Introduction to Machine Learning

Gradient Descent

Week 6: Optimization, Regularization,
and Applications of Deep Learning
lasonas Kokkinos

i.kokkinos@cs.ucl.ac.uk
University College London

Multi-Layer Perceptrons (~1985)

Compare outputs

to get error signal

Back-propagate
Sroriana e o
derivatives for
learning

i ! p u Vect ?W‘%‘WNWW

Slide credits: G. Hinton

Back-propagation in a nutshell

Error messages, ‘0’, at current layer:
sensitivity of loss to activations of current layer

Every node estimates its error message by forming a
weighted sum of the error messages of its recipients

lllustration of the calculation of 4; for hidden unit 57 by
backpropagation of the é’s from those units & to which
unit 5 sends connections. The blue arrow denotes the
direction of information flow during forward propagation,
and the red arrows indicate the backward propagation
of error information.

Forward/backward information flow

We can use the same
51 algorithm to learn in any
Directed Acyclic Graph!

C(Xn, Y)

' A
XnI ﬂ dE/dXn

)

Wn
dE/dW n«j Fn(Xn-1, Wn)

Xn-11 | dE/dXn-1
)

Xi: Edﬁ dXi \
W "1 Fi(Xi-1, Wi) ‘
dE/dWjet=
Xi-1* | dE/dXi-1

1]

X1l| }ﬂ dE/dX1

w9 "1 F1(X0, W1)
dE/dw 1=

X0 ' desired
input X output Y

Deep Learning: breakthrough for all of Al

This burrito place |, X
is yummy and fun! e

Next 10 slides: Week 1 reminder

Our goal in this course: learn an input-output mapping

y = ful®) (= f(z,w))

Output:
Input:

y
X
Method: f
Parameters: w

How to construct this function?

« Step 1: Determine its inputs, x

Low-Risk

High-Risk

features

Feature example: Haar wavelets (NOT part of our course)

C

Value = (pixels in area) — > (pixels in black area)

Why these feat&? 519 [10
Extremely fv. mpute

13 (22| 25

2
4

o
3 6 | 15] 21| 32 39
1
3

10| 20| 31| 46| 59
16| 29 | 42| 58| 74

inputimage integral image

(4 pixel operdions per box)

One Haar wavelet feature

Feature example: Histogram-of-gradient features (NOT part of our course)

.

L T W e

e e = S

= -

Feature example: Bag-of-word features (NOT part of our course)

VQ: Vector
Quantization

Image classification in a nutshell (NOT part of our course)

VQ

i

_/

[Luong & Malik, 1999]
[Varma & Zisserman, 2003]
[Csurka et al, 2004]

[Vogel & Schiele, 2004]
[Jurie & Triggs, 2005]
[Lazebnik et al, 2006]

Linear SVM [Bosch et al, 2006]

Machine Learning for X: features for X + ML

This burrito plac
is yummy a

fixed unsu pe

unsupervised supervised

Parse Tree

=] syntactic n-grams classifier

fixed unsupervised supervised

Our course

This burrito place
is yummy and fun!

SIFT/HOG

fixed

fixed

Parse Tree
Syntactic

K-Means/
pooling

unsupervised

Mixture of
Gaussians

unsupervised

n-grams

classifier

supervised

classifier

supervised

classifier

fixed

unsuperviseq

supervised

Deep Learning: learn the features!

This burrito place |, X
is yummy and fun! e

All you need is gradients

Forward

X

Backward

oL
0X
-

Deep Learning = Hierarchical Compositionality

Low-Level Mid-Level High-Level Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained .on ImageNet from [Zeiler & Fergus 2013]

Convolutional Nets

Inpuc layer (S!) 4 feature maps

1 (Cl) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

convolution layer l sub-sampling layer | convolution layer | sub-sampling layer |fully connected MLP

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5
39530 6@28x28

S2: f. maps

C5: layer .
6@14x14 y F6: layer OUTPUT

‘ Full coanection Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Image Credit: Yann LeCun, Kevin Murphy

Taking a closer look: Images as functions

Gaussian Noise

IHE_EI Image Noise process Gaussian i.i.d. (“white") noise:
flz,y)= flz,y) + nlz,y) ne,y) ~ N(u, o)

Averaging = Filtering

“box filter”

Gaussian Smoothing

« (Gaussian kernel

. 1 _(:c2+2y?)
= e 20
¢ 2702

* Weighs nearby pixels more
than distant ones

: el : i
002 : [
0.m

o= 2 with o =5 with
30%x30 kernel 30x30 kernef?

Smoothing by Averaging

depicts box filter:
white = high value, black = low value

Original Filtered
“Ringing” artifacts!

Smoothing by Gaussian filtering

Original Filtered

Original Filtered

Sharpening Filter

Original

Sharpening filter

Sharpening Filter

before

Image processing application

Original

High Frequency Emphasis
+

Histogram Equalization

Filters, filters, filters

Decades of research in image processing

Demos:

http://setosa.io/ev/iimage-kernels/

Methods:
http://www.ipol.im/

Open-ended: how does it connect with a given application?

Question: can we learn how to do this?
(or any other type of image processing)

Answer: all you need Is gradients

Forward

X

Backward

oL
0X
-

Fully Connected Layer

Example: 200x200 image
40K hidden units
~2B parameters!l!

=

LT ‘»-"'f..

- Spatial correlation is local
- Waste of resources + we have not enough

training samples anyway..

Locally Connected Layer

Y »z :; \
I v —
g ,fé z - —
&4 /A . 47 4 ‘ -

A 7 \

| / - .
& t -~ ¢

o

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g.,
face recognition).

Locally Connected Layer

Y 4
P
ny
y 3
N | ;
prarery
¥ ‘/ &
R
..l' N7
‘T(/ A / i
‘) L /
? .
e 7 o
. ‘ - 4
L
A s /]

Example: 200x200 image
40K hidden units
. Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g.,
. face recognition).

