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Lecture outline 

Optimization 

Kernels 

Applications to vision 

Large margins and generalization 

Introduction to Support Vector Machines 

Geometric margins 
Training criterion & hinge loss 
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Our path so far (week 1-2) 
Week 1 - regression: geometric Week 2: probabilistic interpretation 

Week 2: switch to classification 
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Week 2: log loss vs. quadratic loss 

Log loss Quadratic loss 
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Do we need the logistic loss? 
Week 2: Useful criterion for training classifiers 

Maybe we can quickly hack an easy algorithm 

Least squares: Gauss, 1795 

Logistic Regression: Cox, 1958 

Perceptrons, Minsky & Papert, 1969 
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Perceptron algorithm 

f(x) = <w,x> 
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Perceptron algorithm (first ‘neural network’) 

This lecture: push separating line far away! 
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Which classifier is best? 

All points should lie clearly on the correct side of the boundary 
How can we quantify this?  

How can we enforce this? 
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Functional Margins  

Consider Logistic Regression: 

Ideally: 

Put together: 

`functional margin’ 

Problem: scaling w changes functional margin, but not decision boundary 

P (y = 1|x;w) = g(wT
x) =

1

1 + exp(�w

T
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w

T
x

i � 0, if yi = 1
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T
x

i ⌧ 0, if yi = �1

yi(wT
x

i) � 0

We need a measure of margin that is invariant to the scale of w 
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Geometric Margins 

What is the 
distance of this 
point from the 
decision 
boundary?  
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What is the 
distance of this 
point from the 
decision 
boundary?  

Discriminant  

Geometric Margins 

y(x) = w

T
x+ b
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What is the 
distance of this 
point from the 
decision 
boundary?  

Geometric Margins 

Discriminant  

y(x) = w

T
x+ b
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Geometric Margins 

        : projection of x on decision boundary 
x?

w

T
x? + b = 0

Discriminant  

y(x) = w

T
x+ b
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Geometric Margins 

�

Discriminant  

y(x) = w

T
x+ b
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Geometric Margins 
Point = projection + distance* direction 

Note: γ is independent of |w| 

Multiply: 

Rewrite (                                    )  : 
w

T
x? + b = 0

Solve for  γ: 
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Geometric Margins 

� =
w

T
x+ b

|w|

Geometric Margin: 

(positive if x is on the correct size of the decision boundary) 
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Which classifier is best? 

All points should lie clearly on the correct side of the boundary 
How can we quantify this? (large margins!) 

How can we enforce this? 
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Lecture outline 

Optimization 

Kernels 

Applications to vision 

Large margins and generalization 

Introduction to Support Vector Machines 

Geometric margins 
Training criterion & hinge loss 
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What should we be optimizing? 

{(x1, y1), . . . , (xN , yN )}Training set: 

Candidate parameter vector: 

Related margins: 

(w, b)

Should we be optimizing the mean, max, min margin? 

All points should lie clearly on the correct side of the boundary 
1) Take points that do not lie clearly on the correct side  
2) Make sure they do 

�i = yi
w

T
x

i + b

kwk
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Geometric algorithm 
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Intuitive justification of theorem 
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Least clear positives Support vectors: hardest points 

Least clear negatives 
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SVM, sketch of derivation 
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Representer theorem 
Objective: find w that maximizes the margin subject to margin constraints   

Equivalently: 

Representer Theorem: we can prove that the minimum is a 
linear combination of the training points 

min
w
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s.t. yi
�
w

T
x

i + b
�
� 1 8i

min
w

2

kwk
s.t. yi

�
w

T
x

i + b
�
� 1 8i

w

⇤ =
NX

i=1

↵i
�
yixi

�

max 



25 

Least clear negatives 

Least clear positives Support Vector Machine (SVM) 

