

Computer Vision, Speech Communication & Signal Processing Group,
Intelligent Robotics and Automation Laboratory

Institute of Communication and Computer Systems (ICCS)
 National Technical University of Athens, Greece (NTUA)

Part 1:
Spatio-Temporal Visual Processing

1

Tutorial at IEEE International Conference on Image Processing 2019,
Taipei, Taiwan, September 22, 2019

Petros Maragos and Petros Koutras

2 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Spatio-temporal Computer Vision problems

n  automatic video understanding becomes one of the
most essential and demanding challenges

n  static computer vision problems:
q  image domain à no temporal evolution

n  object detection, semantic segmentation, pose estimation
q  deep learning and large datasets boosted the performance

n  spatio-temporal problems:
q  video domain à related with the temporal information

n  spatio-temporal saliency, action recognition, video
summarization

q  require the integration and modeling of the temporal evolution

3 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Action Recognition

n  automated classification and detection of human activities on
videos
q  action labels from human annotations
q  many large datasets: Hollywood2, UCF101, HMDB51, Kinetics

open car door open door walk talk

4 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Action Recognition Tasks

•  classification
•  detection

walking	

walking	

5 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Video understanding applications

Indexing	and	
analysis	of	big	
video	data	

Augmented	reality	
and	interactive	
video	games		

Sports	analysis	

6 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Video understanding robotic applications

Human-Robot Interaction (HRI)

	 Patient monitoring – assistive robotics

7 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Action Recognition - Challenges

•  Execution
variability

•  Camera angle
variability

8 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Action Recognition - Challenges

•  Occlusions, visual noise, shadows, different scales

9 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Action Recognition - Datasets Evolution

6 10 12 16
51

101

487

2004 2008 2009 2010 2011 2012 2014
year

Number of classes

KTH

UCF
Sports Hollywood2

Olympic
Sports

HMDB51
UCF-101

Sports-1M

10 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Video Processing and Action
Recognition using

Local Representations

11 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Local Representations for Visual Processing

n  Local video representations
q  Describe the whole video as a set of independent local descriptors

q  Detect independent interest points according a saliency function
q  Describe the detected points with features descriptors

q  Represent the video by encoding the statistical properties of the local
interest points

2D Harris Detector 3D Harris Detector

12 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Traditional Action Recognition Pipeline

Class
Probabilities
(SVM scores)

13 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Spatio-Temporal Interest Points (STIP)

•  Detect points with large variation w.r.t. 3
direction of videos (x,y,t)

•  Extract descriptors inside spatio-temporal
volume around each interest point

Gaussian	
kernel	 image	gradient	

cornerness	citerion		

eigenvalues	

second	moments	matrix	

Descriptors:	

• HOG:	static	appearance	
(image	gradient)	

• HOF:	motion	(optical	
flow)	

I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Proc. IEEE Conf. CVPR, 2008

14 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Energy-based Interest Points

Feature Extraction

Input video

Spatio-Temporal Filtering

Energy map

Interest Points

Action Detection

K. Maninis, P. Koutras and P. Maragos. Proc. ICIP 2014

15 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Video processing with Gabor3D filterbanks

3D Filtering with a total of 400 filters

Temporal Filters Spatial Filters

Original Video Video Energy

Interest Points

16 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Spatial Gabor Filterbank

5 Positive & 5 Negative
Temporal Frequencies

5 scales
8 orientations

Full Spatial
Filterbank
(40 Filters)

3 scales

8 orientations

Reduced Spatial
Filterbank
(12 Filters)

17 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Spatio-Temporal Gabor Filterbank

P. Koutras and P. Maragos. Signal Processing: Image Communication, vol 38, pp. 15-31, 2015.

18 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Histographic Gradient Descriptors

n  HOG/HOF [Dalal et.al, CVPR 05, ECCV 06], [Laptev et.al, CVPR 08]

n  HOG3D [Kläser et.al, BMVC 08]

19 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Visual Action Classification

Visual Processing

Training Data Test Data

BoF Representation

BoF Representation

Pattern Classification

«Words»/Centers of
Bag-of-Features (BoF)

Classification
(with SVMs)

20 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Action recognition with STIP- Results

n  Large variation in action performances
n  Moving camera and scene changes

n  Multiple actors, background clutter and occlusion
Mean Average Precision for the 12 action classes of the
Hollywood2 Dataset

Method Cuboids Harris3D Gabor3D

mAP 46.2% 45.2% 47.7%

Accuracy of various methods on the KTH Action Dataset

KTH Action Database
•  6 Actions, 2391 videos

Method DCA3D Cuboids Harris3D Gabor3D

Accuracy 78.8% 90% 91.8% 93.5%

Hollywood2 Action Database
•  12 Actions, 1707 videos

21 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Action recognition with STIP- Challenges
n  Camera movement
n  Generalization

n  Scene changes à visual noise

SitDown SitDown

StandUp StandUp

22 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Video Processing and Action
Recognition using
Dense Trajectories

23 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Dense Trajectories - Overview
n  Feature trajectories have

shown to be efficient for
representing videos

n  The trajectories are obtained
by tracking densely sampled
points rather than sparse STIP
using optical flow fields

n  A local descriptor is introduced
that overcomes the problem of
camera motion

n  The descriptor extends the
motion coding scheme based
on motion boundaries

H. Wang, A. Klaser, C. Schmid, and C. Liu, Proc. CVPR 2011.

24 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Feature Extraction with Dense Trajectories

1. Feature points are sampled on a
 regular grid in multiple scales

2. Feature points are tracked through
consecutive video frames

3. Descriptors are computed in space-
time volumes along trajectories

[Wang et al.
 IJCV 2013]

25 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Dense Trajectories - Tracking

n  Feature points are sampled on a grid spaced by W pixels
and tracked in each scale separately (8 scales)

n  Each point in a certain frame is tracked to the next frame
using median filtering in a dense optical flow field

26 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Dense Trajectories - Descriptors

Descriptors:	

• HOG:	static	appearance	(image	
gradient)	

• HOF:	motion	(optical	flow)	

• MBH:	motion(motion	gradient)	

• Trajectory:	consecutive	points	of	
the	trajectory	

n  Trajectories are limited to ‘L’ frames in order to avoid drift
from their initial location

27 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Trajectory Descriptors
n  Histogram of Oriented Gradient (HOG)
n  Histogram of Optical Flow (HOF)
n  HOGHOF
n  Motion Boundary Histogram (MBH)

q  Take local gradients of x-y flow components and compute HOG as in static
images

H. Wang, A. Klaser, C. Schmid, and C. Liu, Proc. CVPR 2011.

28 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Traditional Action Recognition Pipeline

Class
Probabilities
(SVM scores)

29 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Features Clustering and Dictionary

Feature
Samples

K-means or GMMs Dictionary

30 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

VLAD	

BOF	-		Size:	K	

VLAD	-		Size:	K*D	

Feature
Encodings

31 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

:	soft	assignment	of	each	feature	

Advanced Feature Encodings: VLAD, Fisher Vector

n  VLAD:

to	the	k-th		GMM’s	Gaussian	with	
parameters	

FV:	

VLAD:	

:	visual	word	

:	feature	vector	

n  Fisher Vector:

32 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

n  Support Vector Machines
n  Kernels:

q  Linear:

q  Chi-squared:

q  Features Fusion:

Classification

distance	
between	
histograms	

c:	different	channels	(descriptors)	

SVM	kernel	

33 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Dense Trajectories - Results

55

60

65

70

75

80

85

cl
as

si
fic

at
io

n
ac

cu
ra

cy
 (%

)

UCF Sports (12 classes)

10

15

20

25

30

35

40

45

50

cl
as

si
fic

at
io

n
ac

cu
ra

cy
 (%

)

HMDB51 (51 classes)

34 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Features Encoding: Spatio-Temporal Pyramids

Integrate	spatial	and	temporal	
structure:

n  Divide	the	3D	video	volume	
into	sub-volumes	(cells)	

n  Compute	a	Bag-of-Words	
histogram	for	each	cell	

n  Histogram	concatenation	

35 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Features Encoding: Spatio-Temporal Pyramids

n  Channel fusion of different grids:

20

25

30

35

40

45

50

cl
as

si
fic

at
io

n
ac

cu
ra

cy
 (%

)

HMDB51 (51 classes)

BoW s.t. pyramids
c:	different	channels	(grids)	

36 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

VLAD and Fisher Vector: Results

n  Better encoding depends on each problem/database

85

87

89

91

93

95

cl
as

si
fic

at
io

n
ac

cu
ra

cy
 (%

)

KTH (6 classes)

BoW s.t. pyramids VLAD Fisher

50
55
60
65
70
75
80
85

cl
as

si
fic

at
io

n
ac

cu
ra

cy
 (%

)

UCF Sports (10 classes)

BoW s.t. pyramids VLAD Fisher

37 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Video Processing and Action
Recognition using

Deep Neural Networks

38 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Single Stream CNN-based Architectures

n  Explore ways to fuse temporal information from consecutive
frames using 2D pre-trained CNNs

n  Cannot learn motion related patterns

Karpathy et al. CVPR 2014.

39 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

CNN + LSTM Architectures
n  Long-term Recurrent

Convolutional Networks
q  2D CNN features (encoder)
q  employ LSTMs on top of

them to capture the temporal
information (decoder)

n  end-to-end trainable
architecture

n  RNN (Recurrent Neural Networks)
q  model temporal dynamics

n  LSTM (Long Short Term Memory)
q  learn when to “forget” previous hidden states

q  learn when to update hidden states given
new information

Donahue et al. Proc. CVPR, 2015

40 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Two Streams CNN: RGB + Optical Flow

n  2D CNN architecture with two separate networks:
q  one for spatial context (pre-trained) à input: single video frame

q  one for motion context à optical flow stacked across for 10
successive frames

n  explicitly capturing local temporal movement

n  trained separately and combined using SVM

Simmoyan and Zisserman. Proc. NIPS, 2014

41 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Two Streams CNN: Advanced Fusion Schemes

The resulting feature ybil 2 RD
2

captures multiplicative
interactions at corresponding spatial locations. The main
drawback of this feature is its high dimensionality. To make
bilinear features usable in practice, it is usually applied at
ReLU5, the fully-connected layers are removed [15] and
power- and L2-normalisation is applied for effective classi-
fication with linear SVMs.

The advantage of bilinear fusion is that every channel of
one network is combined (as a product) with every channel
of the other network. However, the disadvantage is that all
spatial information is marginalized out at this point.

Discussion: These operations illustrate a range of pos-
sible fusion methods. Others could be considered, for ex-
ample: taking the pixel wise product of channels (instead of
their sum or max), or the (factorized) outer product without
sum pooling across locations [18].

Injecting fusion layers can have significant impact on
the number of parameters and layers in a two-stream net-
work, especially if only the network which is fused into
is kept and the other network tower is truncated, as illus-
trated in Fig. 2 (left). Table 1 shows how the number of
layers and parameters are affected by different fusion meth-
ods for the case of two VGG-M-2048 models (used in [22])
containing five convolution layers followed by three fully-
connected layers each. Max-, Sum and Conv-fusion at
ReLU5 (after the last convolutional layer) removes nearly
half of the parameters in the architecture as only one tower
of fully-connected layers is used after fusion. Conv fusion
has slightly more parameters (97.58M) compared to sum
and max fusion (97.31M) due to the additional filter that
is used for channel-wise fusion and dimensionality reduc-
tion. Many more parameters are involved in concatenation
fusion, which does not involve dimensionality reduction af-
ter fusion and therefore doubles the number of parameters
in the first fully connected layer. In comparison, sum-fusion
at the softmax layer requires all layers (16) and parameters
(181.4M) of the two towers.

In the experimental section (Sec. 4.2) we evaluate and
compare the performance of each of these possible fusion
methods in terms of their classification accuracy.

3.2. Where to fuse the networks

As noted above, fusion can be applied at any point in the
two networks, with the only constraint that the two input
maps xa

t
2 RH⇥W⇥D and xb

t
2 RH

0⇥W
0⇥D, at time t,

have the same spatial dimensions; i.e. H = H
0, W = W

0.
This can be achieved by using an “upconvolutional” layer
[38], or if the dimensions are similar, upsampling can be
achieved by padding the smaller map with zeros.

Table 2 compares the number of parameters for fusion at
different layers in the two networks for the case of a VGG-
M model. Fusing after different conv-layers has roughly the
same impact on the number of parameters, as most of these

conv1
pool1
conv2
pool2
conv3
conv4

fc6

fusion

Loss

conv1
pool1
conv2
pool2
conv3
conv4

conv5
pool5

fc8

conv1
pool1
conv2
pool2
conv3
conv4

fc6

fusion

Loss

conv1
pool1
conv2
pool2
conv3
conv4
conv5

fc8

conv5

pool5

fusion

fc6

fc8

pool5

fc7 fc7
fc7

Figure 2. Two examples of where a fusion layer can be placed.
The left example shows fusion after the fourth conv-layer. Only a
single network tower is used from the point of fusion. The right
figure shows fusion at two layers (after conv5 and after fc8) where
both network towers are kept, one as a hybrid spatiotemporal net
and one as a purely spatial network.

are stored in the fully-connected layers. Two networks can
also be fused at two layers, as illustrated in Fig. 2 (right).
This achieves the original objective of pixel-wise registra-
tion of the channels from each network (at conv5) but does
not lead to a reduction in the number of parameters (by half
if fused only at conv5, for example). In the experimental
section (Sec. 4.3) we evaluate and compare both the perfor-
mance of fusing at different levels, and fusing at multiple
layers simultaneously.

