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Week 1: Machine Learning variants 

•  Supervised 
–  Classification 
–  Regression 

•  Unsupervised 
–  Clustering 
–  Dimensionality Reduction 

•  Weakly supervised/semi-supervised 
Some data supervised, some unsupervised 

•  Reinforcement learning  
Supervision: sparse reward for a sequence of decisions 



3 

What we want to learn: a function 

Input 

method 

parameters 

prediction 

y 2 {0, 1}Classification: 

Regression: y 2 R

y = fw(x)
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What we want to learn: a function 

method 
prediction 

Linear classifiers, neural networks, decision trees, ensemble models, 
probabilistic classifiers, … 

y = fw(x)
y = fw(x) = f(x,w) = w

T
x

Week 1-4: linear models  
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What we want to learn: a function 

Input 

method 

parameters 

prediction 

= f(x;w)y = fw(x)

Sum-of-squared errors loss: 

Least squares estimate: 

L(w) =
NX

i=1

(yi � hw,xii)2

w⇤ = argminwL(w)= (XTX)�1XTy

y =

2

64
y1

...
yN

3

75
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Linear regression 
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Generalized linear regression 

x ! ���(x) =

2

64
�1(x)

...
�M (x)

3

75
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Ridge regression & cross-validation 

L(w) = ✏✏✏T✏✏✏+ �wTw

New objective:  

“data fidelity” complexity 

w⇤ = (XTX+ �I)�1XTy
Setting λ: cross-validation Setting w: 



9 

 
 
 
 
 
 
 
¨  We should be considering the function’s sign, not its value 

 

Inappropriateness of quadratic loss 

Linear Fit 
Computed Decision Boundary  

Desired decision boundary 

We chose the quadratic cost function for convenience 
Single, global minimum & closed form expression  

But does it indicate classification performance? 
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¨  We should be considering the function’s sign, not its value 

 

Today’s basic idea 

Linear Discriminant 

Computed Decision Boundary  

Desired decision boundary 

Use squashing function 

The higher, the better 

Our goal today: make this precise 
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Probability refresher 
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Probability Review -I 
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Probability Review -I 
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Joint, Marginal, Conditional Probability 



15 

Joint, Marginal, Conditional Probability 
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Continuous variables 
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Continuous variables 
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Gaussian (or Normal) distribution 
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Parameter estimation 
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Parameter estimation 
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22 
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Negative (of) log-likelihood 
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Negative (of) log-likelihood 
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@L(✓)

@✓
= 0
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Probabilistic formulation of linear regression-I 

x i ; yi ; i = 1 : : : Nx i

residuals 

✏i = yi �w

T
x

i

Residual: zero-mean Gaussian random variable 

Conditional model on observations: 

p(Y i
= yi|xi

;w

T
) =

1p
2⇡�

exp

✓
� (yi �w

T
x

i
)

2

2�2

◆

Y i = w

T
x

i + Ei
The R.V. its value 

deterministic 

random variables 

p(Ei
= ✏i) =

1p
2⇡�

exp

✓
� (✏i)2

2�2

◆
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Probabilistic interpretation of linear regression 

Training set: 

=

NY

i=1

1p
2⇡�

exp

✓
� (yi �w

T
x

i
)

2

2�2

◆

=

1

(

p
2⇡�)N

exp

 
� 1

2�2

NX

i=1

(yi �w

T
x

i
)

2

!

Independence  
assumption 

=> Least squares: Maximum Conditional Likelihood estimation of w 

{(x1, y1), . . . , (xN , yN )},x 2 RD, y 2 R
p(y1, . . . , yn|x1, . . . ,xN ) =

=
NY

i=1

p(yi|xi)
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Great, but only for real-valued outputs! 

Training set: 

=

NY

i=1

1p
2⇡�

exp

✓
� (yi �w

T
x

i
)

2

2�2

◆

=

1

(

p
2⇡�)N

exp

 
� 1

2�2

NX

i=1

(yi �w

T
x

i
)

2

!