Solution depends only on ‘Support Vectors’ 
w

⇤ =
NX

i=1

↵i
�
yixi

�
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Primal and dual problems 
Primal, in terms of w: 

w

⇤ =
NX

i=1

↵i
�
yixi

�

=
NX

i=1

NX

j=1

↵i↵jyiyjhxi,xji

kw⇤k2 = hw⇤,w⇤i

=

*
NX

i=1

↵iyixi,
NX

j=1

↵jyjxj

+

Dual, in terms of           : ↵↵↵ = (↵1, . . . ,↵N ) min
↵↵↵

NX

i=1

NX

j=1

↵i↵jyiyjhxi,xji

s.t. : yi

0

@
NX

j=1

↵jyjhxj ,xii+ b

1

A � 1, i = 1, . . . , N

min
w

kwk2

s.t. : yi(wT
x

i + b) � 1, 8i

But: where 
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Primal vs dual 
Primal: 

Dual: min
↵↵↵

NX

i=1

NX

j=1

↵i↵jyiyjhxi,xji

Primal and dual classifier forms: 

f(x) = hw,xi+ b =
NX

i=1

↵iyihxi,xi+ b

min
w

kwk2

s.t. : yi(wT
x

i + b) � 1, 8i

s.t. : yi

0

@
NX

j=1

↵jyjhxj ,xii+ b

1

A � 1, 8i

w 2 RD ! O(D3)

↵↵↵ 2 RN ! O(N3)

Dual can be faster if N<D!  

Both forms: quadratic programming problems - can be solved exactly 
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What is the “best” decision plane? 

Best: understood at test time 

Maybe we could sacrifice classifying some training points correctly 

All points on the 
correct side! 

But this looks 
better overall! 
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Tuning the model’s complexity 
A flexible model approximates the target function well in the training set 

  but can “overtrain” and have poor performance on the test set (“variance”) 

A rigid model’s performance is more predictable in the test set 

 but the model may not be good even on the training set (“bias”) 
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Least clear positives 
SVMs so far: all points are separated by hyperplane 

Least clear negatives 
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Slack variables: let us make (but also pay) some errors 
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Objective for separable data 

min
w,⇠⇠⇠

kwk2 + C
NX

i=1

⇠i

s.t. : yi(wT
x

i + b) � 1� ⇠i, 8i
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misclassification when ξ>1    

Objective for non-separable data 

:upper bound on number of errors 

newcomers min
w,⇠⇠⇠

kwk2 + C
NX

i=1

⇠i

s.t. : yi(wT
x

i + b) � 1� ⇠i, 8i
⇠i � 0, 8i

C: hyperparameter  

(cross-validation!) 
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Loss function 

Optimization problem: 

Rewrite first constraint: 

What if we plug that in the optimization objective? 

yihw,b(x) � 1� ⇠i

Compact form for both constraints at minimum:  

⇠i = [1� yihw,b(x)]+

= max(1� yihw,b(x), 0)
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Loss function 
Optimization problem: 

Hinge loss: 

Support Vectors 

regularizer additive loss  
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Hinge loss 
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Hinge loss vs log-loss getting larger than 1: 
does not harm, but also 
does not help  
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Hinge loss vs log-loss vs quadratic 
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Lecture outline 
Recap  

Optimization 

Kernels 

Applications to vision 

Large margins and generalization 
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Generalization Error 

¨  What is model complexity? 
¨  Number of parameters, magnitude of discriminant w? 
¨  Analyze complexity of hypothesis class 

 
¨  Linear classifiers: 

¨  Different decision boundaries 
¨  Different generalization performance 

¨  Test error > training error 
¨  Which line gives smallest test error? 
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Learning Theory 
 
¨  V. Vapnik, 1968  

¨  Mainstream Statistics: Large-sample analysis (`in the limit’) 
¨  Pattern Recognition: Small sample properties 

¨  Distribution-free bounds on worst performance 
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Empirical and Actual risk 
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Actual and Empirical Risk 
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Tuning the model’s complexity 
A flexible model approximates the target function well in the training set 

A rigid model’s performance is more predictable in the test set 

VC dimension 
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Vapnik Chervonenkis (VC) Dimension 

•  Shattering: 

 
 
•  VC dimension 

•  Example 
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Arbitrary linear classifier in N-dimensions: VC-dim= N+1 
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X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

Reminder: K-nearest neighbor classifier 

– Compute distance to other training records 
– Identify K nearest neighbors  
– Take majority vote 
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Training data for NN classifier (in R2) 
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1-nn classifier prediction (in R2) 
 

What is the VC dimension of this classifier? 
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1-nn classifier prediction (in R2) 
 

What is the VC dimension of this classifier? 
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VC dimension of 1-nearest neighbor classifier? 

