.: 0 = (u, o)

Learning
> Estimation of the parameters 6

Likelihood of 6

> Probability that the data X have indeed been generated from a
probability density with parameters 6

L(6) = p(X|6)




Computation of the likelihood
. Single data point: p(x,|0)




Computation of the likelihood
. Single data point: p(z,|0)

> Assumption: all data points are independent




Computation of the likelihood
. Single data point: p(z,|0)

> Assumption: all data points are independent

> Negative (of) log-likelihood
E@®)=—-InL() = —




Computation of the likelihood
. Single data point: p(z,|0)

> Assumption: all data points are independent

L(0)

> Negative (of) log-likelihood
E@®)=-InL6) = -

> Estimation of the parameters 6 (Learning)

- Maximize the likelihood
- Minimize the negative log-likelihood




Likelihood: L(6) =p(X|0) = || p(z.|0)

=1
We want to obtain § such that [, ( )ls maximized.

p(X|0) t




Probabilistic formulation of linear regression-|

residuals .
N
Residual: zero-mean Gaussian random variable 6 / _

pE =) =L (-S0) 5 )

0

f \ V2o 202
The R.V. its value random variables
YiAZ/W,‘;”Xi Iy o
deterministic
Conditional model on observations:

. o 1 (yz . WTXi)Q
Vi — ot xt Ty _ _
pr' =y sw!) =~ exp (-




Probabilistic interpretation of linear regression

Training set: {(leyl)j,,,,(xN N)} XERD,y c R
1 1
p(y 7°°°7yn‘X 9

Independence N

assumption _ H p(yi ‘Xz)

1=1

N .
LV 2TO

1 1 i T i\2
_( QWU)NGXP<_Tiz' 1(y o X)>

=> Least squares: Maximum Conditional Likelihood estimation of w




Great, but only for real-valued outputs!

Training set: {(Xl7 yl)7 Cees (XN N)} X & RD

p(yl,...,y“\xl,...,x

Independence N

assumption _ H p(yz‘ ‘Xz)

)

1=1




From regression to classification

Training set:{(X17 yl)a SRR (XNa yN)}v X € RD) Y = {07 1

p(yl,...,y”\xl,...,x

Independence N

assumption _ H p(yz‘ ‘Xz)

N)_

1=1

?




Bernoulli distribution

Discrete random variable Y -~ {O, 1}

1x2 table, 1 parameter:

Compact form:




Parametric model for posterior

P(Y =1|X =x;w) f(x,w)
P(Y =0|X =x;w) 1 — f(x,w)

PY = y|X = x;w) = f(x,w)"(1 = f(x,w))' ¥

What would be a reasonable expression for f?




Bayes’ rule




Sum and product rule

Sum Rule p(X) = Zp(x, Y)

Product Rule p(X,Y) =p(Y|X)p(X)




Bayes’ theorem

Product rule:

PA— ol — ) PBA0 P

P(B=b)
Sum rule:
P(A=a|B=0b) =
Product rule:

P(A=a|B=0) =

P(B =b|A = a)P(A = a)
Za’ P(B :b,A:a/)

P(B=0bA=a)P(A=
> o P(B=0bA=d)P(A=d)




Bayes’ theorem

Sum Rule p(X) = Zp(X, Y)
Y

Product Rule p(X,Y) =p(Y|X)p(X)

* From those, we can derive

, _ p(X|Y)p(Y)
Bayes’ Theorem p(Y|X) = ()

where p(X) =) p(X|V)p(Y)




Binary classification problem

e Example: handwritten character recognition

EEEEEEEEEE EEEEEEEEER
EEEEEEEEEE EE"EEEEEEE
EESGRRYEAN HE. YEEEEEN
L AL E R RN L I ANL TEEEEEN
(1| Jamh BB | | HEE TEEEERE
BN ab. IHEN EER .. “"EER
BN /HER INEN HEE (EE) YRR
AN INEE IEEN AENE EEA 'ER
A '"HEY 'EEmE HEEN EEE BN
HE. "W’ WNER HEEF ‘URV /BB
EEER..<«bh. BN HEL A SRR
EEEEEEEEEE EEEEEEEEEN

e Goal:

> Classify a new letter such that the probability of
misclassification is minimized.