Figure 3. Different ways of fusing temporal information. (a)
2D pooling ignores time and simply pools over spatial neighbour-
hoods to individually shrink the size of the feature maps for each
temporal sample. (b) 3D pooling pools from local spatiotemporal
neighbourhoods by first stacking the feature maps across time and
then shrinking this spatiotemporal cube. (c) 3D conv + 3D pooling
additionally performs a convolution with a fusion kernel that spans
the feature channels, space and time before 3D pooling.

3.3. Temporal fusion

We now consider techniques to combine feature maps xt

over time t, to produce an output map yt. One way of pro-
cessing temporal inputs is by averaging the network predic-
tions over time (as used in [22]). In that case the architecture
only pools in 2D (xy); see Fig. 3(a).

Now consider the input of a temporal pooling layer as
feature maps x 2 RH⇥W⇥T⇥D which are generated by
stacking spatial maps across time t = 1 . . . T .

3D Pooling: applies max-pooling to the stacked data
within a 3D pooling cube of size W

0 ⇥ H
0 ⇥ T

0. This is
a straightforward extension of 2D pooling to the temporal
domain, as illustrated in Fig. 3(b). For example, if three

n  Fusion of spatial and
temporal streams (how and
when)

n  Fusion at two layers (after
conv5 and after fc8)
q  one as a hybrid

spatiotemporal net

q  one as a purely spatial
network

n  Combining temporal net
output across time frames
à model long term
dependencies

Feichtenhofer, Pinz and Zisserman. Proc. CVPR, 2016

42 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Temporal Segment Networks

n  two stream architecture
n  suggest sampling clips sparsely across the video to better

model long range temporal stimuli

n  combine scores of temporal and spatial streams separately by
averaging across snippets

L. Wang et al. Proc. ECCV, 2016

43 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

3D Convolutional Neural Networks

n  Employ 3D convolutional networks as feature extractors
instead of using 2D convolutions across frames

n  Applying 3D convolution on a video volume results in another
volume à preserving temporal information

D. Tran et al. Proc. ICCV, 2015

44 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Spatio-temporal 3D CNN – Transfer Learning

n  propose 3D CNNs based on ResNet architectures
n  very deep 2D CNNs trained on ImageNet generates outstanding

progress in image related tasks

n  3D CNNs trained on large scale action datasets can generate
similar progress in computer vision for videos

conv, 33, F

BN

ReLU

conv, 33, F

BN

ReLU

ResNet (basic)

conv, 13, F

BN

ReLU

conv, 33, F

BN

ReLU

ReLU

conv, 13, 4F

BN

ResNet (bottleneck)

conv, 13, F

BN

ReLU

conv, 33, F

BN

ReLU

ReLU

conv, 13, 4F

BN

ResNet (pre-act)

conv, 13, F

BN

ReLU

conv, 33, F, group=32

BN

ReLU

ReLU

BN

conv, 13, 2F

ResNeXt

conv, 13, 128

BN

ReLU

conv, 33, 32

BN

ReLU

DenseNet

Concat

Figure 3: Block of each architecture. We represent conv, x3, F as the kernel size, and the number of feature maps of the convolutional
filter are x ⇥ x ⇥ x and F, respectively, and group as the number of groups of group convolutions, which divide the feature maps into small
groups. BN refers to batch normalization [13]. Shortcut connections of the architectures are summation except for those of DenseNet,
which are concatenation.

Table 1: Network Architectures. Each convolutional layer is followed by batch normalization [13] and a ReLU [18]. Spatio-temporal
down-sampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of two, except for DenseNet. F is the number of feature
channels corresponding in Figure 3, and N is the number of blocks in each layer. DenseNet down-samples inputs using the transition layer,
that consists of a 3 ⇥ 3 ⇥ 3 convolutional layer and a 2 ⇥ 2 ⇥ 2 average pooling layer with a stride of two, after conv2_x, conv3_x, and
conv4_x. F of DenseNet is the number of input feature channels of first block in each layer, and N is the same as that of the other networks.
A 3 ⇥ 3 ⇥ 3 max-pooling layer (stride 2) is also located before conv2_x of all networks for down-sampling. In addition, conv1 spatially
down-samples inputs with a spatial stride of two. C of the fully-connected layer is the number of classes.

Model Block conv1
conv2_x conv3_x conv4_x conv5_x

F N F N F N F N

ResNet-
{18, 34} Basic

co
nv

,7
⇥

7
⇥

7,
64

,
te

m
po

ra
ls

tri
de

1,
sp

at
ia

ls
tri

de
2

64 {2, 3} 128 {2, 4} 256 {2, 6} 512 {2, 3}

gl
ob

al
av

er
ag

e
po

ol
,

C
-d

fu
lly

-c
on

ne
ct

ed
,

so
ftm

ax

ResNet-{50,
101, 152, 200} Bottleneck 64 3 128

{4, 4,
8, 24}

256
{6, 23,
36, 36}

512 3

Pre-act
ResNet-200 Pre-act 64 3 128 24 256 36 512 3

WRN-50 Bottleneck 128 3 256 4 512 6 1024 3
ResNeXt-101 ResNeXt 128 3 256 24 512 36 1024 3
DenseNet-
{121, 201} DenseNet 64 {6, 6} 128 {12, 12} 256 {24, 48}

{512,
896}

{16, 32}

3.2. Network architectures

Next, we explain the various ResNet-based architectures
with 3D convolutions used in this study. ResNet, which
is one of the most successful architectures in image classi-
fication, provides shortcut connections that allow a signal
to bypass one layer and move to the next layer in the se-
quence. Since these connections pass through the networks’
gradient flows from the later layers to the early layers, they

can facilitate the training of very deep networks. Unlike
previous studies that examined only limited 3D ResNet ar-
chitectures [9, 24], we examine not only deeper architectures
but also some extended versions of ResNet. In particular,
we explore the following architectures: ResNet (basic and
bottleneck blocks) [10], pre-activation ResNet [11], wide
ResNet (WRN) [31], ResNeXt [30], and DenseNet [12].
The architectures are summarized in Figure 3 and Table 1.
In the following paragraphs, we will briefly introduce each

Hara, Kataoka and Satoh. Proc. CVPR, 2018

45 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Factorized Spatio-temporal CNN

n  empirically show that factorizing
the 3D convolutional filters into
separate spatial and temporal
components yields significantly
gains in accuracy

n  design of a new spatiotemporal
convolutional block “R(2+1)D”

t x d x d

1 x d x d

t x 1 x 1
Mi

a) b)
Figure 2. (2+1)D vs 3D convolution. The illustration is given for
the simplified setting where the input consists of a spatiotemporal
volume with a single feature channel. (a) Full 3D convolution is
carried out using a filter of size t⇥ d⇥ d where t denotes the tem-
poral extent and d is the spatial width and height. (b) A (2+1)D
convolutional block splits the computation into a spatial 2D con-
volution followed by a temporal 1D convolution. We choose the
numbers of 2D filters (Mi) so that the number of parameters in our
(2+1)D block matches that of the full 3D convolutional block.

using 2D convolutions in the top layers. Since in this work
we consider 3D ResNets (R3D) having 5 groups of convo-
lutions (see Table 1), our first variant consists in replacing
all 3D convolutions in group 5 with 2D convolutions. We
denote this variant with MC5 (Mixed Convolutions). We
design a second variant that uses 2D convolutions in group
4 and 5, and name this model MC4 (meaning from group 4
and deeper layers all convolutions are 2D). Following this
pattern, we also create MC3 and MC2 variations. We omit
to consider MC1 since it is equivalent to a 2D ResNet (f-
R2D) applied to clip inputs. This type of CNN architec-
tures is illustrated in Figure 1(b). An alternative hypoth-
esis is that temporal modeling may be more beneficial in
the deep layers, with early capturing appearance informa-
tion via 2D convolutions. To account for such possibility,
we also experiment with “Reversed” Mixed Convolutions.
Following the naming convention of MC models, we de-
note these models as rMC2, rMC3, rMC4, and rMC5. Thus,
rMC3 would include 2D convolutions in block 1 and 2, and
3D convolutions in group 3 and deeper groups. This type of
CNN architecture is illustrated in Figure 1(c).

3.5. R(2+1)D: (2+1)D convolutions

Another possible theory is that full 3D convolutions may
be more conveniently approximated by a 2D convolution
followed by a 1D convolution, decomposing spatial and
temporal modeling into two separate steps. We thus design
a network architecture named R(2+1)D, where we replace
the Ni 3D convolutional filters of size Ni�1 ⇥ t ⇥ d ⇥ d

with a (2+1)D block consisting of Mi 2D convolutional fil-
ters of size Ni�1 ⇥ 1 ⇥ d ⇥ d and Ni temporal convolu-
tional filters of size Mi ⇥ t ⇥ 1 ⇥ 1. The hyperparameter
Mi determines the dimensionality of the intermediate sub-
space where the signal is projected between the spatial and

0 10 20 30 40 50
epoch

0

0.2

0.4

0.6

0.8

1

er
ro

r (
%

)

R3D-18 train
R3D-18 val
R(2+1)D-18 train
R(2+1)D-18 val

0 10 20 30 40 50
epoch

0

0.2

0.4

0.6

0.8

1

er
ro

r (
%

)

R3D-34 train
R3D-34 val
R(2+1)D-34 train
R(2+1)D-34 val

Figure 3. Training and testing errors for R(2+1)D and R3D.
Results are reported for ResNets of 18 layers (left) and 34 layers
(right). It can be observed that the training error (thin lines) is
smaller for R(2+1)D compared to R3D, particularly for the net-
work with larger depth (right). This suggests that the the spatial-
temporal decomposition implemented by R(2+1)D eases the opti-
mization, especially as depth is increased.

the temporal convolutions. We choose Mi = b td2Ni�1Ni

d2Ni�1+tNi
c

so that the number of parameters in the (2+1)D block is
approximately equal to that implementing full 3D convolu-
tion. We note that this spatiotemporal decomposition can
be applied to any 3D convolutional layer. An illustration
of this decomposition is given in Figure 2 for the simplified
setting where the input tensor zi�1 contains a single channel
(i.e., Ni�1 = 1). If the 3D convolution has spatial or tem-
poral striding (implementing downsampling), the striding is
correspondingly decomposed into its spatial or temporal di-
mensions. This architecture is illustrated in Figure 1(e).

Compared to full 3D convolution, our (2+1)D decom-
position offers two advantages. First, despite not changing
the number of parameters, it doubles the number of nonlin-
earities in the network due to the additional ReLU between
the 2D and 1D convolution in each block. Increasing the
number of nonlinearities increases the complexity of func-
tions that can be represented, as also noted in VGG net-
works [30] which approximate the effect of a big filter by
applying multiple smaller filters with additional nonlinear-
ities in between. The second benefit is that forcing the 3D
convolution into separate spatial and temporal components
renders the optimization easier. This is manifested in lower
training error compared to 3D convolutional networks of the
same capacity. This is illustrated in Figure 3 which shows
training and testing errors for R3D and R(2+1)D having 18
(left) and 34 (right) layers. It can be seen that, for the same
number of layers (and parameters), R(2+1)D yields not only
lower testing error but also lower training error compared to
R3D. This is an indication that optimization becomes easier
when spatiotemporal filters are factorized. The gap in the
training losses is particularly large for the nets having 34
layers, which suggests that the facilitation in optimization
increases as the depth becomes larger.

We note that our factorization is closely related to
Pseudo-3D blocks (P3D) [25], which were proposed to
adapt the bottleneck block of R2D to video classification.
Three different pseudo-3D blocks were introduced: P3D-A,

3D conv (2+1)D conv

Net # params Clip@1 Video@1 Clip@1 Video@1

Input 8⇥112⇥112 16⇥112⇥112
R2D 11.4M 46.7 59.5 47.0 58.9

f-R2D 11.4M 48.1 59.4 50.3 60.5
R3D 33.4M 49.4 61.8 52.5 64.2
MC2 11.4M 50.2 62.5 53.1 64.2
MC3 11.7M 50.7 62.9 53.7 64.7
MC4 12.7M 50.5 62.5 53.7 65.1
MC5 16.9M 50.3 62.5 53.7 65.1
rMC2 33.3M 49.8 62.1 53.1 64.9
rMC3 33.0M 49.8 62.3 53.2 65.0
rMC4 32.0M 49.9 62.3 53.4 65.1
rMC5 27.9M 49.4 61.2 52.1 63.1

R(2+1)D 33.3M 52.8 64.8 56.8 68.0

Table 2. Action recognition accuracy for different forms of con-

volution on the Kinetics validation set. All models are based on
a ResNet of 18 layers, and trained from scratch on either 8-frame
or 16-frame clip input. R(2+1)D outperforms all the other models.

is done with synchronous distributed SGD on GPU clusters
using caffe2 [3].