Convolutional Layer

/
(]
F

LS

.'

i
r
<

A
i

I'l .
7
y »
4

7. ¥
& 5 y'/-’ -
ot Z z g4 A ,/
P 4 y y.
o -
/
p

Share the same parameters across
different locations (assuming input is

stationary):
Convolutions with learned kernels

S
O
>
©
]
©
-
O
=
=
O
>
C
O
&

AN AVAN

S
O
>
©
]
©
-
O
=
=
O
>
C
O
&

S
O
>
©
]
©
-
O
=
=
O
>
C
O
&

S
O
>
©
]
©
-
O
=
=
O
>
C
O
&

S
O
>
©
]
©
-
O
=
=
O
>
C
O
&

S
O
>
©
]
©
-
O
=
=
O
>
C
O
&

S
O
>
©
]
©
-
O
=
=
O
>
C
O
&

NN AN A

S
O
>
©
]
©
-
O
=
=
O
>
C
O
&

S
O
>
©
]
©
-
O
=
=
O
>
C
O
&

S
O
>
©
]
©
-
O
=
=
O
>
C
O
&

NWARNAY,

S
O
>
©
]
©
-
O
=
=
O
>
C
O
&

S
O
>
©
]
©
-
O
=
=
O
>
C
O
&

S
O
>
©
]
©
-
O
=
=
O
>
C
O
&

D\ D\ el

S
O
>
©
]
©
-
O
=
=
O
>
C
O
&

S
O
>
©
]
©
-
O
=
=
O
>
C
O
&

S
O
>
©
]
©
-
O
=
=
O
>
C
O
&

“Fully-connected” layer

#of parameters:
K2

“Convolutional” layer

#of parameters:
size of window

Convolutional Layer

fbf fl

\"1 (N

Convolutional Layer

.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

Convolutional Layer

#input channels

h;" = max q 0,

PR

output input feature kernel
feature map map

0

Convolutional Layer

#input channels

h;" = max q 0,

PR

output input feature kernel
feature map

0

Convolutional Layer

#input channels

h;" = max q 0,

PR

output input feature kernel
feature map map

0

Pooling Layer

Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to
the exact location of the eye?

Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

Pooling Layer: Receptive Field Size

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:

(P+K-1)x(P+K-1

S

A\

WA

"\ LS\
\

Pooling Layer: Receptive Field Size

hn—l h" hﬂ+1

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)x(P+K-1)

Convolutional Nets

Inpuc layer (S!) 4 feature maps

1 (Cl) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

convolution layer l sub-sampling layer | convolution layer | sub-sampling layer |fully connected MLP

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5
39530 6@28x28

S2: f. maps

C5: layer .
6@14x14 y F6: layer OUTPUT

‘ Full coanection Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Image Credit: Yann LeCun, Kevin Murphy

Deep learning, AD 1993

http://yann.lecun.com/exdb/lenet/
(LeNet 5, 1998)

https://www.youtube.com/watch?v=FwFduRA L6Q
(LeNet 1, 1993)

The 82
errors made
by LeNet5

PN
L RO
(A

oo
I
\4
‘_.I
N
v
(¢ o]
()
|
\"4
U

o
)

(]
1
\"
[O%)
o
1
v
~J
[
1
v
~J

oy
L

L ¥S)
i
v
N]
=
|
A\
(X
(=2}
i
v
—

<J
=3
L o

(V%
I
\'4
wn
o
v
o
[= 2]
1
v
o

>

L=
I
v
o
=9

Notice that most of the
errors are cases that
people find quite easy.

v
(¥
It
v
=

-
v
o

LS]
t
v

un

oo
{
\d
wn
(O8]
|
\'4
oo

The human error rate is
probably 20 to 30 errors
but nobody has had the
patience to measure it.

O

O
b
v
[

~J
I

\'2

Do

What happened in between?

® artificial intelligence ® deep learning “ gpu ® data science

Search term Search term Search term Search term

Worldwide + 2004 - present ¥ All categories ¥ Web Search +

® big data

Search term

Interest over time @

Jan 1, 2004 Jul 71,2008

deep learning = neural networks (+ big data + GPUs)

T S A el

Computer Vision Data: Big and Complicated
http://www.image-net.org/

IM&GENET

EUIE B VN REH G adE WY F
@ o5 s Ty Dl MR Vi
HET Pl s A0 3 4 "=

mammal — placental — camivore — canine — dog — workingdog

et. al, ImageNet: A Large-Scale Hierarchical Image Database, CVPR’09

Computer Vision Data: Big and Complicated
http://www.image-net.org/ o et catgory | £SSL RS EIMISES DT 1 e

amphibian 94 591 56K

IMAGENET

appliance 1164 58K

bird
D“Eral I covering

device

« Total number of non-empty synsets: 21841 fabric
« Total number of images: 14,197,122 e
« MNumber of images with bounding box annotations: 1,034,908

flower

food

fruit

fungus

furniture

geological formation

invertebrate

mammal

musical instrument

plant

reptile

sport

structure

tool

tree

utensil

vegetable

vehicle

person

ImageNet: A Large-Scale Hierarchical Image Database, CVPR’09

Computer Vision Data: Big and Complicated

Examples of hammer:

Deep Learning for image classification

Image

A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with
deep convolutional neural networks. NIPS13

Examples from the test set (with the network’s guesses)

cheeta

fat 1Rt i Faa plig i MM.IN & Intn 3o Bikan i

cheetah

leopard
snow leopard

Egyptian cat

bullet train

bullet tr#in

passenger car

subway train

electric locomotive

scissors

hand glass

H#ing pan

Shocon

Error rates on the ILSVRC-2012 competition

classification

University of Toronto (Alex Krizhevsky) e 16.4%

University of Tokyo e 26.1%

Oxford University Computer e 26.9%
Vision Group

INRIA (French national research 27.0%
institute in CS) + XRCE (Xerox

Research Center Europe)

, , 29.5%
University of Amsterdam

Imagenet top-5 error rates

motor scooter

mite motor scooter

black widow go-kart
cockroach amphibian moped
tick fireboat bumper car snow leopard

drilling platform golfcart Egyptian cat

- -
|

Humans:5.4%

onvertible almatian S QU I monkey

grille grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus rdshire bullterrier indri
dea

fire engine d-man's-fingers currant howler monkey

A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural
networks. NIPS13 [16.4%] (best shallow competitor: 26%)

K. He, X. Zhang, S. Ren, J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance
on ImageNet Classification, ICCV 2015. [4.5%]

S. loffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift, ICML 2015. [4.5%]

K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, CVPR, 2016 [3.6%]

CNNs, 2010+

AlexNet

VGG

178 204 sosg \dense
13
13 dense dense
1000
128 Max L | L
pooling 294 2048
s T —
N N —= o~ -
- -« O Ml e
wn wnm O w w9
" 0 o 0 '
> > > > > 3
= = © o = o
L= o =) L=

FC-1000

softmax

ResNet
[He et al. 2015]

DenseNet
[Huang et al 2017]

pod, /2

Input

33 conv, 64

[

HE
-]
z
8
8
-

343 conv, 128

[uognioaucy |

Dense Block 1
W Zab Tabr T

33 conv, 128
[[ewmus |

[uvognionuoy |
Buyood

33 conv, 128

| It L
B I Bt e
AN 2 A A
Dense Block 2 9
> (@@ +® 20 _..E
i 4 O &
: g

33 o, 128 . S
| s e |
Y
3x3 conv, 256

33 conv, 256 P .

33 conv, 256

363 conv, 256

Bunood
Y

343 conv, 256

‘ﬁlﬁnﬁl.r
88
3| B

3x3 con,
33 conv, 256

o
=)
&
E
S
-
P

Dense Block 3
,—-Q——v.;:v.?.

Womsz |

conv, 512 .