Independence  
assumption 

{(x1, y1), . . . , (xN , yN )},x 2 RD, y 2 R
p(y1, . . . , yn|x1, . . . ,xN ) =

=
NY

i=1

p(yi|xi)
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From regression to classification 

Training set: 

Independence  
assumption 

{(x1, y1), . . . , (xN , yN )},x 2 RD, y 2 {0, 1}

? 

p(y1, . . . , yn|x1, . . . ,xN ) =

=
NY

i=1

p(yi|xi)
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Bernoulli distribution 

Discrete random variable  Y 2 {0, 1}

Compact form: 

= pc(1� p)1�c

1x2 table, 1 parameter: P (Y = 1) = p
P (Y = 0) = 1� P (Y = 1) = 1� p

P (Y = c) =

⇢
p c = 1

1� p c = 0
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Parametric model for posterior  

P (Y = 1|X = x;w) = f(x,w)
P (Y = 0|X = x;w) = 1� f(x,w)

�
!

P (Y = y|X = x;w) = f(x,w)y(1� f(x,w))1�y

What would be a reasonable expression for f? 
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Bayes’ rule  
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Sum and product rule 
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Bayes’ theorem 

P (A = a,B = b) = P (A = a,B = b)

P (A = a|B = b)P (B = b) = P (B = b|A = a)P (A = a)

P (A = a|B = b) = P (B=b|A=a)P (A=a)
P (B=b)

Product rule: 

Sum rule: 

Product rule: 

P (A = a|B = b) =
P (B = b|A = a)P (A = a)P

a0 P (B = b, A = a0)

P (A = a|B = b) =
P (B = b|A = a)P (A = a)P
a0 P (B = b|A = a0)P (A = a0)
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Bayes’ theorem 
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Binary classification problem 
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Binary classification problem 
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Binary classification problem 
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Binary classification problem 
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Binary classification problem 
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Binary classification problem 
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Binary classification problem 
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Binary classification problem 
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Binary classification problem 
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Binary classification problem 
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Binary classification problem 
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Bayes’ rule for binary classification problem 

Probability of observation, 
conditioned on class 

Probability of class, 
conditioned on observation 
(‘posterior’) 



48 

Binary Classification for Gaussian distributions 
Assumption: within each class, features follow a Gaussian distribution 

Special case: ⌃ = ⌃0 = ⌃1

Posterior: p(1|x) = p(x|1)p(1)P
c2{0,1} p(x|c)p(c)

p(X = x|y = c) =
1

p
2⇡

N |⌃c|1/2
exp

✓
�1

2

(x� µc)
T
⌃

�1
c (x� µc)

T

◆

Shortcut notation:                   instead of  p(X = x|C = c)p(x|c)

w = ⌃�1(µ1 � µ0) b =
1

2
(µT

0 ⌃
�1µ0 � µT

1 ⌃
�1µ1)

p(1|x) = 1

1 + exp (�(w

T
x+ b))
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¨  We should be considering the function’s sign, not its value 

 

Back to classification 

Least Squares Fit 
Computed Decision Boundary  

Desired decision boundary 

Linear Discriminant 
Desired & computed decision boundary 
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From regression to classification 

Training set: 

Independence  
assumption 

{(x1, y1), . . . , (xN , yN )},x 2 RD, y 2 {0, 1}

? 

p(y1, . . . , yn|x1, . . . ,xN ) =

=
NY

i=1

p(yi|xi)
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Form of posterior distribution 

P (Y = 1|X = x;w) = g(wT
x)

g(↵) =
1

1 + exp(�a)Sigmoidal: 

“squashing function”:  
�1 ! 0
+1 ! 1

P (Y = 1|X = x;w) = f(x,w)
P (Y = 0|X = x;w) = 1� f(x,w)

�
!