4.2. Comparison of spatiotemporal convolutions

Table 2 reports the clip top-1 and video top-1 action clas-
sification accuracy on the Kinetics validation set. There are
a few findings that can be inferred from these results. First,
there is a noticeable gap between the performance of 2D
ResNets (f-R2D and R2D) and that of R3D or mixed con-
volutional models (MCx and rMCx). This gap is 1.3� 4%
in the 8-frame input setting and becomes bigger (i.e. 1.8 �
6.7%) when models are trained on 16-frame clips as input.
This suggests that motion modeling is important for action
recognition. Note that all models (within the same setting)
see the same input and process all frames in each clip (ei-
ther 8 or 16 frames). The difference is that, compared to 3D
or MCx models which perform temporal reasoning through
the clip, R2D collapses and eliminates temporal information
after the first residual block, while f-R2D computes still-
image features from the individual frames. Among the dif-
ferent 3D convolutional models, R(2+1)D clearly performs
the best. It is 2.1�3.4% better than MCx, rMCx, R3D in the
8-frame setting, and 3.1�4.7% better in the 16-frame input
setting. This indicates that decomposing 3D convolutions
in separate spatial and temporal convolutions is better than
modeling spatiotemporal information jointly or via mixed
3D-2D convolutions. It also outperforms 2D ResNets (R2D
and f-R2D) by 4.7 � 6.1% in the 8-frame setting and by
6.3� 9.8% in the 16-frame input setting.

Figure 4 shows video top-1 accuracy on Kinetics valida-
tion set versus computational complexity (FLOPs) for dif-
ferent models. Figure 4(a) plots the models trained on 8-
frame clips while Figure 4(b) shows models with 16-frame
clip input. The most efficient network is R2D but it has the
poorest accuracy. In fact, R2D is about 7x faster than f-R2D
because it collapses the temporal dimension after conv1.

a) b)

0 5 10 15 20 25

FLOPs (x 10 9)

59

60

61

62

63

64

65

vid
eo

 to
p-

1
ac

cu
ra

cy
 (%

)

R(2+1)D
R2D
f-R2D
R3D
MC2
MC3
MC4
MC5
rMC2
rMC3
rMC4
rMC5

0 5 10 15 20 25 30 35 40 45

FLOPs (x 10 9)

58

59

60

61

62

63

64

65

66

67

68

vid
eo

 to
p-

1
ac

cu
ra

cy
 (%

)

R(2+1)D
R2D
f-R2D
R3D
MC2
MC3
MC4
MC5
rMC2
rMC3
rMC4
rMC5

Figure 4. Accuracy vs computational complexity for different

types of convolution on Kinetics. Different models are trained on
8-frame clips (left) and 16-frame clips (right). R(2+1)D achieves
the highest accuracy, producing about 3�3.8% accuracy gain over
R3D for the same computational cost.

In terms of accuracy, R2D gets similar performance to f-
R2D when trained on 8-frame clips, while it is 1.6% worse
than f-R2D in the 16-frame input setting. This is because
R2D performs temporal modeling only in the conv1 layer
and thus it handles poorly longer clip inputs. Interestingly,
rMC3 is more efficient than f-R2D since it performs tem-
poral striding in conv3 1, which yields smaller activation
tensors in all subsequent 2D convolutional layers. Con-
versely, f-R2D processes all frames independently and does
not perform any temporal striding. rMC2 is more costly
than rMC3, as it uses 2D convolutions in group 2, and does
not perform temporal striding in group 3. R(2+1)D has
roughly the same computational cost as R3D but it yields
higher accuracy. We note that the relative ranking between
different architectures is consistent across the two input set-
tings (8 vs 16 frame-clips). However, the gaps are bigger
for the 16-frame input setting. This indicates that temporal
modeling is more beneficial on longer clip inputs.
Why are (2+1)D convolutions better than 3D? Figure 3
presents the training and testing errors on Kinetics for R3D
and R(2+1)D, using 18-layers (left) and 34 layers (right).
We already know that R(2+1)D gives lower testing error
than R3D but the interesting message in this plot is that
R(2+1)D yields also lower training error. The reduction
in training error for R(2+1)D compared to R3D is particu-
larly accentuated for the architecture having 34 layers. This
suggests that the spatiotemporal decomposition of R(2+1)D
renders the optimization easier compared to R3D, espe-
cially as depth is increased.

4.3. Revisiting practices for video-level prediction

Varol et. al. [37] showed that accuracy gains can be ob-
tained by training video CNNs on longer input clips (e.g.
with 100 frames) using long-term convolutions (LTC). Here
we revisit this idea and evaluate this practice on Kinetics us-
ing R(2+1)D of 18 layers with varying input clip lengths: 8,
16, 24, 32, 40, and 48 frames. The outputs of the last con-
volution layer for these networks have different temporal
sizes, but once again we use a global spatiotemporal aver-
age pooling to generate a fixed-size representation which is

Net # params Clip@1 Video@1 Clip@1 Video@1

Input 8⇥112⇥112 16⇥112⇥112
R2D 11.4M 46.7 59.5 47.0 58.9

f-R2D 11.4M 48.1 59.4 50.3 60.5
R3D 33.4M 49.4 61.8 52.5 64.2
MC2 11.4M 50.2 62.5 53.1 64.2
MC3 11.7M 50.7 62.9 53.7 64.7
MC4 12.7M 50.5 62.5 53.7 65.1
MC5 16.9M 50.3 62.5 53.7 65.1
rMC2 33.3M 49.8 62.1 53.1 64.9
rMC3 33.0M 49.8 62.3 53.2 65.0
rMC4 32.0M 49.9 62.3 53.4 65.1
rMC5 27.9M 49.4 61.2 52.1 63.1

R(2+1)D 33.3M 52.8 64.8 56.8 68.0

Table 2. Action recognition accuracy for different forms of con-

volution on the Kinetics validation set. All models are based on
a ResNet of 18 layers, and trained from scratch on either 8-frame
or 16-frame clip input. R(2+1)D outperforms all the other models.

is done with synchronous distributed SGD on GPU clusters
using caffe2 [3].

4.2. Comparison of spatiotemporal convolutions

Table 2 reports the clip top-1 and video top-1 action clas-
sification accuracy on the Kinetics validation set. There are
a few findings that can be inferred from these results. First,
there is a noticeable gap between the performance of 2D
ResNets (f-R2D and R2D) and that of R3D or mixed con-
volutional models (MCx and rMCx). This gap is 1.3� 4%
in the 8-frame input setting and becomes bigger (i.e. 1.8 �
6.7%) when models are trained on 16-frame clips as input.
This suggests that motion modeling is important for action
recognition. Note that all models (within the same setting)
see the same input and process all frames in each clip (ei-
ther 8 or 16 frames). The difference is that, compared to 3D
or MCx models which perform temporal reasoning through
the clip, R2D collapses and eliminates temporal information
after the first residual block, while f-R2D computes still-
image features from the individual frames. Among the dif-
ferent 3D convolutional models, R(2+1)D clearly performs
the best. It is 2.1�3.4% better than MCx, rMCx, R3D in the
8-frame setting, and 3.1�4.7% better in the 16-frame input
setting. This indicates that decomposing 3D convolutions
in separate spatial and temporal convolutions is better than
modeling spatiotemporal information jointly or via mixed
3D-2D convolutions. It also outperforms 2D ResNets (R2D
and f-R2D) by 4.7 � 6.1% in the 8-frame setting and by
6.3� 9.8% in the 16-frame input setting.

Figure 4 shows video top-1 accuracy on Kinetics valida-
tion set versus computational complexity (FLOPs) for dif-
ferent models. Figure 4(a) plots the models trained on 8-
frame clips while Figure 4(b) shows models with 16-frame
clip input. The most efficient network is R2D but it has the
poorest accuracy. In fact, R2D is about 7x faster than f-R2D
because it collapses the temporal dimension after conv1.

a) b)

0 5 10 15 20 25

FLOPs (x 10 9)

59

60

61

62

63

64

65

vid
eo

 to
p-

1
ac

cu
ra

cy
 (%

)

R(2+1)D
R2D
f-R2D
R3D
MC2
MC3
MC4
MC5
rMC2
rMC3
rMC4
rMC5

0 5 10 15 20 25 30 35 40 45

FLOPs (x 10 9)

58

59

60

61

62

63

64

65

66

67

68

vid
eo

 to
p-

1
ac

cu
ra

cy
 (%

)

R(2+1)D
R2D
f-R2D
R3D
MC2
MC3
MC4
MC5
rMC2
rMC3
rMC4
rMC5

Figure 4. Accuracy vs computational complexity for different

types of convolution on Kinetics. Different models are trained on
8-frame clips (left) and 16-frame clips (right). R(2+1)D achieves
the highest accuracy, producing about 3�3.8% accuracy gain over
R3D for the same computational cost.

In terms of accuracy, R2D gets similar performance to f-
R2D when trained on 8-frame clips, while it is 1.6% worse
than f-R2D in the 16-frame input setting. This is because
R2D performs temporal modeling only in the conv1 layer
and thus it handles poorly longer clip inputs. Interestingly,
rMC3 is more efficient than f-R2D since it performs tem-
poral striding in conv3 1, which yields smaller activation
tensors in all subsequent 2D convolutional layers. Con-
versely, f-R2D processes all frames independently and does
not perform any temporal striding. rMC2 is more costly
than rMC3, as it uses 2D convolutions in group 2, and does
not perform temporal striding in group 3. R(2+1)D has
roughly the same computational cost as R3D but it yields
higher accuracy. We note that the relative ranking between
different architectures is consistent across the two input set-
tings (8 vs 16 frame-clips). However, the gaps are bigger
for the 16-frame input setting. This indicates that temporal
modeling is more beneficial on longer clip inputs.
Why are (2+1)D convolutions better than 3D? Figure 3
presents the training and testing errors on Kinetics for R3D
and R(2+1)D, using 18-layers (left) and 34 layers (right).
We already know that R(2+1)D gives lower testing error
than R3D but the interesting message in this plot is that
R(2+1)D yields also lower training error. The reduction
in training error for R(2+1)D compared to R3D is particu-
larly accentuated for the architecture having 34 layers. This
suggests that the spatiotemporal decomposition of R(2+1)D
renders the optimization easier compared to R3D, espe-
cially as depth is increased.

4.3. Revisiting practices for video-level prediction

Varol et. al. [37] showed that accuracy gains can be ob-
tained by training video CNNs on longer input clips (e.g.
with 100 frames) using long-term convolutions (LTC). Here
we revisit this idea and evaluate this practice on Kinetics us-
ing R(2+1)D of 18 layers with varying input clip lengths: 8,
16, 24, 32, 40, and 48 frames. The outputs of the last con-
volution layer for these networks have different temporal
sizes, but once again we use a global spatiotemporal aver-
age pooling to generate a fixed-size representation which is

D. Tran et al. Proc. CVPR, 2018

46 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Spatio-Temporal DNN-based Approaches

n  Most DNN-based methods for video processing and recognition
are improvisations on top of some basic approaches

Figure 2. Video architectures considered in this paper. K stands for the total number of frames in a video, whereas N stands for a subset of
neighboring frames of the video.

this makes them harder to train. Also, they seem to preclude
the benefits of ImageNet pre-training, and consequently
previous work has defined relatively shallow custom archi-
tectures and trained them from scratch [14, 15, 30, 31]. Re-
sults on benchmarks have shown promise but have not been
competitive with state-of-the-art, making this type of mod-
els a good candidate for evaluation on our larger dataset.

For this paper we implemented a small variation of C3D
[31], which has 8 convolutional layers, 5 pooling layers and
2 fully connected layers at the top. The inputs to the model
are short 16-frame clips with 112 ⇥ 112-pixel crops as in
the original implementation. Differently from [31] we used
batch normalization after all convolutional and fully con-
nected layers. Another difference to the original model is
in the first pooling layer, we use a temporal stride of 2 in-
stead of 1, which reduces the memory footprint and allows
for bigger batches – this was important for batch normal-
ization (especially after the fully connected layers, where
there is no weight tying). Using this stride we were able to
train with 15 videos per batch per GPU using standard K40
GPUs.

2.3. The Old III: Two-Stream Networks
LSTMs on features from the last layers of ConvNets can

model high-level variation, but may not be able to capture
fine low-level motion which is critical in many cases. It is
also expensive to train as it requires unrolling the network
through multiple frames for backpropagation-through-time.

A different, very practical approach, introduced by Si-
monyan and Zisserman [27], models short temporal snap-
shots of videos by averaging the predictions from a single
RGB frame and a stack of 10 externally computed optical

flow frames, after passing them through two replicas of an
ImageNet pre-trained ConvNet. The flow stream has an
adapted input convolutional layer with twice as many input
channels as flow frames (because flow has two channels,
horizontal and vertical), and at test time multiple snapshots
are sampled from the video and the action prediction is av-
eraged. This was shown to get very high performance on
existing benchmarks, while being very efficient to train and
test.

A recent extension [8] fuses the spatial and flow streams
after the last network convolutional layer, showing some
improvement on HMDB while requiring less test time aug-
mentation (snapshot sampling). Our implementation fol-
lows this paper approximately using Inception-V1. The in-
puts to the network are 5 consecutive RGB frames sam-
pled 10 frames apart, as well as the corresponding optical
flow snippets. The spatial and motion features before the
last average pooling layer of Inception-V1 (5 ⇥ 7 ⇥ 7 fea-
ture grids, corresponding to time, x and y dimensions) are
passed through a 3⇥ 3⇥ 3 3D convolutional layer with 512
output channels, followed by a 3 ⇥ 3 ⇥ 3 3D max-pooling
layer and through a final fully connected layer. The weights
of these new layers are initialized with Gaussian noise.

Both models, the original two-stream and the 3D fused
version, are trained end-to-end (including the two-stream
averaging process in the original model).