3
avg pool
fc 1000

Prediction

‘horse”

The deeper, the better

» Deeper networks can cover more complex problems
— Increasingly large receptive field size
— Increasingly non-linear patterns

Revolution of Depth

152 layers }

’ 22 layers ’ ‘ 19 Iayers
\ 6.7 I

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

What is in the network?

Visualizing deep convolutional neural networks using natural pre-images,
A. Mahindra and A. Vedaldi

What is in the network?

Visualizing deep convolutional neural networks using natural pre-images,
A. Mahindra and A. Vedaldi

What is in the network?

Visualizing deep convolutional neural networks using natural pre-images,
A. Mahindra and A. Vedaldi

What is in the network?

Visualizing deep convolutional neural networks using natural pre-images,
A. Mahindra and A. Vedaldi

What is in the network?

Visualizing deep convolutional neural networks using natural pre-images,
A. Mahindra and A. Vedaldi

What is in the network?

Visualizing deep convolutional neural networks using natural pre-images,
A. Mahindra and A. Vedaldi

What is in the network?

AlexNet “black swan” AlexNet “goose”

VGG M “frog” VGG M “black swan” VGG M “cheeseburger”

VGG VD “frog” VGG VD “black swan” VGG VD “goose” VGG VD “cheeseburger”

Visualizing deep convolutional neural networks using natural pre-images,
A. Mahindra and A. Vedaldi

Question: How did this happen?

Answer: All you need is gradients!

Forward

X

>

Backward

oL
0X
-

Transfer Learning

Input N AN\
A I | | 11 {| Task

(e

Layer n

Transfqr

AnB: Frozen
{ghts

Back-propagation

Input Il | Task
B B

Back-propagation Fine-tuning

Qualitative Results

« Object detection
— Faster R-CNN + ResNet

e TS

person 0.998 - umbrella: 0.910

a
4

A a
| — A —_—
\motorcycle : 0.943
! ‘.r . -'x

person : 0.998

handbag : 0.665 -

I

moto"cycle

chaircl0,757).972 chair T 0.639

A

|

I J
|
|

;
|

|

Qualitative Results

* |nstance Segmentation

person

person

person
person

person

backpack

backpack
P skis

Deep learning, AD 1993

https://www.youtube.com/watch?v=FwFduRA L6Q
(LeNet 1, 1993)

http://yann.lecun.com/exdb/lenet/ 4 B & 1 § # 8 8 & »3\
(LeNet 5, 1998) 4->6 3->5 B->2 2->1 5->3 4->8 2->8 3->5 6->5

§ 9% >5>%072%

9->4 7->8 5->3 8~>7 0->6 3I->7 2->7 8->3

The 82 errors 8%2 4{3 'z w 3%8 4-?>9 5;{1 9->4
made by LeNet5 § L b &

9->4 6->1 9->5 6->0 6->0 6->0

A

4->6

9->7

6->5
4

8->7

9-55

]
/' LA
580588
) ‘
\ 2

.4',4
6->1

Deep Learning, AD 2016

mli:e

motor scooter

mite

black widow
cockroach
tick

container s 'r
ip

motor scooter

lifeboat
amphibian
fireboat

drilling platform

go-kart
moped
bumper car
golfcart

Madagascar cat

convertible
grille

pickup
beach wagon
fire engine

agaric

mushroom

Jjelly fungus

gill fungus
dead-man’'s-fingers

grape

elderberry
rdshire bullterrier
currant

squirrel monkey
spider monkey
titi

indri

howler monkey

Humans:5.4%

A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural

networks. NIPS13

[18%] (best shallow competitor: 36%)

K. He, X. Zhang, S. Ren, J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance
on ImageNet Classification, http://arxiv.org/abs/1502.01852, 2015. [4.5%]

S. loffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift, http://arxiv.org/abs/1502.03167, 2015. [4.5%]
K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, Arxiv, 2015 [3.6%]

What happened in between?

® artificial intelligence ® deep learning “ gpu ® data science ® big data

Search term Search term Search term Search term Search term

Worldwide + 2004 - present ¥ All categories ¥ Web Search +

Interest over time @

Jan 1, 2004

deep learning = neural networks (+ big data + GPUs)

+ a few more recent tricks!

Neural network training: old & new tricks

Old: (80’s)
Stochastic Gradient Descent, Momentum, “weight decay”
New: (last 5-6 years)

Dropout

RelLUs

Batch Normalization

Residual Networks

Neural network training: old & new tricks

Old: (80’s)
Stochastic Gradient Descent, Momentum, “weight decay”
New: (last 5-6 years)
Dropout

RelLUs

Batch Normalization

Residual Networks

Gradient Descent "~ —

“Big data”: sometimes too big!

Challenges: fitting everything in memory

Keeping computational cost of training under control

“Large-Scale” Learning (checkout GI09: Applied Machine Learning)

Computer Vision Data: Big and Complicated
http://www.image-net.org/ i vl category | ¥ A mageS 3T | iy mage

amphibian 94 591 56K

IMAGENET

appliance 51 1164 58K

bird
D“Erall covering

device

« Total number of non-empty synsets: 21841 fabric
« Total number of images: 14,197,122 e
« Number of images with bounding box annotations: 1,0:34,908

flower

food

fruit

fungus

furniture

millions of images for academia e——

invertebrate

mammal

billions of images for industry ...

plant

reptile

sport

structure

tool

tree

utensil 86 TEK

vegetable 176 135K

vehicle 481 778 374K

person 2035 468 Q52K

ImageNet: A Large-Scale Hierarchical Image Database, CVPR’09

How large is large?

* Heavily-modified Caffe C++ toolbox

* Multiple GPU support
* 4 x NVIDIA Titan, off-the-shelf workstation
* data parallelism for training and testing

e ~3.75 times speed-up, 2-3 weeks for training

image batch

Simonyan & Zisserman, 2014

Training objective, multi-class case
Weeks 7-8:

One-hot label encoding: y' = (0,0,1,0)

Likelihood of training sample: y , X)

C
P(y'|x";w) = H (9c(x, W)) e
c=1

Optimization criterion:
N C
> ;L: log (gc (Xa W))

4
1=1 c=1

Parameter estimation: Gradient of L with respect to W

Training objective for classification

C |
Likelihood of training sample’s label: P(y*|x"; w) = H (gC(Xi, W))yc

c=1

N C
Cost function: L(W) =— Z Z y" log (gc(Xi, W))

1=1 c=1

c
= yelog (g(x', W)

c=1

. 1
Normalize: L’(W) —
N

g1 (Xa W)

i gC’(X.a W) _

N
Add regulanzahon.L(W) _ ~ E :l(y",y) + Al (Wi)m)
i=1 [

k,m

for all layers (I), and all input (k) —output (m) connection weights

Training objective for classification

LIW) = & 310059 + 0 S (W,
1=1 [

k,m

Gradient descent: Wt_|_1 =W, — GVWL(Wt)

(I,k,m) element of gradient vectog

oL

I-th example

If N=10° , we will need to run back-prop 106 times to update W once!

