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input vector

hidden 
layers

outputs
Back-propagate                
error signal to get 
derivatives for 
learning

Compare outputs 
with correct answer
to get error signal

Slide credits: G. Hinton

Multi-Layer Perceptrons (~1985)
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Back-propagation in a nutshell
Error messages, ‘δ’, at current layer: 
sensitivity of loss to activations  of current layer

Every node estimates its error message by forming a 
weighted sum of the error messages of its recipients
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Forward/backward information flow

We can use the same 
algorithm to learn in any 
Directed Acyclic Graph!
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Deep Learning: breakthrough for all of AI
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Next 10 slides: Week 1 reminder

Our goal in this course: learn an input-output mapping 

– Output:          y
– Input:   x
– Method: f
– Parameters:  w
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• Step 1: Determine its inputs, x

features

How to construct this function?
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Feature example: Haar wavelets (NOT part of our course) 

Value =  ∑ (pixels in white area) – ∑ (pixels in black area)

Why these features?
Extremely fast to compute 
(4 pixel operations per box)
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One Haar wavelet feature

Source

Result
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Feature example: Histogram-of-gradient features (NOT part of our course) 
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Feature example: Bag-of-word features (NOT part of our course) 

VQ: Vector 
Quantization 
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Image classification in a nutshell (NOT part of our course) 
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Machine Learning for X: features for X + ML
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Our course
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Deep Learning: learn the features!
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All you need is gradients

Forward

Backward
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Trainable 
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

“car”

Deep Learning = Hierarchical Compositionality

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun
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Convolutional Nets

a

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Image Credit: Yann LeCun, Kevin Murphy
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Taking a closer look: Images as functions

x

y
f(x,y)
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Gaussian Noise

25
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Averaging = Filtering

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

=

111
111
111

“box filter”

?

32
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Gaussian Smoothing

• Gaussian kernel

• Weighs nearby pixels more
than distant ones

33
σ = 2 with 

3030 kernel
σ = 5 with 

3030 kernel
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Smoothing by Averaging

depicts box filter: 
white = high value, black = low value

Original Filtered

Image Source: Forsyth & Ponce

“Ringing” artifacts!
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Original Filtered

35

Smoothing by Gaussian filtering
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Original Filtered

36



37

Sharpening Filter

Sharpening filter

Original

37
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Sharpening Filter

38
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Image processing application

Original

High Frequency Emphasis 
+

Histogram Equalization

39
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Filters, filters, filters

Decades of research in image processing

Question: can we learn how to do this? 
(or any other type of image processing)

http://setosa.io/ev/image-kernels/

http://www.ipol.im/

Demos:

Methods:

Open-ended: how does it connect with a given application?
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Answer: all you need is gradients

Forward

Backward
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Example:  200x200 image
40K hidden units

~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough         
training samples anyway..

Fully Connected Layer
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Example: 200x200 image
40K hidden units
Filter size: 10x10

4M parameters

Note: This parameterization is good 
when input image is registered (e.g., 
face recognition).

Locally Connected Layer
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Note: This parameterization is good 
when input image is registered (e.g., 
face recognition).

Example: 200x200 image
40K hidden units
Filter size: 10x10

4M parameters

Locally Connected Layer
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Share the same parameters across 
different locations (assuming input is 
stationary):
Convolutions with learned kernels

Convolutional Layer
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Convolutional Layer
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Convolutional Layer



48
Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer



59
Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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“Fully-connected” layer

#of parameters: 
K2
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“Convolutional” layer

#of parameters: 
size of window 
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*        
-1 0  1
-1 0  1
-1 0  1

=        

Convolutional Layer
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Learn multiple filters.

E.g.: 200x200 image
100 Filters
Filter size: 10x10

10K parameters

Convolutional Layer
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Conv.
layer

h1
n− 1

h2
n− 1

h3
n− 1

h1
n

h2
n

Convolutional Layer

output 
feature map

input feature 
map

kernel
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h1
n− 1

h2
n− 1

h3
n− 1

h1
n

h2
n

output 
feature map

input feature 
map

kernel

Convolutional Layer
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h1
n− 1

h2
n− 1

h3
n− 1

h1
n

h2
n

Convolutional Layer

output 
feature map

input feature 
map

kernel
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Network connectivity
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Network connectivity
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Network connectivity
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Network connectivity