2.4. The New: Two-Stream Inflated 3D ConvNets
With this architecture, we show how 3D ConvNets can

benefit from ImageNet 2D ConvNet designs and, option-
ally, from their learned parameters. We also adopt a two-
stream configuration here – it will be shown in section 4

Carreira and Zisserman, Proc. CVPR 2017

47 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

I3D: Inflated 3D ConvNet

n  Two-Stream Inflated 3D
ConvNet (I3D) based on
2D ConvNet inflation
q  filters and pooling kernels

of very deep image
classification CNN are
expanded into 3D

q  possible to learn
seamless spatio-temporal
feature extractors from
video while leveraging
successful ImageNet
architecture designs/
parameters

UCF-101 HMDB-51
Architecture Original Fixed Full-FT Original Fixed Full-FT
(a) LSTM 81.0 / 54.2 88.1 / 82.6 91.0 / 86.8 36.0 / 18.3 50.8 / 47.1 53.4 / 49.7
(b) 3D-ConvNet – / 51.6 – / 76.0 – / 79.9 – / 24.3 – / 47.0 – / 49.4
(c) Two-Stream 91.2 / 83.6 93.9 / 93.3 94.2 / 93.8 58.3 / 47.1 66.6 / 65.9 66.6 / 64.3
(d) 3D-Fused 89.3 / 69.5 94.3 / 89.8 94.2 / 91.5 56.8 / 37.3 69.9 / 64.6 71.0 / 66.5
(e) Two-Stream I3D 93.4 / 88.8 97.7 / 97.4 98.0 / 97.6 66.4 / 62.2 79.7 / 78.6 81.2 / 81.3

Table 4. Performance on the UCF-101 and HMDB-51 test sets (split 1 of both) for architectures starting with / without ImageNet pretrained
weights. Original: train on UCF-101 or HMDB-51; Fixed: features from Kinetics, with the last layer trained on UCF-101 or HMDB-51;
Full-FT: Kinetics pre-training with end-to-end fine-tuning on UCF-101 or HMDB-51.

Model UCF-101 HMDB-51
Two-Stream [27] 88.0 59.4
IDT [33] 86.4 61.7
Dynamic Image Networks + IDT [2] 89.1 65.2
TDD + IDT [34] 91.5 65.9
Two-Stream Fusion + IDT [8] 93.5 69.2
Temporal Segment Networks [35] 94.2 69.4
ST-ResNet + IDT [7] 94.6 70.3
Deep Networks [15], Sports 1M pre-training 65.2 -
C3D one network [31], Sports 1M pre-training 82.3 -
C3D ensemble [31], Sports 1M pre-training 85.2 -
C3D ensemble + IDT [31], Sports 1M pre-training 90.1 -
RGB-I3D, Imagenet+Kinetics pre-training 95.6 74.8
Flow-I3D, Imagenet+Kinetics pre-training 96.7 77.1
Two-Stream I3D, Imagenet+Kinetics pre-training 98.0 80.7
RGB-I3D, Kinetics pre-training 95.1 74.3
Flow-I3D, Kinetics pre-training 96.5 77.3
Two-Stream I3D, Kinetics pre-training 97.8 80.9

Table 5. Comparison with state-of-the-art on the UCF-101 and HMDB-51 datasets, averaged over three splits. First set of rows contains
results of models trained without labeled external data.

the advantage over previous models considerably, bring-
ing overall performance to 98.0 on UCF-101 and 80.9 on
HMDB-51, which correspond to 63% and 35% misclassifi-
cation reductions, respectively compared to the best previ-
ous model [7].

The difference between Kinetics pre-trained I3D mod-
els and prior 3D ConvNets (C3D) is even larger, although
C3D is trained on more videos, 1M examples from Sports-
1M plus an internal dataset, and even when ensembled and
combined with IDT. This may be explainable by the better
quality of Kinetics but also because of I3D simply being a
better architecture.

6. Discussion
We return to the question posed in the introduction, “is

there a benefit in transfer learning from videos?”. It is evi-
dent that there is a considerable benefit in pre-training on

(the large video dataset) Kinetics, just as there has been
such benefits in pre-training ConvNets on ImageNet for so
many tasks. This demonstrates transfer learning from one
dataset (Kinetics) to another dataset (UCF-101/HMDB-51)
for a similar task (albeit for different action classes). How-
ever, it still remains to be seen if there is a benefit in using
Kinetics pre-training for other video tasks such as seman-
tic video segmentation, video object detection, or optical
flow computation. We plan to make publicly available I3D
models trained on the official Kinetics dataset’s release to
facilitate research in this area.

Of course, we did not perform a comprehensive explo-
ration of architectures – for example we have not employed
action tubes [11, 17] or attention mechanisms [20] to fo-
cus in on the human actors. Recent works have proposed
imaginative methods for determining the spatial and tem-
poral extent (detection) of actors within the two-stream
architectures, by incorporating linked object detections in

Figure 2. Video architectures considered in this paper. K stands for the total number of frames in a video, whereas N stands for a subset of
neighboring frames of the video.

this makes them harder to train. Also, they seem to preclude
the benefits of ImageNet pre-training, and consequently
previous work has defined relatively shallow custom archi-
tectures and trained them from scratch [14, 15, 30, 31]. Re-
sults on benchmarks have shown promise but have not been
competitive with state-of-the-art, making this type of mod-
els a good candidate for evaluation on our larger dataset.

For this paper we implemented a small variation of C3D
[31], which has 8 convolutional layers, 5 pooling layers and
2 fully connected layers at the top. The inputs to the model
are short 16-frame clips with 112 ⇥ 112-pixel crops as in
the original implementation. Differently from [31] we used
batch normalization after all convolutional and fully con-
nected layers. Another difference to the original model is
in the first pooling layer, we use a temporal stride of 2 in-
stead of 1, which reduces the memory footprint and allows
for bigger batches – this was important for batch normal-
ization (especially after the fully connected layers, where
there is no weight tying). Using this stride we were able to
train with 15 videos per batch per GPU using standard K40
GPUs.

2.3. The Old III: Two-Stream Networks
LSTMs on features from the last layers of ConvNets can

model high-level variation, but may not be able to capture
fine low-level motion which is critical in many cases. It is
also expensive to train as it requires unrolling the network
through multiple frames for backpropagation-through-time.

A different, very practical approach, introduced by Si-
monyan and Zisserman [27], models short temporal snap-
shots of videos by averaging the predictions from a single
RGB frame and a stack of 10 externally computed optical

flow frames, after passing them through two replicas of an
ImageNet pre-trained ConvNet. The flow stream has an
adapted input convolutional layer with twice as many input
channels as flow frames (because flow has two channels,
horizontal and vertical), and at test time multiple snapshots
are sampled from the video and the action prediction is av-
eraged. This was shown to get very high performance on
existing benchmarks, while being very efficient to train and
test.

A recent extension [8] fuses the spatial and flow streams
after the last network convolutional layer, showing some
improvement on HMDB while requiring less test time aug-
mentation (snapshot sampling). Our implementation fol-
lows this paper approximately using Inception-V1. The in-
puts to the network are 5 consecutive RGB frames sam-
pled 10 frames apart, as well as the corresponding optical
flow snippets. The spatial and motion features before the
last average pooling layer of Inception-V1 (5 ⇥ 7 ⇥ 7 fea-
ture grids, corresponding to time, x and y dimensions) are
passed through a 3⇥ 3⇥ 3 3D convolutional layer with 512
output channels, followed by a 3 ⇥ 3 ⇥ 3 3D max-pooling
layer and through a final fully connected layer. The weights
of these new layers are initialized with Gaussian noise.

Both models, the original two-stream and the 3D fused
version, are trained end-to-end (including the two-stream
averaging process in the original model).

2.4. The New: Two-Stream Inflated 3D ConvNets
With this architecture, we show how 3D ConvNets can

benefit from ImageNet 2D ConvNet designs and, option-
ally, from their learned parameters. We also adopt a two-
stream configuration here – it will be shown in section 4

Carreira and Zisserman, Proc. CVPR 2017

48 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Multi-task
Spatio-Temporal

Networks for Video
Understanding

Koutras and Maragos, SUSiNet: “See, Understand and Summarize It”, Proc. CVPRW, 2019

49 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Action Recognition

n  automated classification and detection of human activities on
videos
q  action labels from human annotations
q  many large datasets: Hollywood2, UCF101, HMDB51, Kinetics

open car door open door walk talk

50 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Spatio-Temporal Visual Saliency

n  spatial saliency
q  predict viewers fixations in image

plain
q  static eye-tracking datasets:

Toronto data set, MIT CAT200,
SALICON, …

n  spatio-temporal saliency
q  predict viewers fixations both in

space and time
q  dynamic eye-tracking datasets:

CRCNS, DIEM, DHF1K, …

51 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Video Summarization

n  summarization task refers to producing a shorter version
of a video:
q  video skims that contain only the necessary and non redundant

information required for context understanding

q  human annotated importance scores per frame/segment

q  annotated video datasets from multiple people: SumMe,
TVSum50, COGNIMUSE

model’s imprtance score
human annotation

52 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Multi-task Networks: goal-motivation

Ø  all these problems require the integration and modeling
of the temporal evolution:

Ø  spatio-temporal saliency estimation ßà eye-tracking data

Ø  visual concept understanding (i.e. actions) ßà annotated labels

Ø  video summarization ßà importance scores from humans

Ø  can we jointly tackle these problems like humans do in
the sense of:

n  See à Understand à Summarize it

?

53 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Spatial Multi-task Networks

Ø  recent works for spatial computer vision tasks train
multi-task networks or find the structure among visual
tasks and apply transfer learning

I. Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-, and
high-level vision using diverse datasets and limited memory. In Proc. CVPR, 2017.

54 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

0.4

0.6

0.8

1

visual import. summar. thresh.

Se
e

Understand —> recognized action: ride horse

Summarize it

SUSiNet

Spatio-Temporal Multi-task Networks

Ø  can we design and train a single multi-task
network for solving multiple spatio-temporal
problems with less computational resources ?

55 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

SUSiNet Contributions

①  multi-task spatio-temporal network that is jointly
end-to-end trained for above tasks with multiple and
diverse datasets:

•  employs the same video input
•  produces multiple output types (saliency maps or

classification labels)
②  deeply supervised mechanism through an attention

module related to human attention as it is expressed
by eye-tracking data

③  extensive evaluation on 7 different datasets:
•  multi-task network performs as well as single-task methods (or

in some cases better) and requires less computational budget

56 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

SUSiNet architecture

n  multi-task spatio-temporal network based on 3D ResNet-
q  global and task-specific modules

q  DSAM: deeply supervision attention module

n  multi-task and end-to-end training0

7x7x7
3D

conv1 /2

3D conv5
action

block /2

1d
 F

C
Si

gm
oi

d

1x1
2D conv
fusion

16d
feats

fall_floor: 0.005
jump: 0.0002

…
talk: 0.35
walk: 0.44

wave: 0.0001Video Clips
(16 video frames)

� � 3x3x3
3D Max
Pool /2

3D
conv2
block

� � 3D
conv3

block /2
� � 3D conv4

block
� �3D

conv4
block /2

3D conv5
summ.
block /2

Global
Average

Pool

Global
Average

Pool 51
d

FC
So

ftm
ax

Sp
at

ia
l

Si
gm

oi
d

Sigmoid Score
Human Annot.

Summ. Loss

Action Loss

Saliency Loss

Estimated Map

Eyetracking Map

DSAM2 DSAM3 DSAM4DSAM1

X1

M1

X̃1

S1

A1 A2 A3

S4
S3S2

M2 M3 M4

X4X3X2

X̃2 X̃3 X̃4

SF
P

Yden

pa

�(psum)

ysum

A4

L(Wall) = ↵sal

X

j2B
Lj
sal(W

0
sal) + ↵act

X

j2B
Lj
act(W

0
act) + ↵sum

X

j2B
Lj
sum(W0

sum)

57 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

SUSiNet architecture - saliency

7x7x7
3D

conv1 /2

3D conv5
action

block /2

1d
 F

C
Si

gm
oi

d

1x1
2D conv
fusion

16d
feats

fall_floor: 0.005
jump: 0.0002

…
talk: 0.35
walk: 0.44

wave: 0.0001Video Clips
(16 video frames)

� � 3x3x3
3D Max
Pool /2

3D
conv2
block

� � 3D
conv3

block /2
� � 3D conv4

block
� �3D

conv4
block /2

3D conv5
summ.
block /2

Global
Average

Pool

Global
Average

Pool 51
d

FC
So

ftm
ax

Sp
at

ia
l

Si
gm

oi
d

Sigmoid Score
Human Annot.