Stochastic Gradient Descent (SGD)

Gradient: Batch: [1..N]
OL B yz yz)
o [

k.m

| ZAZWL,m

Noisy (‘Stochastic’) Gradient: Minibatch: B elements
b(1), b(2) b(B): sampled from [1,N]

oL 1 Zf)z yb(®, 5o
oW, awl

z:l

Epoch: N samples, N/B batches

Regularization in SGD: weight decay

Gradient: Batch: [1..N]
oL y',y'

[o [

oW, — W

k.m

) | ZAZWL,m

Noisy (‘Stochastic’) Gradient: Minibatch: B elements
b(1), b(2) b(B): sampled from [1,N]

Epoch: N samples, N/B batches

Is Stochastic Gradient Descent faster?

-

Epoch: N/B batches

& stochastic

deterministic

=
e
S
QO
e
"
O
S
V

\‘"
S0
=)

T—

In one epoch SGD performs
= N/B more updates than GD!

N: 106,B = 10: 100000 x more steps

time

Current research:
best of both worlds?
2nd order (Newton-Raphson-like) methods?

“Right” SGD: active research topic

— AdaGrad

-- ai-SGD

-+ ASGD

- Prox-SAG
-+ Prox—-SVRG
-=- 8SGD

Learning rate

low learning rate

high learning rate

good learning rate

Gradient Descent

VAVAVAV/

(S)GD with adaptable stepsize

w* w w* w :
Too small: converge Too big: overshoot and w’ w
very slowly even diverge Reduce size over time

(S)GD with momentum

Main idea: retain long-term trend of updates, drop oscillations

(S)GD Wt—|—1 = W, — EtVWL(W)

(S)GD + momentum

Vipr = pVe+ (1 — p)VwL(Wy)
Wir1 =W — 6 Vi

Neural network training: old & new tricks

Old: (80’s)
Stochastic Gradient Descent, Momentum, “weight decay”
New: (last 5-6 years)

Dropout
RelLUs

Batch Normalization

Residual Networks

Regularization in Deep Learning
Weight Decay: just before

Convolutional Networks: last week

C3:f. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5

INPUT
32x32 SaHbEs S2: f. maps

B@14x14

| Fu!tcanllnection | Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Dropout: now

(b) After applying dropout.

Dropout

a) Standard network (b) Dropout network

Figure 3: Comparison of the basic operations of a standard and dropout network.

Voting Methods

Give up idea of building "the’ classifier
Generate a group of base-learners which has higher accuracy when
combined
Main tasks
— Generating the learners
— Combining them

Why should this work? Week 5 Lecture _

ittee of M ictors for target output 1
Committee o predlc Oors 10r target outipu 'yc()M(X) _ ﬁ Z 'ym(X)

Output: true value + error y(x) = h(X) + E(X)

Expected sum of squares error for m-th expert:
Ex[(ym (x) — h(x))?] = Ex[em(x)]

Average error of individual members: 1 M
_ 2
EAV — ﬂ Z Ex [Em (X) }

m=1

Average error of committee: { |

Test
Sample 1

Learning
Algorithm

— | SR —
—//

S— 7//

Test
Sample 2

Learning
Algorithm

\
_— b //

Training
Examples

—

S

Test
Sample 3

Learning
Algorithm

\

g 4

N —

o

Bootstrapped AGGregatiING (BAGGING)

—> (lassifier 1

—> (lassifier 2

o

—> (Classifier 3

-

Combined
Classifiers

!

Prediction

>

————

Dropout

(b) After applying dropout.

Each sample is processed by a ‘decimated’ neural net

Decimated nets: distinct classifiers
But: they should all do the same job

Improving neural networks by preventing co-adaptation of feature detectors
GE Hinton, N Srivastava, A Krizhevsky, | Sutskever, RR Salakhutdinov, arXiv, 2012, JMLR 2014
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

Dropout block

a) Standard network (b) Dropout network

Figure 3: Comparison of the basic operations of a standard and dropout network.

0

i/~ Bernoulli(p),

w§l+1)yl+b§l+”, y(l) — 0 *y(),

£, g) = w Uy e,

(
y§z+1) f (Z§l+1))'

‘Feature noising’

Test time: Deterministic approximation

Present with Always
probability p present
(a) At training time (b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output
at training time.

At test time, the weights are scaled as W(I) = pW(l) as

$—4 Monte-Carlo Model Averaging

shown in Figure 2. The resulting neural network is used ' Approximate averaging by weight scaling

without dropout.

[

It

Ln
T

An expensive but more correct way of averaging the models is to'
sample k neural nets using dropout for each test case and '
average their predictions. As k — «, this Monte-Carlo model
average gets close to the true model average.

=

[

[=]
T

-

b

wn
T

Test Classification error %

=

=

=]
T

By computing the error for different values of k we can see how .

U

“HIII||I1II|||||||I|

quickly the error rate of the finite-sample average approaches thg ' |I”| (T HH

error rate of the approximate model average.

20 40 &l a0 100
Mumber of samples used for Monte-Carlo averaging (ki

Dropout performance

|
2
i
|
c
L
=
m
e
=
L]
L]
AL
()

0 200000 400000 600000 800000 1000000
Number of weight updates

Figure 4: Test error for different architectures
with and without dropout. The net-
works have 2 to 4 hidden layers each
with 1024 to 2048 units.

Dropout performance

IR WK
- 20RE2N 2
1" YOl B
LT B
HSREEN - - El
| GeE (S0 [0 | SREl
71l (T
o NS - 5.8
o o AR - TNER B
BN N [E

(a) Street View House Numbers (SVHN)

=Y . EAED
CEATE R
Eml NEN ¥ DR
SRS Tl LT
P i R
s [o [N
LEESRS AN E
LRGPl
SErT P
dHGREES S

(b) CIFAR-10

Method

Binary Features (WDCH) (Netzer et al., 2011)

HOG (Netzer et al., 2011)

Stacked Sparse Autoencoders (Netzer et al., 2011)

KMeans (Netzer et al., 2011)

Multi-stage Conv Net with average pooling (Sermanet et al., 2012)
Multi-stage Conv Net + L2 pooling (Sermanet et al., 2012)
Multi-stage Conv Net + L4 pooling + padding (Sermanet et al., 2012)
Conv Net + max-pooling

Conv Net + max pooling + dropout in fully connected layers
Conv Net + stochastic pooling (Zeiler and Fergus, 2013)

Conv Net + max pooling + dropout in all layers

Conv Net + maxout (Goodfellow et al., 2013)

Human Performance

Table 3: Results on the Street View House Numbers data set.