–   VC dimension of 1-NN: infinite 

–   VC dimension of N-dimensional linear classifier: N+1 
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Large Margins & VC Dimension 

•  Vapnik: 

•  If we maximize the margins, feature dimensionality does not matter 
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“There’s nothing more practical than a good theory” 
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“There’s nothing more practical than a good theory” 
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Support vectors for Faces (P&P 98) 
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SVMs in computer vision 

Slide credit: A. Vedaldi 
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Image features 

Slides: A. Vedaldi, http://www.robots.ox.ac.uk/~vedaldi/assets/teach/vedaldi14bmvc-tutorial.pdf 
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Desirable feature properties 

Slide credit: A. Vedaldi 
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Histogram of Gradient (HOG)/SIFT Features 

Slide credit: A. Vedaldi 
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Dalal and Triggs, ICCV 2005 

–  Histogram of Oriented Gradient (HOG) features  
–  Highly accurate detection using linear SVM 
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HOG features for pedestrians 
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SVMs and Pedestrians 
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SVMs and Pedestrians 
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SVMs and Pedestrians 
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67 
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Pedestrian detection: almost done in 2005 
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Papageorgiou & Poggio (1998) 
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Lecture outline 
Recap  

Optimization 

Kernels 

Applications to vision 

Large margins and generalization 
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Non-separable data 
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72	  

Non-‐linear	  SVMs	  

•  Datasets	  that	  are	  linearly	  separable	  (with	  some	  noise)	  work	  out	  great:	  

•  But	  what	  are	  we	  going	  to	  do	  if	  the	  dataset	  is	  just	  too	  hard?	  	  

•  How	  about	  …	  mapping	  data	  to	  a	  higher-‐dimensional	  space:	  

0 

x2 

x 

0 x 

0 x 

Sec. 15.2.3 
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73	  

Non-‐linear	  SVMs:	  	  Feature	  spaces	  

•  General	  idea:	  	  	  the	  original	  feature	  space	  can	  always	  be	  mapped	  to	  some	  
higher-‐dimensional	  feature	  space	  where	  the	  training	  set	  is	  separable:	  

Φ:  x → φ(x) 

Sec. 15.2.3 
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Solution by inspection: hand-crafted features  
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More general method 
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Nonseparable in 2D 
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Separable in 3D 
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Linear regression 
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Nonlinear regression 

x ! ���(x) =

2

64
�1(x)

...
�M (x)

3

75
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Example: second-order polynomials 

x = (x1, x2)

hw,�

�

�(x)i = w0 + w1x1 + w2x2 + w3x
2
1 + w4x

2
2 + w5x1x2

�

�

�(x) =

2

6666664

1
x1

x2

(x1)2

(x2)2

x1x2

3

7777775
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Non-linear Classifiers 

So far, decision is based on the sign of  

Use non-linear transformation, φ(x) of our data, x 

e.g. 

Non-linear in x, linear in φ(x) 

Discriminant: 

y = w

T
x

x = (x1, x2)

hw,�

�

�(x)i = w0 + w1x1 + w2x2 + w3x
2
1 + w4x

2
2 + w5x1x2

�

�

�(x) =

2

6666664

1
x1

x2

(x1)2

(x2)2

x1x2

3

7777775
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Dual form of SVM & kernel trick 
Optimization: min

↵↵↵

NX

i=1

NX

j=1

↵i↵jyiyjhxi,xji

Primal and dual classifier forms: 

f(x) = hw,xi+ b =
NX

i=1

↵iyihxi,xi+ b

s.t. : yi

0

@
NX

j=1

↵jyjhxj ,xii+ b

1

A � 1, 8i

↵↵↵ 2 RN ! O(N3)

What if we replace x with φ(x)? 

Everything involves only inner products! 