Summ. Loss

Action Loss

Saliency Loss

Estimated Map

Eyetracking Map

DSAM2 DSAM3 DSAM4DSAM1

X1

M1

X̃1

S1

A1 A2 A3

S4
S3S2

M2 M3 M4

X4X3X2

X̃2 X̃3 X̃4

SF
P

Yden

pa

�(psum)

ysum

A4

L(Wall) = ↵sal

X

j2B
Lj
sal(W

0
sal) + ↵act

X

j2B
Lj
act(W

0
act) + ↵sum

X

j2B
Lj
sum(W0

sum)

3D
Average

 Pool

3x3
2D conv
16 filters

Upscale
2D deconv
16 filters

1x1
2D conv
1 filter

Upscale
2D deconv

1 filter

Mm
Xm

Sm Am

Deeply Supervised Attention Module (DSAM)

Spatial
Softmax

Figure 3. Deeply Supervised Attention Module (DSAM) enhances
the global network’s representations and provides the multi-level
saliency maps for the task of spatio-temporal saliency.

where �(·) denotes the sigmoid non-linearity and D(·) is
a loss function between the estimated and the ground truth
2D maps. In the saliency evaluation several different met-
rics are employed in order to compare the predicted saliency
map P 2 [0, 1]NX⇥NY with the eyetracking data [8]. As
ground truth maps we are using either the map of fixation
locations Yfix 2 {0, 1}NX⇥NY on the image plane of size
NX ⇥ NY or the dense saliency map Yden 2 [0, 1]NX⇥NY ,
which arises by convolving the binary fixation map with a
gaussian kernel. Thus, as D(·) we employ three loss func-
tions associated with the different aspects of saliency eval-
uation. The first is the cross-entropy loss between the pre-
dicted map P and the thresholded dense map Ỹden:

DCE(W|P, Ỹden) = �
X

x,y

Ỹden(x, y) � log(P (x, y;W))

+(1 � Ỹden(x, y)) � (1 � log(P (x, y;W))).
(4)

In order to handle the strong imbalance between the salient
and non-salient pixels we take a variant of the above loss,
which has been effectively used in other imbalanced tasks
as boundrary detection [64, 33, 42]:

D̃CE(W|P, Ỹden) = �� ·
X

x,y2Y+

log(P (x, y;W))

�(1 � �) ·
X

x,y2Y�

(1 � log(P (x, y;W))),
(5)

where Y+, Y� are the set of salient and non-salient pix-
els respectively and � = |Y�|/(|Y+| + |Y�|). The second
employed loss function is based on the linear Correlation
Coefficient (CC) that is widely used in saliency evaluation
and measures the linear relationship between the predicted
saliency P and the dense ground truth map Yden:

DCC(W|P, Yden) = � cov(P (x, y;W), Yden(x, y))

⇢(P (x, y;W)) · ⇢(Yden(x, y))
,

(6)
where cov, ⇢ denote the covariance and the standard devia-
tion respectively.

The last loss is derived from the Normalized Scanpath
Saliency (NSS) metric, which is computed as the estimated
map values P̃ (x, y;W) = P (x,y;W)�µ(P (x,y;W))

⇢(P (x,y;W)) , after
zero mean normalization and unit standardization, at human
fixation locations (Yfix(x, y) = 1):

DNSS(W|P̃ , Yfix) = � 1

Nf

X

x,y

P̃ (x, y;W) � Yfix(x, y),

(7)
where Nf =

P
x,y Yfix(x, y) denotes the total number of

fixation points.
The final loss of the j-th input sample for the task of vi-

sual saliency estimation is given by a weight combination of
the losses Lj

CE , Lj
CC , Lj

NSS , which are given by (3) using
the corresponding loss functions Dj

CE , Dj
CC , Dj

NSS :

Lj
sal(W

0
sal) = w1Lj

CE + w2Lj
CC + w3Lj

NSS , (8)

where w1, w2, w3 are the weights of each loss type.

3.2.2 Action Recognition Module

For the action recognition problem, which constitutes a
classical multi-class problem, we build the task specific lay-
ers (with parameters Wact) after the output X̃4 of the global
branch. As we can see from Fig. 2 (orange blocks), we
have a 3D convolutional block, which has identical struc-
ture as the conv5 block of the employed ResNet architec-
ture, a global average pooling across the temporal dimen-
sion and a Ca-dimension fully connected layer, where Ca

is the number of classes. For the training of action-related
parameters W0

act = [Wact,W1:4
AM ,WGL] we employ the

standard multi-class cross-entropy for the softmax activa-
tions pa(c;W0

act), c = 1, . . . , Ca of the final layer:

Lj
act(W

0
act) = � log pj

a(cj ;W
0
act), (9)

where pj
a, cj denote the activation and the ground truth class

of the j-th input sample respectively.

3.2.3 Summarization Module

Regarding the summarization task we employ a sub-
network with parameters Wsum (Fig. 2 - purple blocks)
that has a similar structure with the one we used for action
recognition, with the difference that the last fully connected
layer has only one dimension since we have a binary clas-
sification problem (important vs. non-important video seg-
ments). The importance score of each video clip is given
by the sigmoid activation of the final full-connected layer
�(psum) 2 [0, 1], while for the training of the all task-
related parameters W0

sum = [Wsum,W1:4
AM ,WGL] we

employ the binary cross-entropy (BCE) loss. Since in most
annotated databases only a small portion of the whole video

saliency

7x7x7
3D

conv1 /2

3D conv5
action

block /2

1d
 F

C
Si

gm
oi

d

1x1
2D conv
fusion

16d
feats

fall_floor: 0.005
jump: 0.0002

…
talk: 0.35
walk: 0.44

wave: 0.0001Video Clips
(16 video frames)

� 3x3x3
3D Max
Pool /2

3D
conv2
block

� 3D
conv3

block /2
� 3D conv4

block
�3D

conv4
block /2

3D conv5
summ.
block /2

Global
Average

Pool

Global
Average

Pool 51
d

FC
So

ftm
ax

Sp
at

ia
l

Si
gm

oi
d

Sigmoid Score
Human Annot.

Summ. Loss

Action Loss

Saliency Loss

Estimated Map

Eyetracking Map

DSAM2 DSAM3 DSAM4DSAM1

X1

M1

X̃1

S1

A1 A2 A3

S4
S3S2

M2 M3 M4

X4X3X2

X̃2 X̃3 X̃4

SF
P

Yden

pa

�(psum)

ysum

A4

Figure 2. SUSiNet architecture: the multi-task spatio-temporal network is based on the ResNet architecture and has three different branches
associated with the different spatio-temporal tasks.

3. Multi-task Spatio-Temporal Network
The proposed spatio-temporal network deals with three

different tasks simultaneously and produces different types
of outputs by employing the same video input in the form
of small video clips. For the saliency estimation, where we
face a spatial estimation problem, the network output con-
sists of a saliency map, while for the action classification
task we have the classical softmax scores. For the video
summarization we need to estimate video’s segments im-
portance scores, which indicate whether a segment will be
included in the summary, as the sigmoid scores of a binary
classification problem.

3.1. Global Architecture with Deep Supervision
The whole architecture of our multi-task network, which

is shown in Fig. 2, is based on the general ResNet archi-
tecture [27] and specifically the 3D extension proposed in
[25] for the problem of action classification. The global
pathway of the network with parameters WGL (dark blue),
which is shared among all the tasks, includes the first four
convolutional blocks conv1, conv2, conv3, conv4 from the
employed ResNet version that provides outputs Xm, m =
1, . . . , 4 in different spatial and temporal scales. In order
to enhance the most salient regions of these feature repre-
sentations, we apply an attention mechanism by taking the
element-wise product between each channel of the feature
map Xm and the attention map Mm:

X̃m = (1 + Mm) � Xm, m = 1, . . . , 4. (1)

The attention map is obtained by our proposed Deeply Su-
pervised Attention Module (DSAM) based on the idea of
deep supervision that has been used in edge detection [64],
object segmentation [9] and static saliency [62]. In con-
trary to these previous works the proposed module is used
for both enhancing the feature representations of the global
network as well as providing the multi-level saliency maps
for the task of spatio-temporal saliency. Thus, the DSAM
parameters Wm

AM are trained by both the main-path of the

network, which is shared among all the tasks, and the eye-
tracking data that are used for the task of saliency estimation
through the skip connections of the Fig. 2. In this way, we
enrich our network with an attention module that is related
to human attention as it is expressed by eye-tracking data.

Figure 3 shows the architecture of the attention mod-
ule applied at level m. It includes an averaging pooling
in the temporal dimension followed by two spatial convo-
lution layers that provide the saliency features Sm and the
activation map Am. Both of these representations are up-
sampled (using the appropriate deconvolution layers) to the
initial image dimensions and used for the deep supervision
of the module as well as for the multi-level saliency estima-
tion. The attention map Mm(x, y) is given through a spatial
softmax operation applied at the activation map Am(x, y):

Mm(x, y) =
exp(Am(x, y))P

x

P
y exp(Am(x, y))

. (2)

3.2. Task-specific Sub-Networks
3.2.1 Visual Saliency Module

Since in the saliency estimation we face a dense predic-
tion problem, we need to employ a fully convolution sub-
network with parameters Wsal (see green parts of Fig. 2)
that takes advantage from the concatenated multi-level
saliency features Sm of the DSAM components and pro-
duces the final fused saliency map SF which corresponds
to the given video clip. For the training of the network pa-
rameters W0

sal = [Wsal,W1:4
AM ,WGL], which are asso-

ciated with visual saliency, the deep attention supervision
of the whole multi-task network and the global branch we
construct a loss that compares the saliency map SF and the
activations Am with the ground truth maps Ysal obtained by
the eye-tracking data:

Lsal(W
0
sal) = D(W0

sal|�(SF), Ysal)+
4X

m=1

D(Wm
AM |�(Am), Ysal),

(3)

Estimated Map

Eyetracking Map

P

Yden

58 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

SUSiNet architecture – saliency losses

3D
Average

 Pool

3x3
2D conv
16 filters

Upscale
2D deconv
16 filters

1x1
2D conv
1 filter

Upscale
2D deconv

1 filter

Mm
Xm

Sm Am

Deeply Supervised Attention Module (DSAM)

Spatial
Softmax

Figure 3. Deeply Supervised Attention Module (DSAM) enhances
the global network’s representations and provides the multi-level
saliency maps for the task of spatio-temporal saliency.

where �(·) denotes the sigmoid non-linearity and D(·) is
a loss function between the estimated and the ground truth
2D maps. In the saliency evaluation several different met-
rics are employed in order to compare the predicted saliency
map P 2 [0, 1]NX⇥NY with the eyetracking data [8]. As
ground truth maps we are using either the map of fixation
locations Yfix 2 {0, 1}NX⇥NY on the image plane of size
NX ⇥ NY or the dense saliency map Yden 2 [0, 1]NX⇥NY ,
which arises by convolving the binary fixation map with a
gaussian kernel. Thus, as D(·) we employ three loss func-
tions associated with the different aspects of saliency eval-
uation. The first is the cross-entropy loss between the pre-
dicted map P and the thresholded dense map Ỹden:

DCE(W|P, Ỹden) = �
X

x,y

Ỹden(x, y) � log(P (x, y;W))

+(1 � Ỹden(x, y)) � (1 � log(P (x, y;W))).
(4)

In order to handle the strong imbalance between the salient
and non-salient pixels we take a variant of the above loss,
which has been effectively used in other imbalanced tasks
as boundrary detection [64, 33, 42]:

D̃CE(W|P, Ỹden) = �� ·
X

x,y2Y+

log(P (x, y;W))

�(1 � �) ·
X

x,y2Y�

(1 � log(P (x, y;W))),
(5)

where Y+, Y� are the set of salient and non-salient pix-
els respectively and � = |Y�|/(|Y+| + |Y�|). The second
employed loss function is based on the linear Correlation
Coefficient (CC) that is widely used in saliency evaluation
and measures the linear relationship between the predicted
saliency P and the dense ground truth map Yden:

DCC(W|P, Yden) = � cov(P (x, y;W), Yden(x, y))

⇢(P (x, y;W)) · ⇢(Yden(x, y))
,

(6)
where cov, ⇢ denote the covariance and the standard devia-
tion respectively.

The last loss is derived from the Normalized Scanpath
Saliency (NSS) metric, which is computed as the estimated
map values P̃ (x, y;W) = P (x,y;W)�µ(P (x,y;W))

⇢(P (x,y;W)) , after
zero mean normalization and unit standardization, at human
fixation locations (Yfix(x, y) = 1):

DNSS(W|P̃ , Yfix) = � 1

Nf

X

x,y

P̃ (x, y;W) � Yfix(x, y),

(7)
where Nf =

P
x,y Yfix(x, y) denotes the total number of

fixation points.
The final loss of the j-th input sample for the task of vi-

sual saliency estimation is given by a weight combination of
the losses Lj

CE , Lj
CC , Lj

NSS , which are given by (3) using
the corresponding loss functions Dj

CE , Dj
CC , Dj

NSS :

Lj
sal(W

0
sal) = w1Lj

CE + w2Lj
CC + w3Lj

NSS , (8)

where w1, w2, w3 are the weights of each loss type.

3.2.2 Action Recognition Module

For the action recognition problem, which constitutes a
classical multi-class problem, we build the task specific lay-
ers (with parameters Wact) after the output X̃4 of the global
branch. As we can see from Fig. 2 (orange blocks), we
have a 3D convolutional block, which has identical struc-
ture as the conv5 block of the employed ResNet architec-
ture, a global average pooling across the temporal dimen-
sion and a Ca-dimension fully connected layer, where Ca

is the number of classes. For the training of action-related
parameters W0

act = [Wact,W1:4
AM ,WGL] we employ the

standard multi-class cross-entropy for the softmax activa-
tions pa(c;W0

act), c = 1, . . . , Ca of the final layer:

Lj
act(W

0
act) = � log pj

a(cj ;W
0
act), (9)

where pj
a, cj denote the activation and the ground truth class

of the j-th input sample respectively.