P (Y = y|X = x;w) = f(x,w)y(1� f(x,w))1�y

Bernoulli-type conditional distribution 

Particular choice of form of f: 
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From regression to classification, continued 

Training set: 

Independence  
assumption 

{(x1, y1), . . . , (xN , yN )},x 2 RD, y 2 {0, 1}

=
NY

i=1

g(wT
x

i)y
i

(1� g(wT
x

i))1�yi

Q1: How does this behave? Q2: How to optimize it with respect to w? 

p(y1, . . . , yn|x1, . . . ,xN ) =

logP (y|X;w) =

NX

i=1

log

⇣
g(wT

x

i
)

yi
⌘
+ log

✓�
1� g(wT

x

i
)

�(1�yi)
◆

=

NX

i=1

yi log g(wT
x

i
) + (1� yi) log(1� g(wT

x

i
))

=
NY

i=1

P (yi|xi)
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Loss function for linear regression 
Training: given         , estimate optimal  

Loss function: quantify appropriateness of  

w

w

L(S,w) =
NX

i=1

l(yi, fw(xi))

S = {(xi, yi)}, i = 1, . . . , N

=
NX

i=1

(yi �w

T
x

i)2 =
NX

i=1

(✏i)2
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Loss function for classification 
Training: given         , estimate optimal  wS = {(xi, yi)}, i = 1, . . . , N

L(S,w) = � logP (y|X;w)

= �
NX

i=1

yi log g(wT
x

i
) + (1� yi) log(1� g(wT

x

i
))

Loss function: quantify appropriateness of  w

=
NX

i=1

l(yi, fw(xi))

fw(xi) = w

T
x

iLinear discriminant: 

= �
NX

i=1

logP (yi|xi
;w)
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Rewriting the quadratic loss 

Consider transformation: 

l(y, fw(x)) = (y � fw(x))2

y2=1
= y2(y � fw(x))2

= (y2 � yfw(x))2

y2=1
= (1� yfw(x))2
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Inappropriateness of quadratic loss for classification 

Quadratic loss is not robust to outliers and penalizes outputs that are `too good’ 

Last slide: 
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Rewriting the cross-entropy loss 
As before: hw(x) = w

T
x

= 1� 1

1 + exp(�hw(x))

=

exp(�hw(x))

1 + exp(�hw(x))

=

1

1 + exp(hw(x))

P (Y = 1|X = x;w) =

1

1 + exp(�hw(x))

P (Y = �1|X = x;w) = 1� P (Y = 1|X = x;w)
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Rewriting the cross-entropy loss 
As before: hw(x) = w

T
x

P (Y = 1|X = x;w) =

1

1 + exp(�hw(x))

P (Y = �1|X = x;w) =

1

1 + exp(hw(x))

P (Y = y|X = x;w) =

1

1 + exp(�yhw(x))

L(S,w) =

NX

i=1

� logP (Y = yi|X = x

i
;w)

Last slide: 

Compact form: 

=

NX

i=1

log(1 + exp(�yihw(x

i
)))
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Log loss: 
a.k.a. “cross entropy” loss 
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Log loss vs. quadratic loss 

Log loss Quadratic loss 
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Logistic vs Linear Regression 

Logistic Regression 

Linear Regression Logistic regression is more robust 
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From two to many 

•  So far: binary classification 

•  How about multi-class classification? 
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Multiple classes & linear regression 
C classes: one-of-c coding (or one-hot encoding) 

4 classes, i-th sample is in 3rd class: 

Matrix notation: 

Loss function: 

Least squares fit (decouples per class): 

Y =

2

64
y1

...
yN

3

75

w⇤
c =

�
XTX

��1
XTyc

L(W) =
CX

c=1

(yc �Xwc)
T (yc �Xwc)

=
⇥
y1 . . . yC

⇤
yc =

2

64
y1c
...

yNc

3

75

W =
⇥
w1 . . . wC

⇤

where 
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Class 1 Class 2 Class 3 

Linear regression: masking problem 

Nothing ever gets assigned to class 2! 