K(x,y) = h���(x),���(y)i
Rewrite everything in terms of Kernel  
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Dual form of SVM & kernel trick 
Optimization: 

Dual classifier form: 

min
↵↵↵

NX

i=1

NX

j=1

↵i↵jyiyj K
�
x

i,xj
�

s.t. : yi

0

@
NX

j=1

↵jyjK(xj ,xi) + b

1

A � 1, i = 1, . . . , N

f(x) =
NX

i=1

↵iyiK(xi,x) + b

=
X

{i:↵i 6=0}

wiK(xi,x) + b, wi = yi↵i

f(x) =
X

k

wk�k(x)Compare with general nonlinear form:   

N nonlinear functions – smart choice of sparse coefficients  
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`Kernel trick’ 

Consider: 

We then have: 

Polynomial Kernel  
Kernel: linear complexity in D (dimensions of x,y), constant in p 

.
= K(x,y)

K(x,y) = (xT
y + 1)p

Feature space complexity: much higher 

�

�

�(x) =

2

6666664

x

2
1

x

2
2p

2x1x2p
2x1p
2x2

1

3

7777775

h���(x),���(y)i =
= x

2
1y

2
1 + 2x1x2y1y2 + x

2
2y

2
2 + 2x1y1 + 2x2y2 + 1

= (x1y1 + x2y2 + 1)2

= (xT
y + 1)2
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Condition for kernel trick: ‘Mercer’ kernel 
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Mercer Kernel Examples 

Linear kernel 

Polynomial kernel 

Radial Basis Function  (a.k.a. Gaussian) kernel 

K(x,y) = (xT
y + 1)p

K(x,y) = x

T
y

K(x,y) = exp

✓
� 1

2�2
kx� yk2

◆

Underlying feature dimension:  Infinite 
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If you cannot believe it 
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RBF kernel SVM (next week’s assignment) 

f(x) =
NX

i=1

↵iyiK(xi,x) + b

=
X

{i:↵i 6=0}

↵iyiK(xi,x) + b

=

X

{i:↵i 6=0}

wi
exp

✓
� 1

2�2
kxi � xk22

◆
+ b

Discriminant form: sum of bumps centered on training points 
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RBF-SVM example 
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RBF-SVM example 
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RBF-SVM example 
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RBF-SVM example 
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RBF-SVM example 
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RBF-SVM example 
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RBF-SVM example 
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All of the flexibility you may need is there 
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X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

Reminder: K-nearest neighbor classifier 

– Compute distance to other training records 
– Identify K nearest neighbors  
– Take majority vote 
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Large margins for nonlinear classifiers 

 
Margin size: determined by both σ and regularizer 

We can slide between a linear and a Nearest-Neighbor classifier! 
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Guyon & Vapnik, 1995 
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Application: Handwritten digit recognition 
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Guyon & Vapnik 1995 
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Support vectors for Faces (P&P 98) 
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Linear vs. Nonlinear 

Slide credit: A. Vedaldi 
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Other kernels 

•  From http://www.kernel-methods.net/kernels.html 

Kernel Functions Described in the Book: 
Definition 9.1 Polynomial kernel 286 
Computation 9.6 All-subsets kernel 289 
Computation 9.8 Gaussian kernel 290 
Computation 9.12 ANOVA kernel 293 
Computation 9.18 Alternative recursion for ANOVA kernel 296 
Computation 9.24 General graph kernels 301 
Definition 9.33 Exponential difiusion kernel 307 
Definition 9.34 von Neumann difiusion kernel 307 
Computation 9.35 Evaluating difiusion kernels 308 
Computation 9.46 Evaluating randomised kernels 315 
Definition 9.37 Intersection kernel 309 
Definition 9.38 Union-complement kernel 310 
Remark 9.40 Agreement kernel 310 
Section 9.6 Kernels on real numbers 311 
Remark 9.42 Spline kernels 313 
Definition 9.43 Derived subsets kernel 313 
Definition 10.5 Vector space kernel 325 
Computation 10.8 Latent semantic kernels 332 
Definition 11.7 The p-spectrum kernel 342 
Computation 11.10 The p-spectrum recursion 343 
Remark 11.13 Blended spectrum kernel 344 
Computation 11.17 All-subsequences kernel 347 
Computation 11.24 Fixed length subsequences kernel 352 