Method CIFAR-10

CIFAR-100

Conv Net + max pooling (hand tuned) 15.60
Conv Net + stochastic pooling (Zeiler and Fergus, 2013) 15.13
Conv Net + max pooling (Snoek et al., 2012) 14.98
Conv Net + max pooling + dropout fully connected layers 14.32
Conv Net + max pooling + dropout in all layers 12.61
Conv Net + maxout (Goodfellow et al., 2013) 11.68

43.48
42.51

41.26
37.20
38.57

Table 4: Error rates on CIFAR-10 and CIFAR-100.

Dropout performance

Figure 6: Some ImageNet test cases with the 4 most probable labels as predicted by our model.
The length of the horizontal bars is proportional to the probability assigned to the labels
by the model. Pink indicates ground truth.

Model Top-1 Top-5

Sparse Coding (Lin et al., 2010) 47.1 28.2
SIFT + Fisher Vectors (Sanchez and Perronnin, 2011) 45.7 25.7
Conv Net + dropout (Krizhevsky et al., 2012) 37.5 17.0

Table 5: Results on the ILSVRC-2010 test set.

Top-1 Top-5
Model (val) (val)
SVM on Fisher Vectors of Dense SIFT and Color Statistics - -
Avg of classifiers over FVs of SIFT, LBP, GIST and CSIFT - -
Conv Net + dropout (Krizhevsky et al., 2012) 40.7 18.2
Avg of 5 Conv Nets + dropout (Krizhevsky et al., 2012) 38.1 16.4

Table 6: Results on the ILSVRC-2012 validation/test set.

Neural network training: old & new tricks

Old: (80’s)
Stochastic Gradient Descent, Momentum, “weight decay”
New: (last 5-6 years)

Dropout
RelLUs

Batch Normalization

Residual Networks

‘Neuron’: cascade of linear and nonlinear function

0 wy

*® synapse
axon from a neuron

cell body f (zwm +b)

output axon

activation
function

Sigmoidal (“logistic”) Rectified Linear Unit (RELU)

- exlp = g(a) = max(0, a)

Vo

g(a)

A neural network in backward mode: 44
exp(by)

Thi
Is we want e This we computed

Je obl = 24 oglbn. |~ Yk T Yk

A neural network in backward mode: 44
Hidden layer

A neural network in backward mode: 44
Hidden layer

Linear layer in forward mode: all for one

Linear layer in backward mode: one from all

H

E <hWh . m

h=1

— oL
<« o,

—OL Ob.
8[)6 8zh_

c=1 c=1

Linear layer parameters in backward: 1-to-1

H

bm — E <hWh . m

h=1

+ oL

A neural network in backward mode: 44
Hidden layer

his we ha““i'his we computed

) il iz g
K o _abmf

A neural network in backward mode: 44
Hidden layer

his we ha““i'his we computed

ol 1\0b,,, ol
— —w-m

A neural network in backward mode: 44
Hidden layer

A neural network in backward mode: 44
Hidden layer

A neural network in backward mode: 44
Hidden layer

from above
ﬁ ol 0z,

Vanishing gradients problem

Gradient signal
from above

Ol Ozm ol
o = 2 e .' o) |- ot o) |

Do this 10 times: updates in the first layers get minimal

scaling: <1 (actually <0.25)

Top layer knows what to do, lower layers “don’t get it”

1

Sigmoid s(z) ——
Derivative s'(z) ——

0.8 |

Sigmoidal Unit:
Signal is not getting through!

0.6

04 -

Vanishing gradients problem: ReLU solves it

Gradient signal Scaling: {0,1}

from above
ﬁ B ol 0z,
day. 8zm Oap — m

Do this 10 times: updates in the first layers can remain large

Top layer knows what to do, lower layers “ get it”

Rectified Linear Unit (RELU)
g9(a) = max(0,a)
1 a>0
/
a) =

g (a) 0 a<0
Vinod Nair and Geoffrey Hinton
(2010). Rectified linear units

improve restricted Boltzmann
machines. ICML.

Neural network training: old & new tricks

Old: (80’s)
Stochastic Gradient Descent, Momentum, “weight decay”
New: (last 5-6 years)

Dropout
RelLUs

Batch Normalization

Residual Networks

Covariate Shift Problem

Train speech recognition system with British speakers,
test with Americans

* Traditional machine learning
must contend with covariate Covariate Shift ,:W'N'Na \

shift between data sets.

blog.bigmi.com

Covariate shift in a single day

10 am

“Whitening”: set mean = 0, variance = 1
Photometric transformation: [>al+b

_ Make each patch have zero mean:
L — 1
ﬂ ey St

€T
Original Patch and Intensity Values Y

Zlx,y)=1{r,y) —p
. WM“I’_ Then make it have unit variance:

Brightness Decreasec gl = 1 E :Z(:I?, ,y)Q

N
.1

- ——

Contrast increased,

Internal Covariate Shift

Neural network activations: moving target

time = 1

/' | time =N

Yy .
+

o meri
t

“/_\ \
/ \ i =

-

Internal Covariate Shift

Neural network activations: moving target

logistic unit activation
during MNIST training
* Covariate shifts occur

across layers in a deep
network.

Performing domain
adaptation or whitening is
impractical in an online
setting.

Batch Normalization

Whiten-as-you-go:

// mini-batch mean

 Normalize the activations
In each layer within a mini-
batch.

// mini-batch variance

// normalize

¥i « 7Z; + B = BN, 3(zi) // scale and shift

* Learn the mean and

variance (7, 8) of each ——
layer as parameters _ i S

(b) Without BN (c) With BN

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
S loffe and C Szegedy (2015)

Batch Normalization

Whiten-as-you-go:

// mini-batch mean

 Normalize the activations
In each layer within a mini-
batch.

// mini-batch variance

// normalize

¥i « 7Z; + B = BN, 3(zi) // scale and shift

* Learn the mean and

variance (7, 8) of each ——
layer as parameters _ i S

(b) Without BN (c) With BN

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
S loffe and C Szegedy (2015)

Batch Normalization: used in all current systems

* Multi-layer CNN's train
faster with fewer data

samples (15x).

* Employ faster learning
rates and less network
regularizations.

precision @ 1

number of mini-batches

 Achieves state of the art
results on ImageNet.

Neural network training: old & new tricks

Old: (80’s)
Stochastic Gradient Descent, Momentum, “weight decay”
New: (last 5-6 years)

Dropout
RelLUs

Batch Normalization

Residual Networks

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual
Learning for Image Recognition”. CVPR 2016 (best paper award).