2D version: 

One linear discriminant per class: sc(x) = w

T
c x
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Multiple classes & logistic regression 

Soft maximum (softmax) of competing classes: 

Softmax (outputs) Discriminants (inputs) 

P (y = c|x;W) =

exp(w

T
c x)PC

c0=1 exp(w
T
c0x)

.
= gc(x,W)
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Loss function for single-class classification 
Training: given         , estimate optimal  wS = {(xi, yi)}, i = 1, . . . , N

L(S,w) = � logP (y|X;w)

= �
NX

i=1

yi log g(wT
x

i
) + (1� yi) log(1� g(wT

x

i
))

Loss function: quantify appropriateness of  w

P (Y = y|X = x;w) = g(wT
x)y(1� g(wT

x))1�y

Bernoulli model for posterior distribution: 
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Bernoulli & Categorical distribution 

Binary random variable  Y 2 {0, 1}
Bernoulli Distribution: 

= pc(1� p)1�c

P (Y = c) =

⇢
p c = 1

1� p c = 0

Discrete random variable  Y 2 {1, . . . ,K}

P (Y = c) =

8
><

>:

p1, c = 1
...

pK , c = K

=
KY

k=1

p[c=k]
k

(where []: Iverson bracket) 



68 

Parameter estimation, multi-class case 

One-hot label encoding: 

(yi,xi)

L(W) = �
NX

i=1

CX

c=1

y

i
c log (gc(x,W))

Likelihood of training sample: 

Optimization criterion: 

P (yi|xi;w) =
CY

c=1

(gc(x,W))y
i
c
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Logistic vs Linear Regression, n>2 classes 

Logistic regression does not exhibit the masking problem 

Linear regression Logistic regression 
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70	
  

Non-­‐linear	
  detec0on	
  boundaries	
  

•  Datasets	
  that	
  are	
  linearly	
  separable	
  (with	
  some	
  noise)	
  work	
  out	
  great:	
  

•  But	
  what	
  are	
  we	
  going	
  to	
  do	
  if	
  the	
  dataset	
  is	
  just	
  too	
  hard?	
  	
  

•  How	
  about	
  …	
  mapping	
  data	
  to	
  a	
  higher-­‐dimensional	
  space:	
  

0 

x2 

x 

0 x 

0 x 

Sec. 15.2.3 
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71	
  

Non-­‐linear	
  decision	
  boundaries	
  

Φ:  x → φ(x) 

Sec. 15.2.3 
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Parameter estimation, non-linear case 

Linear case: 

Nonlinear case: 

L(W) = �
NX

i=1

CX

c=1

y

i
c log (gc(x,W))

L(W0
) = �

NX

i=1

CX

c=1

y

i
c log (gc(�(x),W

0
))
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Lecture outline 
Recap & problems of linear regression 

Logistic Regression 

Training criterion formulation 

Optimization 

Interpretation 
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Recap: Sum of squared errors criterion 

L(w0, w1) =
NX

i=1

⇥
y

i �
�
w0x

i
0 + w1x

i
1

�⇤2

L(w) =
NX

i=1

(✏i)2

yi = w

T
x

i + ✏i

Loss function: sum of squared errors 

Expressed as a function of two variables: 

Question: what is the best (or least bad) value of w? 
Answer: least squares 
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Gradient-based optimization 

2D function graph isocontours gradient field 

at minimum of function: 

f(x) f(x) = c rf(x) =

"
@f

@x1
@f

@x2

#

rf(x) = 0
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Recap: condition for optimum 

@L(w0, w1)

@w0
= 0 ó NX

i=1

y

i
x

i
0 = w0

NX

i=1

x

i
0x

i
0 + w1

NX

i=1

x

i
1x

i
0

ó 
NX

i=1

y

i
x

i
1 = w0

NX

i=1

x

i
0x

i
1 + w1

NX

i=1

x

i
1x

i
1

2 linear equations, 2 unknowns 

@L(w0, w1)