3.2.3 Summarization Module

Regarding the summarization task we employ a sub-
network with parameters Wsum (Fig. 2 - purple blocks)
that has a similar structure with the one we used for action
recognition, with the difference that the last fully connected
layer has only one dimension since we have a binary clas-
sification problem (important vs. non-important video seg-
ments). The importance score of each video clip is given
by the sigmoid activation of the final full-connected layer
�(psum) 2 [0, 1], while for the training of the all task-
related parameters W0

sum = [Wsum,W1:4
AM ,WGL] we

employ the binary cross-entropy (BCE) loss. Since in most
annotated databases only a small portion of the whole video

3D
Average

 Pool

3x3
2D conv
16 filters

Upscale
2D deconv
16 filters

1x1
2D conv
1 filter

Upscale
2D deconv

1 filter

Mm
Xm

Sm Am

Deeply Supervised Attention Module (DSAM)

Spatial
Softmax

Figure 3. Deeply Supervised Attention Module (DSAM) enhances
the global network’s representations and provides the multi-level
saliency maps for the task of spatio-temporal saliency.

where �(·) denotes the sigmoid non-linearity and D(·) is
a loss function between the estimated and the ground truth
2D maps. In the saliency evaluation several different met-
rics are employed in order to compare the predicted saliency
map P 2 [0, 1]NX⇥NY with the eyetracking data [8]. As
ground truth maps we are using either the map of fixation
locations Yfix 2 {0, 1}NX⇥NY on the image plane of size
NX ⇥ NY or the dense saliency map Yden 2 [0, 1]NX⇥NY ,
which arises by convolving the binary fixation map with a
gaussian kernel. Thus, as D(·) we employ three loss func-
tions associated with the different aspects of saliency eval-
uation. The first is the cross-entropy loss between the pre-
dicted map P and the thresholded dense map Ỹden:

DCE(W|P, Ỹden) = �
X

x,y

Ỹden(x, y) � log(P (x, y;W))

+(1 � Ỹden(x, y)) � (1 � log(P (x, y;W))).
(4)

In order to handle the strong imbalance between the salient
and non-salient pixels we take a variant of the above loss,
which has been effectively used in other imbalanced tasks
as boundrary detection [64, 33, 42]:

D̃CE(W|P, Ỹden) = �� ·
X

x,y2Y+

log(P (x, y;W))

�(1 � �) ·
X

x,y2Y�

(1 � log(P (x, y;W))),
(5)

where Y+, Y� are the set of salient and non-salient pix-
els respectively and � = |Y�|/(|Y+| + |Y�|). The second
employed loss function is based on the linear Correlation
Coefficient (CC) that is widely used in saliency evaluation
and measures the linear relationship between the predicted
saliency P and the dense ground truth map Yden:

DCC(W|P, Yden) = � cov(P (x, y;W), Yden(x, y))

⇢(P (x, y;W)) · ⇢(Yden(x, y))
,

(6)
where cov, ⇢ denote the covariance and the standard devia-
tion respectively.

The last loss is derived from the Normalized Scanpath
Saliency (NSS) metric, which is computed as the estimated
map values P̃ (x, y;W) = P (x,y;W)�µ(P (x,y;W))

⇢(P (x,y;W)) , after
zero mean normalization and unit standardization, at human
fixation locations (Yfix(x, y) = 1):

DNSS(W|P̃ , Yfix) = � 1

Nf

X

x,y

P̃ (x, y;W) � Yfix(x, y),

(7)
where Nf =

P
x,y Yfix(x, y) denotes the total number of

fixation points.
The final loss of the j-th input sample for the task of vi-

sual saliency estimation is given by a weight combination of
the losses Lj

CE , Lj
CC , Lj

NSS , which are given by (3) using
the corresponding loss functions Dj

CE , Dj
CC , Dj

NSS :

Lj
sal(W

0
sal) = w1Lj

CE + w2Lj
CC + w3Lj

NSS , (8)

where w1, w2, w3 are the weights of each loss type.

3.2.2 Action Recognition Module

For the action recognition problem, which constitutes a
classical multi-class problem, we build the task specific lay-
ers (with parameters Wact) after the output X̃4 of the global
branch. As we can see from Fig. 2 (orange blocks), we
have a 3D convolutional block, which has identical struc-
ture as the conv5 block of the employed ResNet architec-
ture, a global average pooling across the temporal dimen-
sion and a Ca-dimension fully connected layer, where Ca

is the number of classes. For the training of action-related
parameters W0

act = [Wact,W1:4
AM ,WGL] we employ the

standard multi-class cross-entropy for the softmax activa-
tions pa(c;W0

act), c = 1, . . . , Ca of the final layer:

Lj
act(W

0
act) = � log pj

a(cj ;W
0
act), (9)

where pj
a, cj denote the activation and the ground truth class

of the j-th input sample respectively.

3.2.3 Summarization Module

Regarding the summarization task we employ a sub-
network with parameters Wsum (Fig. 2 - purple blocks)
that has a similar structure with the one we used for action
recognition, with the difference that the last fully connected
layer has only one dimension since we have a binary clas-
sification problem (important vs. non-important video seg-
ments). The importance score of each video clip is given
by the sigmoid activation of the final full-connected layer
�(psum) 2 [0, 1], while for the training of the all task-
related parameters W0

sum = [Wsum,W1:4
AM ,WGL] we

employ the binary cross-entropy (BCE) loss. Since in most
annotated databases only a small portion of the whole video

3D
Average

 Pool

3x3
2D conv
16 filters

Upscale
2D deconv
16 filters

1x1
2D conv
1 filter

Upscale
2D deconv

1 filter

Mm
Xm

Sm Am

Deeply Supervised Attention Module (DSAM)

Spatial
Softmax

Figure 3. Deeply Supervised Attention Module (DSAM) enhances
the global network’s representations and provides the multi-level
saliency maps for the task of spatio-temporal saliency.

where �(·) denotes the sigmoid non-linearity and D(·) is
a loss function between the estimated and the ground truth
2D maps. In the saliency evaluation several different met-
rics are employed in order to compare the predicted saliency
map P 2 [0, 1]NX⇥NY with the eyetracking data [8]. As
ground truth maps we are using either the map of fixation
locations Yfix 2 {0, 1}NX⇥NY on the image plane of size
NX ⇥ NY or the dense saliency map Yden 2 [0, 1]NX⇥NY ,
which arises by convolving the binary fixation map with a
gaussian kernel. Thus, as D(·) we employ three loss func-
tions associated with the different aspects of saliency eval-
uation. The first is the cross-entropy loss between the pre-
dicted map P and the thresholded dense map Ỹden:

DCE(W|P, Ỹden) = �
X

x,y

Ỹden(x, y) � log(P (x, y;W))

+(1 � Ỹden(x, y)) � (1 � log(P (x, y;W))).
(4)

In order to handle the strong imbalance between the salient
and non-salient pixels we take a variant of the above loss,
which has been effectively used in other imbalanced tasks
as boundrary detection [64, 33, 42]:

D̃CE(W|P, Ỹden) = �� ·
X

x,y2Y+

log(P (x, y;W))

�(1 � �) ·
X

x,y2Y�

(1 � log(P (x, y;W))),
(5)

where Y+, Y� are the set of salient and non-salient pix-
els respectively and � = |Y�|/(|Y+| + |Y�|). The second
employed loss function is based on the linear Correlation
Coefficient (CC) that is widely used in saliency evaluation
and measures the linear relationship between the predicted
saliency P and the dense ground truth map Yden:

DCC(W|P, Yden) = � cov(P (x, y;W), Yden(x, y))

⇢(P (x, y;W)) · ⇢(Yden(x, y))
,

(6)
where cov, ⇢ denote the covariance and the standard devia-
tion respectively.

The last loss is derived from the Normalized Scanpath
Saliency (NSS) metric, which is computed as the estimated
map values P̃ (x, y;W) = P (x,y;W)�µ(P (x,y;W))

⇢(P (x,y;W)) , after
zero mean normalization and unit standardization, at human
fixation locations (Yfix(x, y) = 1):

DNSS(W|P̃ , Yfix) = � 1

Nf

X

x,y

P̃ (x, y;W) � Yfix(x, y),

(7)
where Nf =

P
x,y Yfix(x, y) denotes the total number of

fixation points.
The final loss of the j-th input sample for the task of vi-

sual saliency estimation is given by a weight combination of
the losses Lj

CE , Lj
CC , Lj

NSS , which are given by (3) using
the corresponding loss functions Dj

CE , Dj
CC , Dj

NSS :

Lj
sal(W

0
sal) = w1Lj

CE + w2Lj
CC + w3Lj

NSS , (8)

where w1, w2, w3 are the weights of each loss type.

3.2.2 Action Recognition Module

For the action recognition problem, which constitutes a
classical multi-class problem, we build the task specific lay-
ers (with parameters Wact) after the output X̃4 of the global
branch. As we can see from Fig. 2 (orange blocks), we
have a 3D convolutional block, which has identical struc-
ture as the conv5 block of the employed ResNet architec-
ture, a global average pooling across the temporal dimen-
sion and a Ca-dimension fully connected layer, where Ca

is the number of classes. For the training of action-related
parameters W0

act = [Wact,W1:4
AM ,WGL] we employ the

standard multi-class cross-entropy for the softmax activa-
tions pa(c;W0

act), c = 1, . . . , Ca of the final layer:

Lj
act(W

0
act) = � log pj

a(cj ;W
0
act), (9)

where pj
a, cj denote the activation and the ground truth class

of the j-th input sample respectively.

3.2.3 Summarization Module

Regarding the summarization task we employ a sub-
network with parameters Wsum (Fig. 2 - purple blocks)
that has a similar structure with the one we used for action
recognition, with the difference that the last fully connected
layer has only one dimension since we have a binary clas-
sification problem (important vs. non-important video seg-
ments). The importance score of each video clip is given
by the sigmoid activation of the final full-connected layer
�(psum) 2 [0, 1], while for the training of the all task-
related parameters W0

sum = [Wsum,W1:4
AM ,WGL] we

employ the binary cross-entropy (BCE) loss. Since in most
annotated databases only a small portion of the whole video

7x7x7
3D

conv1 /2

3D conv5
action

block /2

1d
 F

C
Si

gm
oi

d

1x1
2D conv
fusion

16d
feats

fall_floor: 0.005
jump: 0.0002

…
talk: 0.35
walk: 0.44

wave: 0.0001Video Clips
(16 video frames)

� 3x3x3
3D Max
Pool /2

3D
conv2
block

� 3D
conv3

block /2
� 3D conv4

block
�3D

conv4
block /2

3D conv5
summ.
block /2

Global
Average

Pool

Global
Average

Pool 51
d

FC
So

ftm
ax

Sp
at

ia
l

Si
gm

oi
d

Sigmoid Score
Human Annot.

Summ. Loss

Action Loss

Saliency Loss

Estimated Map

Eyetracking Map

DSAM2 DSAM3 DSAM4DSAM1

X1

M1

X̃1

S1

A1 A2 A3

S4
S3S2

M2 M3 M4

X4X3X2

X̃2 X̃3 X̃4

SF
P

Yden

pa

�(psum)

ysum

A4

Figure 2. SUSiNet architecture: the multi-task spatio-temporal network is based on the ResNet architecture and has three different branches
associated with the different spatio-temporal tasks.

3. Multi-task Spatio-Temporal Network
The proposed spatio-temporal network deals with three

different tasks simultaneously and produces different types
of outputs by employing the same video input in the form
of small video clips. For the saliency estimation, where we
face a spatial estimation problem, the network output con-
sists of a saliency map, while for the action classification
task we have the classical softmax scores. For the video
summarization we need to estimate video’s segments im-
portance scores, which indicate whether a segment will be
included in the summary, as the sigmoid scores of a binary
classification problem.

3.1. Global Architecture with Deep Supervision
The whole architecture of our multi-task network, which

is shown in Fig. 2, is based on the general ResNet archi-
tecture [27] and specifically the 3D extension proposed in
[25] for the problem of action classification. The global
pathway of the network with parameters WGL (dark blue),
which is shared among all the tasks, includes the first four
convolutional blocks conv1, conv2, conv3, conv4 from the
employed ResNet version that provides outputs Xm, m =
1, . . . , 4 in different spatial and temporal scales. In order
to enhance the most salient regions of these feature repre-
sentations, we apply an attention mechanism by taking the
element-wise product between each channel of the feature
map Xm and the attention map Mm:

X̃m = (1 + Mm) � Xm, m = 1, . . . , 4. (1)

The attention map is obtained by our proposed Deeply Su-
pervised Attention Module (DSAM) based on the idea of
deep supervision that has been used in edge detection [64],
object segmentation [9] and static saliency [62]. In con-
trary to these previous works the proposed module is used
for both enhancing the feature representations of the global
network as well as providing the multi-level saliency maps
for the task of spatio-temporal saliency. Thus, the DSAM
parameters Wm

AM are trained by both the main-path of the

network, which is shared among all the tasks, and the eye-
tracking data that are used for the task of saliency estimation
through the skip connections of the Fig. 2. In this way, we
enrich our network with an attention module that is related
to human attention as it is expressed by eye-tracking data.