 
Computation 11.33 Naive recursion for gap-weighted 
subsequences kernel 358 
Computation 11.36 Gap-weighted subsequences kernel 360 
Computation 11.45 Trie-based string kernels 367 
Algorithm 9.14 ANOVA kernel 294 
Algorithm 9.25 Simple graph kernels 302 
Algorithm 11.20 All�non-contiguous subsequences kernel 350 
Algorithm 11.25 Fixed length subsequences kernel 352 
Algorithm 11.38 Gap-weighted subsequences kernel 361 
Algorithm 11.40 Character weighting string kernel 364 
Algorithm 11.41 Soft matching string kernel 365 
Algorithm 11.42 Gap number weighting string kernel 366 
Algorithm 11.46 Trie-based p-spectrum kernel 368 
Algorithm 11.51 Trie-based mismatch kernel 371 
Algorithm 11.54 Trie-based restricted gap-weighted kernel 374 
Algorithm 11.62 Co-rooted subtree kernel 380 
Algorithm 11.65 All-subtree kernel 383 
Algorithm 12.8 Fixed length HMM kernel 401 
Algorithm 12.14 Pair HMM kernel 407 
Algorithm 12.17 Hidden tree model kernel 411 
Algorithm 12.34 Fixed length Markov model Fisher kernel 427  
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Text Classification: Examples 

•  Classify news stories as World, US, Business, SciTech, 
Sports, Entertainment, Health, Other 

•  Classify student essays as A,B,C,D, or F.  
•  Classify email as Spam, Other. 
•  Classify email to tech staff as Mac, Windows, ..., Other. 
•  Classify movie reviews as Favorable,Unfavorable,Neutral. 
•  Classify technical papers as Interesting, Uninteresting. 
•  Classify jokes as Funny, NotFunny. 
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Text Classification: Examples 

•  Best-studied benchmark: Reuters-21578 newswire stories 
–  9603 train, 3299 test documents, 80-100 words each, 93 classes 

ARGENTINE 1986/87 GRAIN/OILSEED REGISTRATIONS 
BUENOS AIRES, Feb 26 
Argentine grain board figures show crop registrations of grains, oilseeds 

and their products to February 11, in thousands of tonnes, showing 
those for future shipments month, 1986/87 total and 1985/86 total to 
February 12, 1986, in brackets: 

•   Bread wheat prev 1,655.8, Feb 872.0, March 164.6, total 2,692.4 
(4,161.0). 

•   Maize Mar 48.0, total 48.0 (nil). 
•   Sorghum nil (nil) 
•   Oilseed export registrations were: 
•   Sunflowerseed total 15.0 (7.9) 
•   Soybean May 20.0, total 20.0 (nil) 
The board also detailed export registrations for subproducts, as follows....  

Categories: grain, wheat (of 93 binary choices) 
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Representing text for 
classification 

ARGENTINE 1986/87 GRAIN/OILSEED REGISTRATIONS 
BUENOS AIRES, Feb 26 
Argentine grain board figures show crop registrations of grains, oilseeds and their 

products to February 11, in thousands of tonnes, showing those for future 
shipments month, 1986/87 total and 1985/86 total to February 12, 1986, in 
brackets: 

•   Bread wheat prev 1,655.8, Feb 872.0, March 164.6, total 2,692.4 (4,161.0). 
•   Maize Mar 48.0, total 48.0 (nil). 
•   Sorghum nil (nil) 
•   Oilseed export registrations were: 
•   Sunflowerseed total 15.0 (7.9) 
•   Soybean May 20.0, total 20.0 (nil) 
The board also detailed export registrations for subproducts, as follows....  

f( )=y 
? What is the best representation 

for the document x being 
classified? 

simplest useful 
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Bag of words representation 

ARGENTINE 1986/87 GRAIN/OILSEED REGISTRATIONS 
BUENOS AIRES, Feb 26 
Argentine grain board figures show crop registrations of grains, oilseeds and 

their products to February 11, in thousands of tonnes, showing those for future 
shipments month, 1986/87 total and 1985/86 total to February 12, 1986, in 
brackets: 

•   Bread wheat prev 1,655.8, Feb 872.0, March 164.6, total 2,692.4 (4,161.0). 
•   Maize Mar 48.0, total 48.0 (nil). 
•   Sorghum nil (nil) 
•   Oilseed export registrations were: 
•   Sunflowerseed total 15.0 (7.9) 
•   Soybean May 20.0, total 20.0 (nil) 
The board also detailed export registrations for subproducts, as follows....  