Binary classification problem

e Concept 1: Priors (a priori probabilities) p(Ck)

> What we can tell about the probability before seeing the data.




Binary classification problem

e Concept 1: Priors (a priori probabilities) p(C k)

> What we can tell about the probability before seeing the data.

> Example: 9
P(a)=0.75
aababaaba P()=0.25 )

baaaabaaba
abaaaabba
babaabaa




Binary classification problem

Concept 2: Conditional probabilities ‘ p(xIC, )‘
> Let x be a feature vector.
> x measures/describes certain properties of the input.

- E.g. number of black pixels, aspect ratio, ...
> p(zIC,) describes its likelihood for class C,.

N

4

p(xla)

p(x1b) ]|




Example:




Example:

p(xla)

!

15

X

Question:

> Which class?
> The decision should be ‘a’ here.







p(x1b)

|

x=25

Question:
> Which class?

. Since p(xla) is much smaller than p(x|b), the decision should
be ‘b’ here.




Example:




Example:

|

x =20

Question:

> Which class?
> Remember that p(a) = 0.75 and p(b) = 0.25...

> l.e., the decision should be again ‘a’.
= How can we formalize this?




Concept 3: Posterior probabilities ‘ p(C, Ix)‘

> We are typically interested in the a posteriori probability, i.e.
the probability of class C, given the measurement vector z.

Bayes’ Theorem:

p(C, 1x)= p(xlck)p(ck)

p(x)




Bayes’ rule for binary classification problem

Probability of observation,

t |
Wx | b) conditioned on class

p(xla) p(a *

p(x1b) p(b)

>

X

Decision boundary

p(blx)  Probability of class,
conditioned on observation

(‘posterior’)




Binary Classification for Gaussian distributions

Assumption: within each class, features follow a Gaussian distribution

1 1
p(X = xly = ¢) exp (——<x u)TE (x mT)
'/27TN|EC|1/2 2

Shortcut notation: P(X|c) instead of p(X = x|C = ¢)

p(x[1)p(1)
> ceqo.1y P(x[e)p(c)

Special case: X = Xip = g

p(l]x) =

Posterior:  p(1]|x) =

1
1 +exp(—(wix+10))

_ 1
w=X"" (1 — po) b= §(u6p$_1uo — 1 X )




Back to classification

Computed Decision Boundary
Y Least Squares Fit

EX 8 B
y= bo + blx 4= Linear Model
] o

( Logistic Model
8RR vV

P

T+ e-(othix)

Desired decision boundary

8 VR

Linear Discriminant
Desired & computed decision bounda




From regression to classification

Training set:{(X17 yl)a SRR (XNa yN)}v X € RD) Y = {07 1

p(yl,...,y”\xl,...,x

Independence N

assumption _ H p(yz‘ ‘Xz)

N)_

1=1

?




Form of posterior distribution

Bernoulli-type conditional distribution

PY=1X=xw)= f(x,w)
PY=0X=xsw)= 1-— f(x,w) }_>

P(Y = 4| X =x;w) = f(x,w)"(1 = f(x, W)

Particular choice of form of f:

PY =1X =x;w) = g(w'x)
1 .
Sigmoidal: gla) = 1 4 exp(—a)

—o0 — 0

“squashing function’:
A +oo — 1




From regression to classification, continued

Training set: {(Xl, yl), c ey (XN, yN)},X - RD» Yy € {07 1}

mxt o x )
N

p(y', ...,y

Independence
assumption_

Q1: How does this behave? Q2: How to optimize it with respect to w?



Loss function for linear regression

Training: given S = {(x’,vy")},% = 1,..., N, estimate optimal W

Loss function: quantify appropriateness of w

ZZy fw (X))

Zy —wix')?