73

Field of view

73
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Field of view: Layer 1

74
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Field of view: Layer 2

75
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Field of view: Layer 3

76
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Field of view: Layer 4

77
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Field of view: Layer 5

78
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Field of view: Layer 6

79
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Field of view: Layer 7

Slide credit: A. Harley
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Field of view: Layer 8

Slide credit: A. Harley
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Convolutional Nets

a

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Image Credit: Yann LeCun, Kevin Murphy
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Deep learning, AD 1993

http://yann.lecun.com/exdb/lenet/
(LeNet 5, 1998)

https://www.youtube.com/watch?v=FwFduRA_L6Q
(LeNet 1, 1993)
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The 82 
errors made 
by LeNet5

Notice that most of the 
errors are cases that 
people find quite easy.

The human error rate is 
probably 20 to 30 errors 
but nobody has had the 
patience to measure it.
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deep learning = neural networks (+ big data  + GPUs)

What happened in between?



88
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Computer Vision Data: Big and Complicated 

http://www.image-net.org/

Deng et. al, ImageNet: A Large-Scale Hierarchical Image Database, CVPR’09
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Computer Vision Data: Big and Complicated 

http://www.image-net.org/

Deng et. al, ImageNet: A Large-Scale Hierarchical Image Database, CVPR’09
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Computer Vision Data: Big and Complicated 
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labelsImage

Deep Learning for image classification

Lion

A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with 
deep convolutional neural networks. NIPS13 
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Examples from the test set (with the network’s guesses)



94Error rates on the ILSVRC‐2012 competition

• University of Tokyo             
• Oxford University Computer 
Vision Group

• INRIA (French national research 
institute in CS) + XRCE (Xerox 
Research Center Europe)  

• University of Amsterdam

• 26.1%
• 26.9%

• 27.0%

• 29.5%     

• University of Toronto (Alex Krizhevsky) • 16.4%
•

classification
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A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural 
networks. NIPS13   [16.4%] (best shallow competitor: 26%)
K. He, X. Zhang, S. Ren, J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance 
on ImageNet Classification, ICCV 2015.  [4.5%]
S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal 
Covariate Shift, ICML 2015. [4.5%]
K. He,  X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, CVPR, 2016 [3.6%]

Humans:5.4%

Imagenet top-5 error rates
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CNNs, 2010+

AlexNet
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The deeper, the better

• Deeper networks can cover more complex problems
– Increasingly large receptive field size 
– Increasingly non-linear patterns
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What is in the network?

Visualizing deep convolutional neural networks using natural pre-images, 
A. Mahindra and A. Vedaldi
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What is in the network?

Visualizing deep convolutional neural networks using natural pre-images, 
A. Mahindra and A. Vedaldi
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What is in the network?

Visualizing deep convolutional neural networks using natural pre-images, 
A. Mahindra and A. Vedaldi
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What is in the network?

Visualizing deep convolutional neural networks using natural pre-images, 
A. Mahindra and A. Vedaldi
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What is in the network?

Visualizing deep convolutional neural networks using natural pre-images, 
A. Mahindra and A. Vedaldi
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What is in the network?

Visualizing deep convolutional neural networks using natural pre-images, 
A. Mahindra and A. Vedaldi
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What is in the network?

Visualizing deep convolutional neural networks using natural pre-images, 
A. Mahindra and A. Vedaldi
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Answer: All you need is gradients!

Forward

Backward

Question: How did this happen?
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Task 
B

Transfer Learning

Task 
A

Input 
A

Input 
B

Transfer
AnB: Frozen 
Weights

Fine-tuningBack-propagation Back-propagation 

Task 
B

Back-propagation Back-propagation 

Layer n
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Qualitative Results

• Object detection
– Faster R-CNN + ResNet
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Qualitative Results

• Instance Segmentation
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Deep learning, AD 1993

http://yann.lecun.com/exdb/lenet/
(LeNet 5, 1998)

https://www.youtube.com/watch?v=FwFduRA_L6Q
(LeNet 1, 1993)

The 82 errors 
made by LeNet5
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A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural 
networks. NIPS13   [18%] (best shallow competitor: 36%)
K. He, X. Zhang, S. Ren, J. Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance 
on ImageNet Classification, http://arxiv.org/abs/1502.01852, 2015.  [4.5%]
S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal 
Covariate Shift, http://arxiv.org/abs/1502.03167, 2015. [4.5%]
K. He,  X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, Arxiv, 2015 [3.6%]

Humans:5.4%

Deep Learning, AD 2016
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deep learning = neural networks (+ big data  + GPUs)

What happened in between?