Categories: grain, wheat 
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Bag of words representation 

xxxxxxxxxxxxxxxxxxx GRAIN/OILSEED xxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxx grain xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx grains, oilseeds 

xxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx tonnes, xxxxxxxxxxxxxxxxx 
shipments xxxxxxxxxxxx total xxxxxxxxx total xxxxxxxx  
xxxxxxxxxxxxxxxxxxxx: 

•   Xxxxx wheat xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx, total xxxxxxxxxxxxxxxx 
•   Maize xxxxxxxxxxxxxxxxx 
•   Sorghum xxxxxxxxxx 
•   Oilseed xxxxxxxxxxxxxxxxxxxxx 
•   Sunflowerseed xxxxxxxxxxxxxx 
•   Soybean xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx....  

Categories: grain, wheat 
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Bag of words representation 

xxxxxxxxxxxxxxxxxxx GRAIN/OILSEED xxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxx grain xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx grains, oilseeds 

xxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx tonnes, 
xxxxxxxxxxxxxxxxx shipments xxxxxxxxxxxx total xxxxxxxxx total 
xxxxxxxx  xxxxxxxxxxxxxxxxxxxx: 

•   Xxxxx wheat xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx, total 
xxxxxxxxxxxxxxxx 

•   Maize xxxxxxxxxxxxxxxxx 
•   Sorghum xxxxxxxxxx 
•   Oilseed xxxxxxxxxxxxxxxxxxxxx 
•   Sunflowerseed xxxxxxxxxxxxxx 
•   Soybean xxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx....  

Categories: grain, wheat 

grain(s) 3 
oilseed(s) 2 
total 3 
wheat 1 
maize 1 
soybean 1 
tonnes 1 

... ... 

word freq 
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Margin-based Learning 

+ + + 
+ + 

+ + + 

+ + 
+ + 

+ + 

+ 

+ + 

+ 

- 
- - 

- - 
- 

- 
- - 

- 
- 

- 

- 

- - - - - 

- 
- 
- - 

- - 
- - 

+ 

- - 

The number of features matters not if the 
margin is sufficiently wide and examples 
are sufficiently close to the origin (!!) 
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Support Vector Machine Results 
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Sequence Data versus Structure and Function 

>1A3N:A HEMOGLOBIN  

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGK 

KVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPA 

VHASLDKFLASVSTVLTSKYR  

>1A3N:B HEMOGLOBIN 

VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV 

KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK 

EFTPPVQAAYQKVVAGVANALAHKYH 

>1A3N:C HEMOGLOBIN 

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGK 

KVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPA 

VHASLDKFLASVSTVLTSKYR 

>1A3N:D HEMOGLOBIN 

VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV 

KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK 

EFTPPVQAAYQKVVAGVANALAHKYH  

 

Sequences for four chains of  
human hemoglobin 

Tertiary Structure 

Function:  
oxygen transport 
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Learning Problem 

•  Reduce to binary classification problem: positive (+) if 
example belongs to a family (e.g. G proteins) or 
superfamily (e.g. nucleoside triphosphate hydrolases), 
negative (-) otherwise 

•  Use supervised learning approach to train a classifier 

Labeled Training Sequences Classification Rule 
Learning Algorithm 

•  What we need: feature map from protein sequences to vector space 
•  Goals: 

–  Computational efficiency 
–  Competitive performance with known methods 
–  General method 
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k-Spectrum Feature Map 
•  Feature map for k-spectrum with no mismatches: 