Loss function for classification

Training: given S = {(x’,vy")},i = 1, ..., N, estimate optimal W

Loss function: quantify appropriateness of W

= —log P(y|X;w)

—y") log(1 — g(w'x"))




Rewriting the quadratic loss

Consider transformation: /4 = Q’yb — 1

Yb € {0* 1} Y+ € {_1: 1}

l(y7fw( )) (y_fw( ))2

1

Y (y — fw(x))’
(y _?/fW( ))2
Y2 (1 = yfuw(x))?




Inappropriateness of quadratic loss for classification

Last slide:  [(y, f(x)) = (1 — yf(a:))Q
Iy, Tx))

—0/1 |
— Quadratic

9

8L
7L
6
5l
4.
3L
ol

—

% 1 0 i 2
y f(x)

Quadratic loss is not robust to outliers and penalizes outputs that are "too good’




Rewriting the cross-entropy loss
Asbefore: hy(x)=w'x Y+ =2yp — 1 yp € {0,1}
Y+ € {—1, 1}

1
P(Y =1|X =x; W) =

I+ exp(—hw(x))
-1 X=x;w)=1—PY =1|X =x;w)

1
T 1+ exp(—hw (X))
exp(—hw (X))

" 1+ exp(—hw (X))
1

1 4 exp(hw(x))

=1




Rewriting the cross-entropy loss

As before: Ay, (X) = W' x
Last slide:

1
PY =1|X =x;w) =

1 4 exp(—hw (X))
1

1 4 exp(hw(x))
1

N 1 4+ exp(—yhw (X))
Z —log P(Y = ¢'|X =x";w)

PlY =—-1X =x;w) =
Compact form:

PY =y|X =x;w) =

Zlog (14 exp(—y hw(x")))



Log loss:  [(y, f(x)) = log(1l + exp(—yf(x)))

a.k.a. “cross entropy” loss I(y,f(X))

of | —0/1
—Log loss




Log loss vs. quadratic loss
Iy, f(x))
—on

— Quadratic loss||
—VLog loss

\

-1

9
8L
7L
6
5l
4.
<
2
1

—)

L g

1

Il\)o

0
y f(x)
Quadratic loss Log loss

Iy, f(x)) = (1 - ?/f(x))2 L(y, f(z)) =log(1 4+ exp(—yf(x)))




Logistic vs Linear Regression

Logistic regression is more robust Linear Regression

Logistic Regression




From two to many

« So far: binary classification

« How about multi-class classification?




Multiple classes & linear regression

C classes: one-of-c coding (or one-hot encoding)

4 classes, i-th sample is in 3 class: y* = (0,0,1,0)

Matrix notation:
B

Z[Y1‘---‘Yc}

C
Loss function: L(W) =
c=1

Least squares fit (decouples per class):

where Y.




Linear regression: masking problem

gt = xwl

8 8RN % % e

‘ Y’ = xXw
yQZXWZ /
// T

One linear discriminant per class: Sc (X) — W _ X

C

Nothing ever gets assigned to class 2!

2D version:




Multiple classes & logistic regression

Soft maximum (softmax) of competing classes:

Discriminants (inputs) Softmax (outputs)




Loss function for single-class classification

Training: given S = {(x’,vy")},i = 1, ..., N, estimate optimal W

Loss function: quantify appropriateness of W

L(S,w) = —log P(y|X; w)

=3y logg(w"x) + (1 - y) log(1 — g(w"x")

Bernoulli model for posterior distribution:
P(Y =y|X =x;w) = g(w' x)¥(1 — g(w'x))' ¥




Bernoulli & Categorical distribution

Binary random variable Y € {O, 1}

Bernoulli Distribution: P(Y =c¢) = { . p
— P

Discrete random variable Y € {1,..., K}

(where []: Iverson bracket)



Parameter estimation, multi-class case

One-hot label encoding:

Likelihood of training sample: (yz, Xz)
C

P(y'|xsw) = [ (ge(x, W)

c=1
Optimization criterion:

N C
L(W) = — S: S: Yi log (ge(x, W))

1=1 c=1




Logistic vs Linear Regression, n>2 classes

Linear regression Logistic regression

Logistic regression does not exhibit the masking problem




Non-linear detection boundaries

e Datasets that are linearly separable (with some noise) work out great:

e But what are we going to do if the dataset is just too hard?