The deeper, the better

» Deeper networks can cover more complex problems
— Increasingly large receptive field size
— Increasingly non-linear patterns

Revolution of Depth

152 layers }

’ 22 layers ’ ‘ 19 Iayers
\ 6.7 I

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Going Deeper

« From 2to 10: 2010-2012
— RelLUs
— Dropout

Revolution of Depth

[22 layers 19 Iaye rs

\67

.' I I o

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Going Deeper

e From 10 to 20: 2015
— Batch Normalization

Revolution of Depth

[22 layers 19 Iaye rs

\67

.' I I o

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Going Deeper

e From 20 to 100/1000
— Residual networks

Revolution of Depth

[22 layers 19 Iaye rs

\67

.' I I o

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Plain Network

« Plain nets: stacking 3x3 conv layers
» 56-layer net has higher training error and test error than 20-layer net

CIFAR-10
train error (%) test error (%)

56-layer
56-layer

20-layer
20-layer

2 3
iter. (1e4)

Plain Network

error (%)

“Overly deep” plain nets have higher training error
A general phenomenon, observed in many datasets

Counterintuitive: deeper network should be stronger, right?
— ldea: make sure deeper network can fallback to the shallow solution.

CIFAR-10 ImageNet-1000

56-layer
44-|ayer

32-layer

34-layer

W 20-layer

“plam-2(
plamn-32

—Fainsq solid: test/val 18-layer
) : : : : : = 20 L - 1 L
iter. (1e4) dashed: train 30

iter. (led)

Residual Network

 Nalive solution

— If extra layers are an identity
mapping, then training errors can
not increase

Residual Network

 Plain block

— Difficult to make identity
mapping because of multiple
non-linear layers

any two
stacked layers

"

weight layer

lrelu

weight layer

rel
HE) l elu

Residual Network

 Residual block

— If identity were optimal,
easy to set weights as 0

— If optimal mapping is closer

to identity, easier to find X
small fluctuations weight layer
relu : :
-> Appropriate for treating F(x) . l 'deht'ty
perturbation as keeping a base weight layer X

information

H(x) =F(x) + x

Residual modelling: basic idea In Image processing

« Difference between an original image and a changed image

Preserving base information

can treat
perturbation

Residual Network

 Deeper ResNets have lower training error

n
-

error (%)

S
=

——ResNet-18
- ResNet-34
0 10

iter. (led)

Residual Network

 Residual block
— Very simple
— Parameter-free

y

, 64

’rau

, 64 |
relu

Y

1x1, 256

A naive residual block “bottleneck” residual block
(for ResNet-50/101/152)

Network Design

— —
1x1 conv, 256 1x1 conv, 256 1x1 conv, 256

| 1x1 conv, 64]
R [: v 363 conv, 256
eS N et_ 1 52 L Sdcom 6l | e 343 oV, 256

1x1 conv, 256 ———— 1x1 conv, 1024
—_—

—

1x1 conv, 6 3x3 conv, 256 1x1 conv, 256

Use bottlenecks ——

S conv, 256 [odeom256] Ixd conv, 256
— 1x1 conv, 1024

HIH 1xicom, 64 [33 conv. 256 —
— eS e - I I 0 n A S = 1x1 conv, 256
- 3x3 conv, 64 1x1 conv, 1024 | 1x1 conv, 1024
Ix1 conv, 256] x1 conv, 256 3x3 conv, 256

FLOPs) has lower o=

.
3x3 conv, 128 Ladconv, 104 it 1x1 conv, 256

complexity than VGG-16/19 = — ————

1x1 conv, 128 R 33 conv, 256
Tx1 conv, 1024 1x1 conv, 1024

aggs Ty [Ixdcow,102] e

[1x1 conv, 512

T 3x3 conv, 256 33 conv, 256 3x3 conv, 256
F I O PS e] [Scom 0
| 3x3 conv, 128 = 1x1 conv, 1024

1x1 conv, 256 1x1 conv, 256

1x1 conv, 512 _lxl cony, 256
3x3 conv, 256 33 conv, 256

1x1 conv, 128

1x1 conv, 1024 Tl conv, 1024 2 oy, 256
3x3 conv, 128 | —

1x1 conv, 256 x1 conw, 256 1x1 conv, 1024

Ix1 conv, 512 N I
e [38256]
X3 conv, ¥ 1x1 conv, 512, /2
1x1 conv, 128 o] 1x1 conv, 1024
— —— [3x3conv,512]

3x3 conv, 128 T com, 256 31 conv, 256

1x conv, 512 3 conv, 256 33 conv, 256 Tl conw, Z048

1x1 conv, 128 1x1 conv, 1024 1x1 conv, 1024 1x1 conv, 512

553 conv, 128 [deomzs] [5% 3%3 conv, 512

1x1 conv, 512 [IGcom, 256 |
— ix1 conv, 2048

1x1 conv, 128 11 conv, 1024 Ix1 conw, 1024 e
— 1x1 conv, 512

—
[3%3 conv, 128 1x1 conv, 256 L 1x1 conv, 256
3x3 conv, 256 [3x3 conv, 256 3x3 conv, 512

[_ixconv.1024 1x1 conv, 2048

ixiconv, 128 —_—
-
3x3 conv, 128 ave pool, fc 1000
3x3 conv, 256 33 conv, 256
1x1 conv, 1024 1x1 conv, 1024

1x1 conv, 256, /2 — —
Txl conv, 256 i conv, 256
33 conv, 256 3.3 conv, 256
1 conv, 1024 [Ixiconv, 1024

1x1 conv, 256 1x1 conv, 256
(=256] 3 conv, 256 533 conv, 756

1x1 conv, 512

T conv, 512

3x3 conv, 256
1x1 conv, 1024

1x1 conv, 256

Ix1 conv, 1024 Txi conv, 1024 TxI conv, 1024

Results

 Deep Resnets can be trained without difficulties
 Deeper ResNets have lower training error, and also lower test error

CIFAR-10 plain nets CIFAR-10 ResNets

20-layer

4 32-layer

i

:‘.\ — T 4;{4—.’*‘"'
WA : 44-layer
O 56-layer
solid: test 110-layer
, : : ; :

dashed: train

Results

 Deep Resnets can be trained without difficulties
 Deeper ResNets have lower training error, and also lower test error

ImageNet plain nets

34-layer

e

-
o

solid: test ~

dashed: train 18-layer
2I0 3’0 40 :

iter. (led)

ImageNet ResNets

P | \
N

18-layer

(”
F 4

34-layer

Results

« 1stplaces in all five main tracks in “ILSVRC & COCO 2015
Competitions”
— ImageNet Classification
ImageNet Detection
ImageNet Localization
COCO Detection
COCO Segmentation

Quantitative Results

* ImageNet Classification

152 layers

l 22 layers | ‘ 19 Iayers

\67

ILSVRC'15 ILSVRC'14 [ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

Result

« Performances increase absolutely

an-place margin
winner (relative)
9.0

27%

ImageNet Localization (top-serron 12.0

ImageNet Detection mares) 53.6 absolute ¢ 4 16%
8.5% better!