Figure 3 shows the architecture of the attention mod-
ule applied at level m. It includes an averaging pooling
in the temporal dimension followed by two spatial convo-
lution layers that provide the saliency features Sm and the
activation map Am. Both of these representations are up-
sampled (using the appropriate deconvolution layers) to the
initial image dimensions and used for the deep supervision
of the module as well as for the multi-level saliency estima-
tion. The attention map Mm(x, y) is given through a spatial
softmax operation applied at the activation map Am(x, y):

Mm(x, y) =
exp(Am(x, y))P

x

P
y exp(Am(x, y))

. (2)

3.2. Task-specific Sub-Networks
3.2.1 Visual Saliency Module

Since in the saliency estimation we face a dense predic-
tion problem, we need to employ a fully convolution sub-
network with parameters Wsal (see green parts of Fig. 2)
that takes advantage from the concatenated multi-level
saliency features Sm of the DSAM components and pro-
duces the final fused saliency map SF which corresponds
to the given video clip. For the training of the network pa-
rameters W0

sal = [Wsal,W1:4
AM ,WGL], which are asso-

ciated with visual saliency, the deep attention supervision
of the whole multi-task network and the global branch we
construct a loss that compares the saliency map SF and the
activations Am with the ground truth maps Ysal obtained by
the eye-tracking data:

Lsal(W
0
sal) = D(W0

sal|�(SF), Ysal)+
4X

m=1

D(Wm
AM |�(Am), Ysal),

(3)

cross-entropy

CC loss

NSS loss

59 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

SUSiNet architecture - saliency

7x7x7
3D

conv1 /2

3D conv5
action

block /2

1d
 F

C
Si

gm
oi

d

1x1
2D conv
fusion

16d
feats

fall_floor: 0.005
jump: 0.0002

…
talk: 0.35
walk: 0.44

wave: 0.0001Video Clips
(16 video frames)

� � 3x3x3
3D Max
Pool /2

3D
conv2
block

� � 3D
conv3

block /2
� � 3D conv4

block
� �3D

conv4
block /2

3D conv5
summ.
block /2

Global
Average

Pool

Global
Average

Pool 51
d

FC
So

ftm
ax

Sp
at

ia
l

Si
gm

oi
d

Sigmoid Score
Human Annot.

Summ. Loss

Action Loss

Saliency Loss

Estimated Map

Eyetracking Map

DSAM2 DSAM3 DSAM4DSAM1

X1

M1

X̃1

S1

A1 A2 A3

S4
S3S2

M2 M3 M4

X4X3X2

X̃2 X̃3 X̃4

SF
P

Yden

pa

�(psum)

ysum

A4

L(Wall) = ↵sal

X

j2B
Lj
sal(W

0
sal) + ↵act

X

j2B
Lj
act(W

0
act) + ↵sum

X

j2B
Lj
sum(W0

sum)

3D
Average

 Pool

3x3
2D conv
16 filters

Upscale
2D deconv
16 filters

1x1
2D conv
1 filter

Upscale
2D deconv

1 filter

Mm
Xm

Sm Am

Deeply Supervised Attention Module (DSAM)

Spatial
Softmax

Figure 3. Deeply Supervised Attention Module (DSAM) enhances
the global network’s representations and provides the multi-level
saliency maps for the task of spatio-temporal saliency.

where �(·) denotes the sigmoid non-linearity and D(·) is
a loss function between the estimated and the ground truth
2D maps. In the saliency evaluation several different met-
rics are employed in order to compare the predicted saliency
map P 2 [0, 1]NX⇥NY with the eyetracking data [8]. As
ground truth maps we are using either the map of fixation
locations Yfix 2 {0, 1}NX⇥NY on the image plane of size
NX ⇥ NY or the dense saliency map Yden 2 [0, 1]NX⇥NY ,
which arises by convolving the binary fixation map with a
gaussian kernel. Thus, as D(·) we employ three loss func-
tions associated with the different aspects of saliency eval-
uation. The first is the cross-entropy loss between the pre-
dicted map P and the thresholded dense map Ỹden:

DCE(W|P, Ỹden) = �
X

x,y

Ỹden(x, y) � log(P (x, y;W))

+(1 � Ỹden(x, y)) � (1 � log(P (x, y;W))).
(4)

In order to handle the strong imbalance between the salient
and non-salient pixels we take a variant of the above loss,
which has been effectively used in other imbalanced tasks
as boundrary detection [64, 33, 42]:

D̃CE(W|P, Ỹden) = �� ·
X

x,y2Y+

log(P (x, y;W))

�(1 � �) ·
X

x,y2Y�

(1 � log(P (x, y;W))),
(5)

where Y+, Y� are the set of salient and non-salient pix-
els respectively and � = |Y�|/(|Y+| + |Y�|). The second
employed loss function is based on the linear Correlation
Coefficient (CC) that is widely used in saliency evaluation
and measures the linear relationship between the predicted
saliency P and the dense ground truth map Yden:

DCC(W|P, Yden) = � cov(P (x, y;W), Yden(x, y))

⇢(P (x, y;W)) · ⇢(Yden(x, y))
,

(6)
where cov, ⇢ denote the covariance and the standard devia-
tion respectively.

The last loss is derived from the Normalized Scanpath
Saliency (NSS) metric, which is computed as the estimated
map values P̃ (x, y;W) = P (x,y;W)�µ(P (x,y;W))

⇢(P (x,y;W)) , after
zero mean normalization and unit standardization, at human
fixation locations (Yfix(x, y) = 1):

DNSS(W|P̃ , Yfix) = � 1

Nf

X

x,y

P̃ (x, y;W) � Yfix(x, y),

(7)
where Nf =

P
x,y Yfix(x, y) denotes the total number of

fixation points.
The final loss of the j-th input sample for the task of vi-

sual saliency estimation is given by a weight combination of
the losses Lj

CE , Lj
CC , Lj

NSS , which are given by (3) using
the corresponding loss functions Dj

CE , Dj
CC , Dj

NSS :

Lj
sal(W

0
sal) = w1Lj

CE + w2Lj
CC + w3Lj

NSS , (8)

where w1, w2, w3 are the weights of each loss type.

3.2.2 Action Recognition Module

For the action recognition problem, which constitutes a
classical multi-class problem, we build the task specific lay-
ers (with parameters Wact) after the output X̃4 of the global
branch. As we can see from Fig. 2 (orange blocks), we
have a 3D convolutional block, which has identical struc-
ture as the conv5 block of the employed ResNet architec-
ture, a global average pooling across the temporal dimen-
sion and a Ca-dimension fully connected layer, where Ca

is the number of classes. For the training of action-related
parameters W0

act = [Wact,W1:4
AM ,WGL] we employ the

standard multi-class cross-entropy for the softmax activa-
tions pa(c;W0

act), c = 1, . . . , Ca of the final layer:

Lj
act(W

0
act) = � log pj

a(cj ;W
0
act), (9)

where pj
a, cj denote the activation and the ground truth class

of the j-th input sample respectively.

3.2.3 Summarization Module

Regarding the summarization task we employ a sub-
network with parameters Wsum (Fig. 2 - purple blocks)
that has a similar structure with the one we used for action
recognition, with the difference that the last fully connected
layer has only one dimension since we have a binary clas-
sification problem (important vs. non-important video seg-
ments). The importance score of each video clip is given
by the sigmoid activation of the final full-connected layer
�(psum) 2 [0, 1], while for the training of the all task-
related parameters W0

sum = [Wsum,W1:4
AM ,WGL] we

employ the binary cross-entropy (BCE) loss. Since in most
annotated databases only a small portion of the whole video

saliency

7x7x7
3D

conv1 /2

3D conv5
action

block /2

1d
 F

C
Si

gm
oi

d

1x1
2D conv
fusion

16d
feats

fall_floor: 0.005
jump: 0.0002

…
talk: 0.35
walk: 0.44

wave: 0.0001Video Clips
(16 video frames)

� 3x3x3
3D Max
Pool /2

3D
conv2
block

� 3D
conv3

block /2
� 3D conv4

block
�3D

conv4
block /2

3D conv5
summ.
block /2

Global
Average

Pool

Global
Average

Pool 51
d

FC
So

ftm
ax

Sp
at

ia
l

Si
gm

oi
d

Sigmoid Score
Human Annot.

Summ. Loss

Action Loss

Saliency Loss

Estimated Map

Eyetracking Map

DSAM2 DSAM3 DSAM4DSAM1

X1

M1

X̃1

S1

A1 A2 A3

S4
S3S2

M2 M3 M4

X4X3X2

X̃2 X̃3 X̃4

SF
P

Yden

pa

�(psum)

ysum

A4

Figure 2. SUSiNet architecture: the multi-task spatio-temporal network is based on the ResNet architecture and has three different branches
associated with the different spatio-temporal tasks.

3. Multi-task Spatio-Temporal Network
The proposed spatio-temporal network deals with three

different tasks simultaneously and produces different types
of outputs by employing the same video input in the form
of small video clips. For the saliency estimation, where we
face a spatial estimation problem, the network output con-
sists of a saliency map, while for the action classification
task we have the classical softmax scores. For the video
summarization we need to estimate video’s segments im-
portance scores, which indicate whether a segment will be
included in the summary, as the sigmoid scores of a binary
classification problem.

3.1. Global Architecture with Deep Supervision
The whole architecture of our multi-task network, which

is shown in Fig. 2, is based on the general ResNet archi-
tecture [27] and specifically the 3D extension proposed in
[25] for the problem of action classification. The global
pathway of the network with parameters WGL (dark blue),
which is shared among all the tasks, includes the first four
convolutional blocks conv1, conv2, conv3, conv4 from the
employed ResNet version that provides outputs Xm, m =
1, . . . , 4 in different spatial and temporal scales. In order
to enhance the most salient regions of these feature repre-
sentations, we apply an attention mechanism by taking the
element-wise product between each channel of the feature
map Xm and the attention map Mm:

X̃m = (1 + Mm) � Xm, m = 1, . . . , 4. (1)

The attention map is obtained by our proposed Deeply Su-
pervised Attention Module (DSAM) based on the idea of
deep supervision that has been used in edge detection [64],
object segmentation [9] and static saliency [62]. In con-
trary to these previous works the proposed module is used
for both enhancing the feature representations of the global
network as well as providing the multi-level saliency maps
for the task of spatio-temporal saliency. Thus, the DSAM
parameters Wm

AM are trained by both the main-path of the

network, which is shared among all the tasks, and the eye-
tracking data that are used for the task of saliency estimation
through the skip connections of the Fig. 2. In this way, we
enrich our network with an attention module that is related
to human attention as it is expressed by eye-tracking data.

Figure 3 shows the architecture of the attention mod-
ule applied at level m. It includes an averaging pooling
in the temporal dimension followed by two spatial convo-
lution layers that provide the saliency features Sm and the
activation map Am. Both of these representations are up-
sampled (using the appropriate deconvolution layers) to the
initial image dimensions and used for the deep supervision
of the module as well as for the multi-level saliency estima-
tion. The attention map Mm(x, y) is given through a spatial
softmax operation applied at the activation map Am(x, y):

Mm(x, y) =
exp(Am(x, y))P

x

P
y exp(Am(x, y))

. (2)

3.2. Task-specific Sub-Networks
3.2.1 Visual Saliency Module

Since in the saliency estimation we face a dense predic-
tion problem, we need to employ a fully convolution sub-
network with parameters Wsal (see green parts of Fig. 2)
that takes advantage from the concatenated multi-level
saliency features Sm of the DSAM components and pro-
duces the final fused saliency map SF which corresponds
to the given video clip. For the training of the network pa-
rameters W0

sal = [Wsal,W1:4
AM ,WGL], which are asso-

ciated with visual saliency, the deep attention supervision
of the whole multi-task network and the global branch we
construct a loss that compares the saliency map SF and the
activations Am with the ground truth maps Ysal obtained by
the eye-tracking data:

Lsal(W
0
sal) = D(W0

sal|�(SF), Ysal)+
4X

m=1

D(Wm
AM |�(Am), Ysal),

(3)deep supervision

60 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Deeply supervised attention module

3D
Average

 Pool

3x3
2D conv
16 filters

Upscale
2D deconv
16 filters

1x1
2D conv
1 filter

Upscale
2D deconv

1 filter

Mm
Xm

Sm Am

Deeply Supervised Attention Module (DSAM)

Spatial
Softmax

7x7x7
3D

conv1 /2

3D conv5
action

block /2

1d
 F

C
Si

gm
oi

d

1x1
2D conv
fusion

16d
feats

fall_floor: 0.005
jump: 0.0002

…
talk: 0.35
walk: 0.44

wave: 0.0001Video Clips
(16 video frames)

� 3x3x3
3D Max
Pool /2

3D
conv2
block

� 3D
conv3

block /2
� 3D conv4

block
�3D

conv4
block /2

3D conv5
summ.
block /2

Global
Average

Pool

Global
Average

Pool 51
d

FC
So

ftm
ax

Sp
at

ia
l

Si
gm

oi
d

Sigmoid Score
Human Annot.

Summ. Loss

Action Loss

Saliency Loss

Estimated Map

Eyetracking Map

DSAM2 DSAM3 DSAM4DSAM1

X1

M1

X̃1

S1

A1 A2 A3

S4
S3S2

M2 M3 M4

X4X3X2

X̃2 X̃3 X̃4

SF
P

Yden

pa

�(psum)

ysum

A4

Figure 2. SUSiNet architecture: the multi-task spatio-temporal network is based on the ResNet architecture and has three different branches
associated with the different spatio-temporal tasks.

3. Multi-task Spatio-Temporal Network
The proposed spatio-temporal network deals with three

different tasks simultaneously and produces different types
of outputs by employing the same video input in the form
of small video clips. For the saliency estimation, where we
face a spatial estimation problem, the network output con-
sists of a saliency map, while for the action classification
task we have the classical softmax scores. For the video
summarization we need to estimate video’s segments im-
portance scores, which indicate whether a segment will be
included in the summary, as the sigmoid scores of a binary
classification problem.