+ a few more recent tricks!
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Neural network training: old & new tricks

Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization
Residual Networks

Old: (80’s)

New: (last 5-6 years)
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Neural network training: old & new tricks

Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization
Residual Networks

Old: (80’s)

New: (last 5-6 years)
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“Big data”: sometimes too big!

Challenges: fitting everything in memory 

“Large-Scale” Learning (checkout GI09: Applied Machine Learning)

Keeping computational cost of training under control
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Computer Vision Data: Big and Complicated 

http://www.image-net.org/

Deng et. al, ImageNet: A Large-Scale Hierarchical Image Database, CVPR’09

millions of images for academia

billions of images for industry
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How large is large?

Simonyan & Zisserman, 2014
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Training objective, multi-class case

One-hot label encoding:

Parameter estimation: Gradient of L with respect to W

Likelihood of training sample:

Optimization criterion:

Weeks 7-8:
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Training objective for classification

Likelihood of training sample’s label:

Cost function:

Normalize:

Add regularization:

for all layers (l), and all input (k) –output (m) connection weights
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Training objective for classification

Back-prop for 
i-th example

If N=106 , we will need to run back-prop 106  times to update W once!

Gradient descent:

(l,k,m) element of gradient vector:
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Stochastic Gradient Descent (SGD)

Gradient:

Noisy (‘Stochastic’) Gradient:
b(1), b(2),…, b(B): sampled from [1,N]

Minibatch: B elements

Epoch: N samples, N/B batches

Batch: [1..N]
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Regularization in SGD: weight decay

Gradient:

Noisy (‘Stochastic’) Gradient:
b(1), b(2),…, b(B): sampled from [1,N]

Minibatch: B elements

Epoch: N samples, N/B batches

Batch: [1..N]

Back-prop on minibatch ‘’Weight decay’’
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Is Stochastic Gradient Descent faster?
Epoch: N/B batches

In one epoch SGD performs
N/B more updates than GD!

N: 106,B = 10: 100000 x more steps
Current research:  
best of both worlds?
2nd order (Newton-Raphson-like) methods?
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“Right” SGD: active research topic
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Learning rate
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Gradient Descent
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(S)GD with adaptable stepsize

e.g.
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(S)GD with momentum

Main idea: retain long-term trend of updates, drop oscillations

(S)GD

(S)GD + momentum
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Neural network training: old & new tricks

Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization
Residual Networks

Old: (80’s)

New: (last 5-6 years)
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Big model
+ 

Regularize

Convolutional Networks: last week

Dropout: now

Regularization in Deep Learning
Weight Decay: just before
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Dropout
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Voting Methods

• Give up idea of building `the’ classifier
• Generate a group of base-learners which has higher accuracy when 

combined
• Main tasks 

– Generating the learners
– Combining them
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Why should this work? Week 5 Lecture
• Committee of M predictors for target output 

• Output: true value + error

• Expected sum of squares error for m-th expert:

• Average error of individual members:

• Average error of committee:

• If committee members have uncorrelated errors:
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Bootstrapped AGGregatING (BAGGING)
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Dropout

Each sample is processed by a ‘decimated’ neural net
Decimated nets: distinct classifiers
But: they should all do the same job

Improving neural networks by preventing co-adaptation of feature detectors
GE Hinton, N Srivastava, A Krizhevsky, I Sutskever, RR Salakhutdinov, arXiv, 2012, JMLR 2014
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
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Dropout block

‘Feature noising’
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Test time: Deterministic approximation

At test time, the weights are scaled as W(l) = pW(l) as 
shown in Figure 2. The resulting neural network is used 
without dropout.

An expensive but more correct way of averaging the models is to 
sample k neural nets using dropout for each test case and 
average their predictions. As k → ∞, this Monte-Carlo model 
average gets close to the true model average. 