@w1
= 0
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Least squares solution, in vector form 

L(w) = ✏✏✏T✏✏✏
= (y �Xw)T (y �Xw)

= yTy � 2yTXw +wTXTXw

rL(w⇤) = 0

w⇤ = (XTX)�1XTy

Condition for minimum:  

�2XTy + 2XTXw⇤ = 0
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Gradient of cross-entropy los 

g(x) =

1

1 + exp(�x)

! dg

dx

= g(x)(1� g(x))

L(w) = �
X

i=1

yi log g(wT
x

i
) + (1� yi) log(1� g(wT

x

i
))

@L(w)

@wk
= �

NX

i=1


yi

1

g(wT
x

i)

@g(wT
x

i)

@wk
+ (1� yi)

1

1� g(wT
x

i)
(�@g(wT

x

i)

@wk
)

�

= �
NX

i=1


yi

1

g(wT
x

i)
� (1� yi)

1

1� g(wT
x

i)

�
g(wT

x

i)(1� g(wT
x

i))
@wT

x

i

@wk

Fact: 

= �
NX

i=1

⇥
y

i(1� g(wT
x

i))� (1� y

i)g(wT
x

i)
⇤
x

i
k

= �
NX

i=1

⇥
yi � g(wT

x

i)
⇤
x

i
k

Nonlinear system 
of equations!! 

N

rL(w⇤) = 0
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Gradient-based minimization 

rf(x) =

"
@f

@x1
@f

@x2

#

Fact: gradient at any point gives direction of fastest increase 
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Gradient-based minimization 

Idea: start at a point and move in the direction opposite to the gradient 

rf(x) =

"
@f

@x1
@f

@x2

#

Fact: gradient at any point gives direction of fastest increase 
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Gradient-based minimization 

rf(x) =

"
@f

@x1
@f

@x2

#

Idea: start at a point and move in the direction opposite to the gradient 

Fact: gradient at any point gives direction of fastest increase 
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Gradient-based minimization 

rf(x) =

"
@f

@x1
@f

@x2

#

Idea: start at a point and move in the direction opposite to the gradient 

Fact: gradient at any point gives direction of fastest increase 
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Gradient-based minimization 

Idea: start at a point and move in the direction opposite to the gradient 

rf(x) =

"
@f

@x1
@f

@x2

#

Fact: gradient at any point gives direction of fastest increase 

x0Initialize: 
Update: xi+1 = xi � ↵rf(xi) i=0 
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Gradient-based minimization 

rf(x) =

"
@f

@x1
@f

@x2

#

Update: xi+1 = xi � ↵rf(xi) i=1 
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Gradient-based minimization 

rf(x) =

"
@f

@x1
@f

@x2

#

Update: xi+1 = xi � ↵rf(xi) i=1 
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Gradient-based minimization 

rf(x) =

"
@f

@x1
@f

@x2

#

Update: xi+1 = xi � ↵rf(xi) i=2 
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Gradient-based minimization 

rf(x) =

"
@f

@x1
@f

@x2

#

Update: xi+1 = xi � ↵rf(xi) i=2 
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Gradient-based minimization 

rf(x) =

"
@f

@x1
@f

@x2

#

Update: xi+1 = xi � ↵rf(xi) i=3 
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Gradient descent minimization method 

x0Initialize: 
Update: xi+1 = xi � ↵rf(xi)

We can always make it converge for a convex function 

convex non-convex 
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Problems of gradient descent 

x0Initialize: 
Update: xi+1 = xi � ↵rf(xi)

How to set this? 

Step-size selection: 

Zig-zagging behavior: 
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Thought experiment: least squares 

x0Initialize: 
Update: xi+1 = xi � ↵rf(xi)

Sum of squared errors minimization: 

f(x) = (y �Dx)T (y �Dx)

We know solution can be obtained in single step – what is missing now?  