COCO Detection (MAP@.5:.95) : . 11%
COCO Segmentation (mares:9s) : : 12%

« Based on ResNet-101
« Existing techniques can use residual networks or features from it

Qualitative Result

« Object detection
— Faster R-CNN + ResNet

o person :0.910 “ person : 0.998 /?—: ———

erson 0.998 - umbrella: 0.910 -8 & =
D handbag : 0.667 === j-e8u

L | B et
chairc! 0.:?57'.972_ chair=0.639

-‘.'l .J"".1 3 .-

-_./4——'

-.’ W“.

Qualitative Results

* |nstance Segmentation

person

person
person

person person

backpack

backpack Gitie skis

DCNNs and Vision

2012 onwards: all about DCNNs

If you have a hammer, you treat everything like a nail

-Classification & Detection

-Semantic Segmentation

-Boundary Detection
-Feature Descriptors

Semantic segmentation task

Beyond detection

http://mscoco.org/ Microsoft

_,perSOn,_s_heep,'_d,bg _'

(a) Image classification

\

(c) Semantic segmentation (d) This work

Beyond detection

http://mscoco.org/ Microsoft Pascal VOC

Beyond detection

http://mscoco.org/ Microsoft

Beyond detection

http://mscoco.org/ Microsoft

Q
=
el

—

=]

-

QO
=

Sofa Chair

Bottle

Fully Convolutional Networks for Segmentation

forward /inference

backward /learning

00 00 21
2 o 150 pO° 0

21
Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
tation.

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks
for semantic segmentation.
CVPR, 2015

Fully convolutional neural networks

Fully convolutional neural networks

Fully convolutional neural networks

Fully convolutional neural networks

Convolutional/Fully Connected DCNN layers

convolutional fully connected

Max Max
pooling pooling

feature extraction classification

A. Krizhevsky, |. Sutskever, and G. Hinton. ImageNet classification with deep
convolutional neural networks. NIPS13

VGG network

K. Simonyan and A. Zisserman. Very deep CNNs for large-scale image recognition, ICLR
2015

Fully convolutional neural networks

convolutional

128 Max
pooling

Max Max
pooling pooling

Fully connected layers: 1x1 spatial convolution kernels

“FCNNs” (2015) or "Space Displacement Neural Nets” (1998)

Y. LeCun, et al, Gradient-Based Learning Applied to Document Recognition, Proc. IEEE98
Sermanet et al, Overfeat: Integrated Recognition, Localization and Detection, ICLR 14
G. Papandreou et al, Modelling Deformations in Deep Learning, CVPR 15

J. Long, et al., Fully Convolutional Networks for Semantic Segmentation, CVPR15

Fully convolutional neural networks

Fast (shared convolutions)
Simple (dense)

Deeplab: Atrous Convolution + Structured Predictio

Aeroplane
Coarse Score map

Deep
Convolutional
Neural
Network

Final Output

urpny

L.-C. Chen, G. Papandreou, |. Kokkinos, K. Murphy and A. Yuille, Semantic Image
Segmentation with Deep Convolutional Nets and Fully Connected CRFs, ICLR 2015

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. Yuille, Deeplab: Semantic Image
Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected
CRFs, PAMI 2016

L.-C. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking Atrous Convolution for
Semantic Image Segmentation, Arxiv 2017

Comparison to state-of-the-art, 2014

Method mean IOU (%)

MSRA-CFM 61.8
FCN-8s 62.2
TTI-Zoomout-16 64.4
DeepLab-CRF (our) 66.4
DeepLab-MSc-CRF (our) 67.1

Pre-CNN: CNN: CNN + CRF:
Up to 50% 60-64% >67%

G. Papandreou, et al, Weakly- and .
Semi-Supervised Learning of a Pascal Train: Coco + Pascal

DCNN for Semantic Image 67% 71%
Segmentation, arxiv 2015

Updated results (Deeplab v2, 2016)
Method | mIOU

DeepLab-CRF-LargeFOV-COCO [58] 7 A 4
MERL_DEEP_GCREF [88] 73.2
CRF-RNN [59] 74.7
POSTECH_DeconvNet_CRF_VOC [61] 74.8
BoxSup [60] 75.2
Context + CRF-RNN [74] 753
QOI'"% [66] 75.5
DeepLab-CRF-Attention [17] 75.7
CentraleSuperBoundaries++ [18] 76.0
DeepLab-CRF-Attention-DT [63] 76.3
H-ReNet + DenseCREF [89] 76.8
LRR_4x_COCO [90] 76.8
DPN [62] 77.5
Adelaide_Context [40] 77.8
Oxford_TVG_HO_CREF [87] 77.9
Context CRF + Guidance CRF [91] 78.1
Adelaide_VeryDeep_FCN_VOC [92] 79.1

DeepLab-CRF (ResNet-101) 79.3
Ensemble DeepLab-CRF (ResNet-101) 79.6

TABLE 5: Performance on PASCAL VOC 2012 fest set. We

have added some results from recent arXiv papers on top of
the official leadearboard results.

Updated results (Deeplab v3, 2017)

Method mlIOU

Adelaide _VeryDeep FCN_VOC [76] 79.1
LRR _4x_ResNet-CRF [21] 79.3
DeepLabv2-CRF [10] 19,7
CentraleSupelec Deep G-CRF [7] 80.2
HikSeg COCO [71] 81.4
Deep Layer Cascade (LC) [45] 82.7
TuSimple [75] 83.1
Large _Kernel Matters [60] 83.6
Multipath-RefineNet [47] 84.2
ResNet-38_ MS_COCO [77] 84.9
PSPNet [24] 85.4
IDW-CNN [74] 86.3

DeepLabv3 85.7
DeepLabv3-JFT 86.9

Table 7. Performance on PASCAL VOC 2012 test set.

L.-C. Chen, G. Papandreou, F. Schroff, H. Adam , Rethinking Atrous Convolution
for Semantic Image Segmentation, Arxiv, 2017
C. Sun A. Shrlvastava S. Slngh andA Gupta ReV|S|t|ng unreasonable

Deeplab v2 results

1 i
- ‘
!

(a) Image {(b) Before CRF ¢) After CRF (a) Image ») Before CRF) After CRF (a) Image (b) Before CRF (c) After CRF

Fig. 7: Visualization of some VOC 2012 val results. For each row, we show the input image, the segmentation result before
CREF, and the refined segmentation result after Fully Connected CRF (DeepLab-CRF).

Ground truth FCNN FCNN-DCRF

Deeplab v2 results

.

Ground truth FCNN FCNN-DCRF

Deeplab v2 results

See also: S. Tsogkas, G. Papandreou, |I. Kokkinos, and A. Vedaldi, Semantic Part
Segmentation using high-level guidance, Arxiv, 2015

What can we get out of an image?

What can we get out of an image?

Object detection

What can we get out of an image?

Semantic segmentation

What can we get out of an image?

Semantic boundary detection

What can we get out of an image?