@ - - ——t o*-0—@ —@ - —>
e How about ... mapping da®a to a higher-dimen%clonal space:




Non-linear decision boundaries




Parameter estimation, non-linear case

Linear case;

N

C
* Y yilog (ge(x, W)

1=1 c=1

L(W) = —

Nonlinear case;

N C
LW')==> > yilog(ge(o(x), W)

1=1 c=1




Lecture outline

Recap & problems of linear regression
Logistic Regression

Training criterion formulation
Interpretation

Optimization




Recap: Sum of squared errors criterion

10 o epata
[ | = curve fit

yz _ WTXZ 1+ Ez

Loss function: sum of squared errors

Expressed as a function of two variables:
N

L(wg,wy) = Z [yz — (w0x6 + wlx?i)]
1=1
Question: what is the best (or least bad) value of w?
Answer: least squares




Gradient-based optimization

N
N
NN

—r‘N
\)\m‘

SRR
AN

ON

NN

'\’\1- 4..

b—pl‘\\
“v !\ \\\

»
7
/71

Q
—

Q
<5

Q
8
N

isocontours gradient field

2D function graph
@® at minimum of function: Vf(x) — ()




Recap: condition for optimum
OL(wo, w1 )

2 linear equations, 2 unknowns




Least squares solution, in vector form

L(w)=¢€'€
= (y — Xw)" (y — Xw)
=yly — 2y Xw + wi X! Xw

Condition for minimum:

VL(w") =0
X!ty + 2XIXw* =0
W* _ (XTX)_1XTy




Gradient of %oss-entropy los
Liw)=—-) y'logg(w’x") + (1 —y")log(l - g(w"x")
1=1

N

B | dg(wlx?) p 1 dg(wlx?)
- z; [y g(wl'x?)  Owy +(l—y )1 — g(wT'x?) (- Owy,

1

Fact: 9(r) = T = 5/ = g(x)(1 — g(x))

14 exp(—2)

_ O Nonlinear system
o of equations!!



Gradient-based minimization

SN

NNy
NN
\\QQ

SO
A

77

“ ¢\ \\

—_—— - 4.'

Fact: gradient at any point gives direction of fastest increase




Gradient-based minimization

SN

~ \\\\
NN

SN
NN
N

—r‘N
———3

8

/
A
/
?

'\Nﬁ-e'
“ ¢\ \\
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7
/71

Fact: gradient at any point gives direction of fastest increase
|dea: start at a point and move in the direction opposite to the gradient




Gradient-based minimization

SN

~ \\\\
NN

SN
NN
N

—r‘N
———3

8
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/
?
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/71
/71

Fact: gradient at any point gives direction of fastest increase
|dea: start at a point and move in the direction opposite to the gradient




Gradient-based minimization

SN

~ \\\\
NN

SN
NN
N

—r‘N
———3

8

/
A
/
?

'\Nﬁ-e'
“ ¢\ \\

oy
7
/71

Fact: gradient at any point gives direction of fastest increase
|dea: start at a point and move in the direction opposite to the gradient




Gradient-based minimization

SN

~ \\\\
NN

SN
NN
N

—V‘N
———3

b
8

,
A
/
?

'\&1—4"
4——4’1‘\\
“v !/ \\\\

/71
/71

Fact: gradient at any point gives direction of fastest increase
|dea: start at a point and move in the direction opposite to the gradient

Initialize: X
Update: X;11 — X; — Oévf(Xz')




Gradient-based minimization

SN

~ \\\\
NN
N\

NN
N
NN

/
f

“ ¢\ \\

—_—— - 4.'