Gradient descent: 

May require many steps! 
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Least squares solution, in vector form 

L(w) = ✏✏✏T✏✏✏
= yTy � 2yTXw +wTXTXw

w⇤ = (XTX)�1XTy
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Second-order methods 

First- order Taylor series approximation: 

Second-order Taylor series approximation: 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6 blue: 
f(x) = x

2 � log(b) + exp(

x

20

)

f(x) ' f(a) + (x� a)f 0(a) + e(x)

f(x) = f(a) + (x� a)f 0(a) +
1

2
(x� a)2f 00(a) + e(x)

green: linear approximation 
l(x) = f(a) + (x� a)f 0(a)

red: quadratic approximation 

q(x) = f(a) + (x� a)f 0(a) +
1

2
(x� a)2f 00(a)
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Second-order minimization, 1D 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6
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Second-order minimization, 1D 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6
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Second-order minimization, 1D 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6
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Second-order minimization, 1D 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6
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Second-order minimization, 1D 

At any point, form quadratic approximation:  

Condition for minimum of quadratic approximation:  

Until update is too small  

f(x) ' q(x) = f(xi) + (x� xi)f
0(xi) +

1

2
(x� xi)

2
f

00(xi)

q

0(x) = 0 ! f

0(xi) + (x� xi)f
00(xi) = 0

Set point in next iteration to be at the minimum of present approximation 

xi+1 = xi �
f

0(xi)

f

00(xi)

x0Start from some inititial position, 

Note: f’’ sets the update rate α as the inverse of curvature 



99 
Second-order methods, multivariate case 

First- order Taylor series approximation: 

Second-order Taylor series approximation: 

f(x) ' f(xi) + (x� xi)
Trf(xi)

f(x) ' f(xi) + (x� xi)
Trf(xi) +

1

2
(x� xi)

TH(x� xi)
.
= q(x)

Hi,j =
@2f

@xi@xj
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Second-order minimization, 1D 

At any point, form quadratic approximation:  

Condition for minimum of quadratic approximation:  

Until update is too small  

f(x) ' q(x) = f(xi) + (x� xi)f
0(xi) +

1

2
(x� xi)

2
f

00(xi)

q

0(x) = 0 ! f

0(xi) + (x� xi)f
00(xi) = 0

Set point in next iteration to be at the minimum of present approximation 

xi+1 = xi �
f

0(xi)

f

00(xi)

x0Start from some inititial position, 
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Second-order minimization, N-D (Newton-Raphson) 

At any point, form quadratic approximation:  

Condition for minimum of quadratic approximation:  

Until update is too small  

Set point in next iteration to be at the minimum of present approximation 

Start from some inititial position, x0

f(x) ' q(x) = f(xi) + (x� xi)
Trf(xi) +

1

2
(x� xi)

TH(xi)(x� xi)

xi+1 = xi � (H(xi))
�1rf(xi)

rq(x) = 0 ! rf(xi) + (x� xi)
TH(xi) = 0
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Newton-Raphson for Logistic Regression 

Gradient: 

Hessian: 

@L(w)

@wk
= �

NX

i=1

⇥
yi � g(wT

x

i)
⇤
x

i
k

@2L(w)

@wk@wj
=

@
⇣
�
PN

i=1

⇥
yi � g(wT

x

i)
⇤
x

i
k

⌘

@wj

=
NX

i=1

x

i
k
@g(wT

x

i)

@wj
=

NX

i=1

x

i
kg(w

T
x

i)(1� g(wT
x

i))xi
j
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Summation- and matrix-based expressions 

H(w) = X

T
RX, Ri,i = g(wT

x

i)(1� g(wT
x

i))
Matrix version of same result: 

Hk,j =
@2L(w)

@wk@wj
=

NX

i=1

x

i
kg(w

T
x

i)(1� g(wT
x

i)xi
j