By computing the error for different values of k we can see how 
quickly the error rate of the finite-sample average approaches the 
error rate of the approximate model average.
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Dropout performance
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Dropout performance
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Dropout performance
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Neural network training: old & new tricks

Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization
Residual Networks

Old: (80’s)

New: (last 5-6 years)
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‘Neuron’: cascade of linear and nonlinear function

Sigmoidal (“logistic”) Rectified Linear Unit (RELU)
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A neural network in backward mode: 

Outputs
This we have

This we computedThis we want
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A neural network in backward mode: 
Hidden layer

Outputs

This we want

?
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A neural network in backward mode: 
Hidden layer

Outputs

This we want

?
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Linear layer in forward mode: all for one
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Linear layer in backward mode: one from all
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Linear layer parameters in backward: 1-to-1
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A neural network in backward mode: 
Hidden layer

Outputs

This we haveThis we want This we computed
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A neural network in backward mode: 
Hidden layer

Outputs

This we want This we haveThis we computed
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A neural network in backward mode: 
Hidden layer

Outputs
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A neural network in backward mode: 
Hidden layer

Outputs
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A neural network in backward mode: 
Hidden layer

Outputs
Gradient signal 
from above scaling: <1  (actually <0.25)
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Vanishing gradients problem
Gradient signal 
from above scaling: <1  (actually <0.25)

Do this 10 times: updates in the first layers get minimal
Top layer knows what to do, lower layers “don’t get it”

Sigmoidal Unit:
Signal is not getting through! 
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Vanishing gradients problem: ReLU solves it
Gradient signal 
from above Scaling: {0,1}

Do this 10 times: updates in the first layers can remain large
Top layer knows what to do, lower layers “ get it”

Rectified Linear Unit (RELU)

Vinod Nair and Geoffrey Hinton 
(2010). Rectified linear units 
improve restricted Boltzmann 
machines. ICML.
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Neural network training: old & new tricks

Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization
Residual Networks

Old: (80’s)

New: (last 5-6 years)
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Covariate Shift Problem
Train speech recognition system with British speakers, 
test with Americans
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Covariate shift in a single day

10 am 2pm 7pm
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• Make each patch have zero mean:

• Then make it have unit variance:

Photometric  transformation:   I  a I + b

“Whitening”: set mean = 0, variance = 1
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Internal Covariate Shift
Neural network activations: moving target
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Internal Covariate Shift
Neural network activations: moving target
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Batch Normalization
Whiten-as-you-go: 
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Batch Normalization
Whiten-as-you-go: 
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Batch Normalization: used in all current systems
Whiten-as-you-go: 
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Neural network training: old & new tricks

Stochastic Gradient Descent, Momentum, “weight decay”

Dropout

ReLUs

Batch Normalization
Residual Networks

Old: (80’s)

New: (last 5-6 years)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual 
Learning for Image Recognition”. CVPR 2016 (best paper award).
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The deeper, the better

• Deeper networks can cover more complex problems
– Increasingly large receptive field size 
– Increasingly non-linear patterns
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Going Deeper

• From 2 to 10: 2010-2012
– ReLUs
– Dropout
– …
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Going Deeper

• From 10 to 20: 2015
– Batch Normalization
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Going Deeper

• From 20 to 100/1000
– Residual networks
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Plain Network

• Plain nets: stacking 3x3 conv layers
• 56-layer net has higher training error and test error than 20-layer net
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Plain Network

• “Overly deep” plain nets have higher training error
• A general phenomenon, observed in many datasets
• Counterintuitive: deeper network should be stronger, right?

– Idea: make sure deeper network can fallback to the shallow solution. 
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Residual Network

• Naïve solution
– If extra layers are an identity

mapping, then  training errors can 
not increase
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Residual Network

• Plain block
– Difficult to make identity 

mapping because of multiple 
non-linear layers
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Residual Network

• Residual block
– If identity were optimal, 

easy to set weights as 0
– If optimal mapping is closer 

to identity, easier to find 
small fluctuations

-> Appropriate for treating 
perturbation as keeping a base 
information
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Residual modelling: basic idea in image processing

• Difference between an original image and a changed image 

Some 
Networ

k
residual

Preserving base information

can treat 
perturbation 
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Residual Network

• Deeper ResNets have lower training error
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Residual Network

• Residual block
– Very simple
– Parameter-free

A naïve residual block “bottleneck” residual block
(for ResNet-50/101/152)
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• ResNet-152
– Use bottlenecks
– ResNet-152(11.3 billion 