–  For sequence x, F(k)(x) = (Ft  (x)){k-mers t}, where Ft (x) = #occurrences of t in x	

AKQDYYYYEI 

( 0 , 0 , … , 1 , … , 1 ,    …   , 2 ) 
 AAA AAC  …  AKQ  …  DYY     …    YYY   
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(k,m)-Mismatch Feature Map 
•  Feature map for k-spectrum, allowing m mismatches: 

–  if s is a k-mer, F(k,m)(s) = (Ft(s)){k-mers t}, where Ft(s) = 1 if s is within m mismatches 
from t, 0 otherwise 

AKQ 
DKQ 

EKQ AAQ 

AKY … … 

String kernel: 

–  For sequences x, y, kernel is inner product in feature space: K(x, y) =  F(x), F(y) 
 

–  Can be efficiently computed via traversal of appropriate data structure (“trie”) 

 

C. Leslie, E. Eskin, and W. Noble, The Spectrum Kernel: A String Kernel for SVM 
Protein Classification.   Pacific Symposium on Biocomputing, 2002. 
C. Leslie, E. Eskin, J. Weston and W. Noble, Mismatch String Kernels for SVM Protein 
Classification.  NIPS 2002. 
D. Haussler, Convolution kernels on discrete structures, 1999 
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Appendix 
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Slack variables: let us make (but also pay) some errors 
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misclassification when ξ>1    

Objective for non-separable data 

:upper bound on number of errors 

newcomers min
w,⇠⇠⇠

kwk2 + C
NX

i=1

⇠i

s.t. : yi(wT
x

i + b) � 1� ⇠i, 8i
⇠i � 0, 8i

C: hyperparameter  

(cross-validation!) 
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Support Vectors 

•  `Support Vectors’ 

From complementary slackness (KKT) 

where 

Therefore: 

From mimimum w.r.t. w: 

Interpretation: µ is nonzero only for points on the margin (hardest points) 

Interpretation: only points on the margin contribute to the solution 

Intuitively ok: we want to maximize the margins of the hardest cases 
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Decision Hyperplanes & Support Vectors 
Use support vectors to determine 

Support Vector Machine decision hyperplane: 
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Non-separable data 

Primal: 

Lagrangian: 

Dual: 
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KKT conditions – nonseparable case 

 

 
 

 

Complementary slackness 

Case analysis: 

Interpretation: influence, µ, of any training point is bounded in [0,C] 

Complementary slackness 
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Hinge Loss 
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Loss function for SVM training  

Optimization problem: 

Hinge loss: 

Support Vectors 
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Appendix 

•  Primal and Dual form of SVMs: the full story 

References: 

S. Boyd and L. Vandeberghe: Convex Optimization (textbook) 

C. Burges: A tutorial on SVMs for pattern recognition 
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Duality 

•  Constrained optimization problem: 
 

•  Equivalent to unconstrained problem: 

•  Soften constraint terms: 
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Lagrangian 

•  Replace hard constraints with soft ones 
 

 
•  Observe that 

•  At an optimum: 

 

You do your 
worst, and we 
will do our best 
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Lagrange Dual Function 

•  Form 

•  θ : lower bound on optimal value of the original problem 

 
•  Therefore:  

 



130 

 
•  Maximize the lower bound on the cost of the primal 

•  In general: 

 

•  For convex cost and convex constraints (SVM case): 
 
 
 
 

Dual Problem 
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Complementary Slackness 

•  Assume         w   

•  There exists a feasible solution                                       
      to the primal and dual problems, such that 
 
 
 
•  We will have 
 

 
 

•  This means 
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Karush-Kuhn Tucker (KKT) Conditions 

•  Solution of the primal problem: 
–   minimum of the Lagrangan w.r.t. the primal variables 

–  therefore 
 
 
•  Putting all constraints together: KKT conditions 
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Problem Lagrangian 

Primal: 

Lagrangian: 

Optimum w.r.t.     : 

Optimum w.r.t.     : 
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Dual for Large-Margin Classifier-I 

Plug optimal values into Lagrangian: 
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Dual for Large-Margin Classifier-II 

Equivalent optimization problem: 