X
7
/71

Update:




Gradient-based minimization

Update:




Gradient-based minimization

Update: X;11 — X; — Osz(Xz')




Gradient-based minimization

Update:




Gradient-based minimization

Update:




Gradient descent minimization method

Initialize: X0
Update: X;11 = X; — OéVf(XZ)

We can always make it converge for a convex function

f(z)

convex non-convex

f(z2)

tf(z1) + (1 —1t)f(z2)
ftz1 + (1 —t)z)

f(z1)

txy + (1 —t)zy



Problems of gradient descent

Step-size selection:

Initialize: X0

Update: X;4+1 = X *@f(Xz)

How to set this?

Zig-zagging behavior:




Thought experiment: least squares

Sum of squared errors minimization:

f(x) = (y — Dx)" (y — Dx)

Gradient descent:

Initialize: X
Update: X;11 = X; — OQYVf(Xi)

May require many steps!

START@

We know solution can be obtained in single ste

p — what is missing now?



Least squares solution, in vector form

L(w)=¢€'€
=yly — 2y Xw + wi X! Xw

W* _ (XTX)_1XTy




Second-order methods

First- order Taylor series approximation:

f(x) ~ fla) + (z —a)f'(a) + e(x)

Second-order Taylor series approximation:

1

fa) + (2 — a)f'(@) + 5 (x — a)*f"(a) +e(a)

blue:
X

(@) = 2 — log(b) + exp(5)

/ green: linear approximation
- U(z) = f(a) + (z —a) f'(a)

red: quadratic approximation

1

q() = fla) + (z —a)f'(a) + (2 = a)’f"(a)




Second-order minimization, 1D




Second-order minimization, 1D




Second-order minimization, 1D




Second-order minimization, 1D




Second-order minimization, 1D

Start from some inititial position, Z()

At any point, form quadratic approximation:

flx) = q(x) = fla;) + (& —2;) f'(x5) + %(x — z;)° [ ()

Condition for minimum of quadratic approximation:
/ / /!
¢ () =0— fz:) +(x—a)f (z;) =0
Set point in next iteration to be at the minimum of present approximation
/
B f'(x;)
Lit1 — Ly 7
S ()
Until update is too small
Note: f” sets the update rate a as the inverse of curvature




Second-order methods, multivariate case

First- order Taylor series approximation:

f(x) ~ f(xi) + (x —x;)" V f(x)

Second-order Taylor series approximation:

Fo) = i) + (= x0) "V (i) + 5 (x — ) H(x — x)

= q(x)
52 f

H; ;




Second-order minimization, 1D

Start from some inititial position, Z()

At any point, form quadratic approximation:

fla) = q(e) = flz) + (@ —2) f (2) + 5 (2 — 22" ()

Condition for minimum of quadratic approximation:
¢ (x) =0—= f(x5) + (x —25)f"(x5) =0
Set point in next iteration to be at the minimum of present approximation
Lit1l = Ly )
' (3)

Until update is too small




Second-order minimization, N-D (Newton-Raphson)

Start from some inititial position, X

At any point, form quadratic approximation:

1

f(x) = q(x) = f(x;) + (x —x;)" Vf(x;) + §(X —x;)  H(x;)(x — x;)

Condition for minimum of quadratic approximation:

Ve(x)=0— VF(x)+ (x—x)"H(x;) =0

Set point in next iteration to be at the minimum of present approximation
_ —1
Xi+1 = X — (H(x;))” "V f(x:)

Until update is too small




Newton-Raphson for Logistic Regression

L a
Gradient: (?(W) = — Z [y — g(w'x"

W
k i—1

Hessian:

orrow)  0(-XL

8wk0wj




Summation- and matrix-based expressions

0% L(w)
8wk8wj

Hy ; =

Matrix version of same result;

H(w)=X'"RX, R;;=gWw'x"