FLOPs) has lower 
complexity than VGG-16/19 
nets (15.3/19.6 billion 
FLOPs)

Network Design
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Results

• Deep Resnets can be trained without difficulties
• Deeper ResNets have lower training error, and also lower test error
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Results

• Deep Resnets can be trained without difficulties
• Deeper ResNets have lower training error, and also lower test error
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Results

• 1st places in all five main tracks in “ILSVRC & COCO 2015 
Competitions”
– ImageNet Classification
– ImageNet Detection
– ImageNet Localization
– COCO Detection
– COCO Segmentation
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Quantitative Results

• ImageNet Classification
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Result

• Performances increase absolutely

• Based on ResNet-101
• Existing techniques can use residual networks or features from it
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Qualitative Result

• Object detection
– Faster R-CNN + ResNet
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Qualitative Results

• Instance Segmentation



186DCNNs and Vision

If you have a hammer, you treat everything like a nail

2012 onwards: all about DCNNs

-Classification & Detection 
-Semantic Segmentation
-Boundary Detection
-Feature Descriptors
-…



187Semantic segmentation task
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Beyond detection

http://mscoco.org/ Microsoft
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Beyond detection

http://mscoco.org/ Microsoft Pascal VOC
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Beyond detection

http://mscoco.org/ Microsoft
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Beyond detection

http://mscoco.org/ Microsoft



192Fully Convolutional Networks for Segmentation

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks 
for semantic segmentation.
CVPR, 2015 
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Fully convolutional neural networks

FCNN
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Fully convolutional neural networks

FCNN
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Fully convolutional neural networks

FCNN
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Fully convolutional neural networks

FCNN
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Convolutional/Fully Connected DCNN layers
convolutional fully connected

VGG network
K. Simonyan and A. Zisserman. Very deep CNNs for large-scale image recognition, ICLR 
2015

A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep 
convolutional neural networks. NIPS13

AlexNet
feature extraction classification
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Fully convolutional neural networks
convolutional

Fully connected layers: 1x1 spatial convolution kernels
“FCNNs” (2015) or "Space Displacement Neural Nets” (1998)

Y. LeCun, et al, Gradient-Based Learning Applied to Document Recognition, Proc. IEEE98
Sermanet et al, Overfeat: Integrated Recognition, Localization and Detection, ICLR 14
G. Papandreou et al, Modelling Deformations in Deep Learning, CVPR 15
J. Long, et al., Fully Convolutional Networks for Semantic Segmentation, CVPR15
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Fully convolutional neural networks

FCNN

Fast     (shared convolutions) 
Simple (dense)
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Deeplab: Atrous Convolution + Structured Prediction

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. Yuille, Semantic Image 
Segmentation with Deep Convolutional Nets and Fully Connected CRFs, ICLR 2015
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. Yuille, Deeplab: Semantic Image 
Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected 
CRFs, PAMI 2016
L.-C. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking Atrous Convolution for 
Semantic Image Segmentation, Arxiv 2017

G. Papandreou L-C. Chen 

K. Murphy A. Yuille



201Comparison to state-of-the-art, 2014

Pre-CNN:
Up to 50%

CNN:
60-64%

CNN + CRF:
>67%

Pascal Train:
67%

Coco + Pascal
71%

G. Papandreou, et al, Weakly- and 
Semi-Supervised Learning of a 
DCNN for Semantic Image 
Segmentation, arxiv 2015
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Updated results (Deeplab v2, 2016)
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Updated results (Deeplab v3, 2017)

L.-C. Chen, G. Papandreou, F. Schroff, H. Adam , Rethinking Atrous Convolution 
for Semantic Image Segmentation, Arxiv, 2017
C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting unreasonable 
effectiveness of data in deep learning era. arXiv:1707.02968, 2017. 
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Deeplab v2 results
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Deeplab v2 results

Ground truth FCNN FCNN-DCRF
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Ground truth FCNN FCNN-DCRF

Deeplab v2 results
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Deeplab v2 results
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See also: S. Tsogkas, G. Papandreou, I. Kokkinos, and A. Vedaldi, Semantic Part 
Segmentation using high-level guidance, Arxiv, 2015

Deeplab v2 results
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What can we get out of an image?
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What can we get out of an image?

Object detection
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What can we get out of an image?

Semantic segmentation
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What can we get out of an image?