Part segmentation

What can we get out of an image?

Surface normal estimation

What can we get out of an image?

Saliency estimation

What can we get out of an image?

-
Jl =

e

Boundary detection

UberNet: a single “universal” network for all tasks

.';|
1]

UberNet architecture

Input Image C, C, Cy C; Cs Cs

B, B,
E} Ef E} E}
~l' 1
2
C, C,
B, B,
E} E] E} E]
-L 1
2

UberNet architecture

— [l Image Pyramid
: c Gy Cy Cy c, Ce
B, B: B;
E] ET| | E E] EL ET
T
<
; Cy C, Cy Cy Cs
B, B, B; B, B;
E} el| | B el | B ef| | B el | E E!
Ly
C Cs
B B;
E} | | B El

Shared CNN
trunk (VGG16
network)

UberNet architecture

B I = Task
-

B, B2 B; 'f'
specific
E! ET E} El
4
C, Cy Cy
B, B, By
E! E! EL [l | B2 E} Ef
‘i

Ub
erN
et
archit
ec
tu
re

In;
pu
t 1
C
1
C,
C.
3
C
C
n
C,
6
k-

B
1
E! n‘
1
B
43] 2
El
2
El
2
C
1
B;
B
1 C El
2 5
-LL E! B, T E(l.
2 E ‘ - s
1] ET p
T By C ' e
2 4 : cifi
E} a
O ' r Ic
. B a
: y
.{ ‘ cr’ D e
E} ' t
. B :L] ers
ET II |
i E} G |
‘B ET
E!
6
BE!
U]
c\
W,
Cy 3}—:
ki C
B_’, C l
6 - S
E} m : I
ET EJ
ST
o ET
6|
CI
F
el
FT

C:i

C,

G,

B,

Cy

c

C,

G,

B,

By

B

B,

—N

OverFeat, ICLR 2014

detectio

classification

P. Sermanet, D. Eigen, X. Zhiang, M. Mathieu, R. Fergus, and Y. LeCun,
OverFeat: Integrated Recognition, Localization and Detection using

Eigen & Fergus, ICCV 2015

Input Image

D. Eigen and R. Fergus, Predicting Depth, Surface Normals and
Semantic Labels with a Common Multi-Scale Convolutional

detection

action

recognition
pos

estimation

G. Gkioxari, B. Harihanan, R. Girshick and J. Malik, R-CNNs for Pose
Estimation and Action Detection, ICCV 2015

box nstances (Rols)

Dai et al, CVPR 2016

sainies) paseys

mask instances

m
‘ categorized instances
FCs
penon

J. Dai, K. He, and J. Sun, Instance-aware Semantic Segmentation via
Multi-task Network Cascades, CVPR 2016

Ranjan et al, 2016

detection
landmarks

pose
gender

R. Ranjan, et al. Hyperface: A deep multi-task learning framework for
face detection, landmark localization, pose estimation, and gender

detection

classification

H. Bilen, and A. Vedaldi, Integrated perception with recurrent multi-task

al~ > al~ N () [\ » l-

He et al, ICCV 2017

keypoints
detection

K. He, P. Dollar, G. Gkioxari and R. Girshick, Mask-RCNN, ICCV 2017

UberNet: Training a Universal CNN for Low- Mid- and High-Level
Vision using Diverse Datasets and Limited Memory

Low- Mid- and High-Level: broad spectrum of tasks

Diverse Datasets: no single dataset

Limited Memory: too many tasks to fit in
memory

Input
P GT(horz) DenseReg GT(vert) DenseRegDenseRegDenseRe

(horz) (vert) landmarks

DeeplLab
v2

DenseReg

http://alpguler.com/DenseReg.html

DenseReg:
Fully Convolutional Dense Shape Regression In-the-Wild

Riza Alp Guler

George Trigeorgis
Epameinondas Antonakos
Patrick Snape

Stefanos Zafeiriou
lasonas Kokkinos

kD

AP &k Imperial College
&(ﬁ/a _ ‘.) =

CentraleSupélec

I

Why did this work now?

Bigger computers and GPUs.

Big data

Tailored network architectures

Better optimisation (Rectified Linear Units, ResNets)
Regularisation (Dropout, batch normalisation)
Dedicated software libraries

Deep Learning envorinments

Usab““y Language

Caffe Very fast (+) Easy for (-) high-level: need All C++, but (+) a lot of pre-
simple networks to code in C++/ Python or Matlab trained models
(plug and play) CUDA for new interface available (-) community
(-) not gooffor GPU layers shrinking
RNN (-) slow
(-) cumbersome development
for big networks
TensorFlow Slow (+) easy Multi- (+) relatively low- Bad support for Python (+) community
GPUs level: flexible Windows growing
(+) TensorBoard enough to design (+) fast
for visualisation your own layers in development
(-) not goof for python. (-) not many
RNN pretrained models
Theano Slow (+) nice for RNN (+) low-level by All Python (-) not many
(-) single GPU design, so easy to pretrained models
(-) harder to write your own
debug layers
(+) high-level
wrappers (kearas,
lasagne)
Torch Fast (+) nice for RNN (+)once you know Bad support for Lua (+) Community
(+) easy Multi- Lua, easy to write Windows growing
GPUs you own layers (+) fast
(-) Need to learn development
Lua (+) many
See also: https://deeplearning4j.org/compare-di4j-torch7-pylearn#keras pretrained models

= Y T b B C http://pytorch.org/

Why did this work now?

Bigger computers and GPUs.

Big data

Tailored network architectures

Better optimisation (Rectified Linear Units, ResNets)
Regularisation (Dropout, batch normalisation)
Dedicated software libraries
Pretraining/Finetuning/Transfer Learning

ImageNet PASCAL

5, oullding building building
4

1000 Classes, 1M images 20 Classes, 10K images, N tasks

Object Detection,
Semantic
Segmentation,

Part Segmentation,

Classification

Transfer Learning Overview

Input N AN\
A I | | 11 {| Task

(e

Layer n

Transfqr

AnB: Frozen
{ghts

Back-propagation

Input Il | Task
B B

Back-propagation Fine-tuning

ImageNet PASCAL

5, oullding building building
4

1000 Classes, 1M images 20 Classes, 10K images, N tasks

Object Detection,
Semantic
Segmentation,

Part Segmentation,

Classification

Unsupervised Learning: what if there is no ImageNe

encoder

Autoencoder: Distill image to low-dimensional representation

Auto-Encoding Variational Bayes, Kingma, D.P. and Welling, M.,2013

Unsupervised Learning: what if there is no ImageNe

Differentiable module
Rgalworld —— Sample |-
images Real

s Discriminator @ E
§ O Fake
O Generator ~—{ Sample
1&
E Differentiable module
GANSs: Learn to create realistic data Samples of natural

images

Goodfellow, et. al., "Generative Adversarial Networks". 2014