Semantic boundary detection
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What can we get out of an image?

Part segmentation
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What can we get out of an image?

Surface normal estimation
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What can we get out of an image?

Saliency estimation
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What can we get out of an image?

Boundary detection
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UberNet: a single “universal” network for all tasks
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UberNet architecture
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UberNet architecture
Image Pyramid
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UberNet architecture

Shared CNN 
trunk (VGG16 
network)
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UberNet architecture

Task-
specific 
parameters
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UberNet architecture

Task-
specific 
parameters
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UberNet architecture
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OverFeat, ICLR 2014

P. Sermanet, D. Eigen, X. Zhiang, M. Mathieu, R. Fergus, and Y. LeCun, 
OverFeat: Integrated Recognition, Localization and Detection using 
CNNs ICLR 2014

detection

classification
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Eigen & Fergus, ICCV 2015

D. Eigen and R. Fergus, Predicting Depth, Surface Normals and 
Semantic Labels with a Common Multi-Scale Convolutional 
Architecture ICCV 2015

depth  normal semantic segmentation
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Gkioxari et al ICCV 2015

detection
action 
recognition
pose 
estimation

G. Gkioxari, B. Harihanan, R. Girshick and J. Malik, R-CNNs for Pose 
Estimation and Action Detection, ICCV 2015
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Dai et al, CVPR 2016

instance segmentation     
detection

J. Dai, K. He, and J. Sun, Instance-aware Semantic Segmentation via 
Multi-task Network Cascades, CVPR 2016
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detection
landmarks

R. Ranjan, et al. Hyperface: A deep multi-task learning framework for 
face detection, landmark localization, pose estimation, and gender 

pose 
gender

Ranjan et al, 2016
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Bilen and Vedaldi, NIPS 2016

part
s detection

H. Bilen, and A. Vedaldi, Integrated perception with recurrent multi-task 
neural networks, NIPS 2016

classification



231
He et al, ICCV 2017

keypoints
detection

instance segmentation

K. He, P. Dollar, G. Gkioxari and R. Girshick, Mask-RCNN, ICCV 2017
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UberNet: Training a Universal CNN for Low- Mid- and High-Level 

Vision using Diverse Datasets and Limited Memory

Low- Mid- and High-Level: broad spectrum of tasks

Diverse Datasets: no single dataset

Limited Memory: too many tasks to fit in 
memory
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GT(horz) GT(vert) DenseReg

(vert)
DenseReg
(horz)

DenseReg
landmarks DenseReg

+ MDM

Input
Image
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DenseReg DenseRegDeepLab

v2
DeepLab
v2GT GTInput

Image
Input
Image
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http://alpguler.com/DenseReg.html
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Why did this work now?

• Bigger computers and GPUs.
• Big data
• Tailored network architectures
• Better optimisation (Rectified Linear Units, ResNets)
• Regularisation (Dropout, batch normalisation)
• Dedicated software libraries
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Deep Learning envorinments

http://pytorch.org/
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Why did this work now?

• Bigger computers and GPUs.
• Big data
• Tailored network architectures
• Better optimisation (Rectified Linear Units, ResNets)
• Regularisation (Dropout, batch normalisation)
• Dedicated software libraries
• Pretraining/Finetuning/Transfer Learning



298ImageNet

1000 Classes, 1M images

PASCAL

20 Classes, 10K images, N tasks

Classification Object Detection, 
Semantic 
Segmentation,
Part Segmentation, 
Instance
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Task 
B

Transfer Learning Overview

Task 
A

Input 
A

Input 
B

Transfer
AnB: Frozen 
Weights

Fine-tuningBack-propagation Back-propagation 

Task 
B

Back-propagation Back-propagation 

Layer n



300ImageNet

1000 Classes, 1M images

PASCAL

20 Classes, 10K images, N tasks

Classification Object Detection, 
Semantic 
Segmentation,
Part Segmentation, 
Instance

Transfer



301Unsupervised Learning: what if there is no ImageNet?

Autoencoder: Distill image to low-dimensional representation

Auto-Encoding Variational Bayes, Kingma, D.P. and Welling, M.,2013



302Unsupervised Learning: what if there is no ImageNet?

GANs: Learn to create realistic data 

Goodfellow, et. al., "Generative Adversarial Networks". 2014

Samples of natural 
images