3.1. Global Architecture with Deep Supervision
The whole architecture of our multi-task network, which

is shown in Fig. 2, is based on the general ResNet archi-
tecture [27] and specifically the 3D extension proposed in
[25] for the problem of action classification. The global
pathway of the network with parameters WGL (dark blue),
which is shared among all the tasks, includes the first four
convolutional blocks conv1, conv2, conv3, conv4 from the
employed ResNet version that provides outputs Xm, m =
1, . . . , 4 in different spatial and temporal scales. In order
to enhance the most salient regions of these feature repre-
sentations, we apply an attention mechanism by taking the
element-wise product between each channel of the feature
map Xm and the attention map Mm:

X̃m = (1 + Mm) � Xm, m = 1, . . . , 4. (1)

The attention map is obtained by our proposed Deeply Su-
pervised Attention Module (DSAM) based on the idea of
deep supervision that has been used in edge detection [64],
object segmentation [9] and static saliency [62]. In con-
trary to these previous works the proposed module is used
for both enhancing the feature representations of the global
network as well as providing the multi-level saliency maps
for the task of spatio-temporal saliency. Thus, the DSAM
parameters Wm

AM are trained by both the main-path of the

network, which is shared among all the tasks, and the eye-
tracking data that are used for the task of saliency estimation
through the skip connections of the Fig. 2. In this way, we
enrich our network with an attention module that is related
to human attention as it is expressed by eye-tracking data.

Figure 3 shows the architecture of the attention mod-
ule applied at level m. It includes an averaging pooling
in the temporal dimension followed by two spatial convo-
lution layers that provide the saliency features Sm and the
activation map Am. Both of these representations are up-
sampled (using the appropriate deconvolution layers) to the
initial image dimensions and used for the deep supervision
of the module as well as for the multi-level saliency estima-
tion. The attention map Mm(x, y) is given through a spatial
softmax operation applied at the activation map Am(x, y):

Mm(x, y) =
exp(Am(x, y))P

x

P
y exp(Am(x, y))

. (2)

3.2. Task-specific Sub-Networks
3.2.1 Visual Saliency Module

Since in the saliency estimation we face a dense predic-
tion problem, we need to employ a fully convolution sub-
network with parameters Wsal (see green parts of Fig. 2)
that takes advantage from the concatenated multi-level
saliency features Sm of the DSAM components and pro-
duces the final fused saliency map SF which corresponds
to the given video clip. For the training of the network pa-
rameters W0

sal = [Wsal,W1:4
AM ,WGL], which are asso-

ciated with visual saliency, the deep attention supervision
of the whole multi-task network and the global branch we
construct a loss that compares the saliency map SF and the
activations Am with the ground truth maps Ysal obtained by
the eye-tracking data:

Lsal(W
0
sal) = D(W0

sal|�(SF), Ysal)+
4X

m=1

D(Wm
AM |�(Am), Ysal),

(3)

7x7x7
3D

conv1 /2

3D conv5
action

block /2

1d
 F

C
Si

gm
oi

d

1x1
2D conv
fusion

16d
feats

fall_floor: 0.005
jump: 0.0002

…
talk: 0.35
walk: 0.44

wave: 0.0001Video Clips
(16 video frames)

� 3x3x3
3D Max
Pool /2

3D
conv2
block

� 3D
conv3

block /2
� 3D conv4

block
�3D

conv4
block /2

3D conv5
summ.
block /2

Global
Average

Pool

Global
Average

Pool 51
d

FC
So

ftm
ax

Sp
at

ia
l

Si
gm

oi
d

Sigmoid Score
Human Annot.

Summ. Loss

Action Loss

Saliency Loss

Estimated Map

Eyetracking Map

DSAM2 DSAM3 DSAM4DSAM1

X1

M1

X̃1

S1

A1 A2 A3

S4
S3S2

M2 M3 M4

X4X3X2

X̃2 X̃3 X̃4

SF
P

Yden

pa

�(psum)

ysum

A4

Figure 2. SUSiNet architecture: the multi-task spatio-temporal network is based on the ResNet architecture and has three different branches
associated with the different spatio-temporal tasks.

3. Multi-task Spatio-Temporal Network
The proposed spatio-temporal network deals with three

different tasks simultaneously and produces different types
of outputs by employing the same video input in the form
of small video clips. For the saliency estimation, where we
face a spatial estimation problem, the network output con-
sists of a saliency map, while for the action classification
task we have the classical softmax scores. For the video
summarization we need to estimate video’s segments im-
portance scores, which indicate whether a segment will be
included in the summary, as the sigmoid scores of a binary
classification problem.

3.1. Global Architecture with Deep Supervision
The whole architecture of our multi-task network, which

is shown in Fig. 2, is based on the general ResNet archi-
tecture [27] and specifically the 3D extension proposed in
[25] for the problem of action classification. The global
pathway of the network with parameters WGL (dark blue),
which is shared among all the tasks, includes the first four
convolutional blocks conv1, conv2, conv3, conv4 from the
employed ResNet version that provides outputs Xm, m =
1, . . . , 4 in different spatial and temporal scales. In order
to enhance the most salient regions of these feature repre-
sentations, we apply an attention mechanism by taking the
element-wise product between each channel of the feature
map Xm and the attention map Mm:

X̃m = (1 + Mm) � Xm, m = 1, . . . , 4. (1)

The attention map is obtained by our proposed Deeply Su-
pervised Attention Module (DSAM) based on the idea of
deep supervision that has been used in edge detection [64],
object segmentation [9] and static saliency [62]. In con-
trary to these previous works the proposed module is used
for both enhancing the feature representations of the global
network as well as providing the multi-level saliency maps
for the task of spatio-temporal saliency. Thus, the DSAM
parameters Wm

AM are trained by both the main-path of the

network, which is shared among all the tasks, and the eye-
tracking data that are used for the task of saliency estimation
through the skip connections of the Fig. 2. In this way, we
enrich our network with an attention module that is related
to human attention as it is expressed by eye-tracking data.

Figure 3 shows the architecture of the attention mod-
ule applied at level m. It includes an averaging pooling
in the temporal dimension followed by two spatial convo-
lution layers that provide the saliency features Sm and the
activation map Am. Both of these representations are up-
sampled (using the appropriate deconvolution layers) to the
initial image dimensions and used for the deep supervision
of the module as well as for the multi-level saliency estima-
tion. The attention map Mm(x, y) is given through a spatial
softmax operation applied at the activation map Am(x, y):

Mm(x, y) =
exp(Am(x, y))P

x

P
y exp(Am(x, y))

. (2)

3.2. Task-specific Sub-Networks
3.2.1 Visual Saliency Module

Since in the saliency estimation we face a dense predic-
tion problem, we need to employ a fully convolution sub-
network with parameters Wsal (see green parts of Fig. 2)
that takes advantage from the concatenated multi-level
saliency features Sm of the DSAM components and pro-
duces the final fused saliency map SF which corresponds
to the given video clip. For the training of the network pa-
rameters W0

sal = [Wsal,W1:4
AM ,WGL], which are asso-

ciated with visual saliency, the deep attention supervision
of the whole multi-task network and the global branch we
construct a loss that compares the saliency map SF and the
activations Am with the ground truth maps Ysal obtained by
the eye-tracking data:

Lsal(W
0
sal) = D(W0

sal|�(SF), Ysal)+
4X

m=1

D(Wm
AM |�(Am), Ysal),

(3)

attention
mechanism

activation map saliency features

attention
map

61 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

SUSiNet architecture - action

7x7x7
3D

conv1 /2

3D conv5
action

block /2

1d
 F

C
Si

gm
oi

d

1x1
2D conv
fusion

16d
feats

fall_floor: 0.005
jump: 0.0002

…
talk: 0.35
walk: 0.44

wave: 0.0001Video Clips
(16 video frames)

� � 3x3x3
3D Max
Pool /2

3D
conv2
block

� � 3D
conv3

block /2
� � 3D conv4

block
� �3D

conv4
block /2

3D conv5
summ.
block /2

Global
Average

Pool

Global
Average

Pool 51
d

FC
So

ftm
ax

Sp
at

ia
l

Si
gm

oi
d

Sigmoid Score
Human Annot.

Summ. Loss

Action Loss

Saliency Loss

Estimated Map

Eyetracking Map

DSAM2 DSAM3 DSAM4DSAM1

X1

M1

X̃1

S1

A1 A2 A3

S4
S3S2

M2 M3 M4

X4X3X2

X̃2 X̃3 X̃4

SF
P

Yden

pa

�(psum)

ysum

A4

L(Wall) = ↵sal

X

j2B
Lj
sal(W

0
sal) + ↵act

X

j2B
Lj
act(W

0
act) + ↵sum

X

j2B
Lj
sum(W0

sum)

3D
Average

 Pool

3x3
2D conv
16 filters

Upscale
2D deconv
16 filters

1x1
2D conv
1 filter

Upscale
2D deconv

1 filter

Mm
Xm

Sm Am

Deeply Supervised Attention Module (DSAM)

Spatial
Softmax

Figure 3. Deeply Supervised Attention Module (DSAM) enhances
the global network’s representations and provides the multi-level
saliency maps for the task of spatio-temporal saliency.

where �(·) denotes the sigmoid non-linearity and D(·) is
a loss function between the estimated and the ground truth
2D maps. In the saliency evaluation several different met-
rics are employed in order to compare the predicted saliency
map P 2 [0, 1]NX⇥NY with the eyetracking data [8]. As
ground truth maps we are using either the map of fixation
locations Yfix 2 {0, 1}NX⇥NY on the image plane of size
NX ⇥ NY or the dense saliency map Yden 2 [0, 1]NX⇥NY ,
which arises by convolving the binary fixation map with a
gaussian kernel. Thus, as D(·) we employ three loss func-
tions associated with the different aspects of saliency eval-
uation. The first is the cross-entropy loss between the pre-
dicted map P and the thresholded dense map Ỹden:

DCE(W|P, Ỹden) = �
X

x,y

Ỹden(x, y) � log(P (x, y;W))

+(1 � Ỹden(x, y)) � (1 � log(P (x, y;W))).
(4)

In order to handle the strong imbalance between the salient
and non-salient pixels we take a variant of the above loss,
which has been effectively used in other imbalanced tasks
as boundrary detection [64, 33, 42]:

D̃CE(W|P, Ỹden) = �� ·
X

x,y2Y+

log(P (x, y;W))

�(1 � �) ·
X

x,y2Y�

(1 � log(P (x, y;W))),
(5)

where Y+, Y� are the set of salient and non-salient pix-
els respectively and � = |Y�|/(|Y+| + |Y�|). The second
employed loss function is based on the linear Correlation
Coefficient (CC) that is widely used in saliency evaluation
and measures the linear relationship between the predicted
saliency P and the dense ground truth map Yden:

DCC(W|P, Yden) = � cov(P (x, y;W), Yden(x, y))

⇢(P (x, y;W)) · ⇢(Yden(x, y))
,

(6)
where cov, ⇢ denote the covariance and the standard devia-
tion respectively.

The last loss is derived from the Normalized Scanpath
Saliency (NSS) metric, which is computed as the estimated
map values P̃ (x, y;W) = P (x,y;W)�µ(P (x,y;W))

⇢(P (x,y;W)) , after
zero mean normalization and unit standardization, at human
fixation locations (Yfix(x, y) = 1):

DNSS(W|P̃ , Yfix) = � 1

Nf

X

x,y

P̃ (x, y;W) � Yfix(x, y),

(7)
where Nf =

P
x,y Yfix(x, y) denotes the total number of

fixation points.
The final loss of the j-th input sample for the task of vi-

sual saliency estimation is given by a weight combination of
the losses Lj

CE , Lj
CC , Lj

NSS , which are given by (3) using
the corresponding loss functions Dj

CE , Dj
CC , Dj

NSS :

Lj
sal(W

0
sal) = w1Lj

CE + w2Lj
CC + w3Lj

NSS , (8)

where w1, w2, w3 are the weights of each loss type.

3.2.2 Action Recognition Module

For the action recognition problem, which constitutes a
classical multi-class problem, we build the task specific lay-
ers (with parameters Wact) after the output X̃4 of the global
branch. As we can see from Fig. 2 (orange blocks), we
have a 3D convolutional block, which has identical struc-
ture as the conv5 block of the employed ResNet architec-
ture, a global average pooling across the temporal dimen-
sion and a Ca-dimension fully connected layer, where Ca

is the number of classes. For the training of action-related
parameters W0

act = [Wact,W1:4
AM ,WGL] we employ the

standard multi-class cross-entropy for the softmax activa-
tions pa(c;W0

act), c = 1, . . . , Ca of the final layer:

Lj
act(W

0
act) = � log pj

a(cj ;W
0
act), (9)

where pj
a, cj denote the activation and the ground truth class

of the j-th input sample respectively.

3.2.3 Summarization Module

Regarding the summarization task we employ a sub-
network with parameters Wsum (Fig. 2 - purple blocks)
that has a similar structure with the one we used for action
recognition, with the difference that the last fully connected
layer has only one dimension since we have a binary clas-
sification problem (important vs. non-important video seg-
ments). The importance score of each video clip is given
by the sigmoid activation of the final full-connected layer
�(psum) 2 [0, 1], while for the training of the all task-
related parameters W0

sum = [Wsum,W1:4
AM ,WGL] we

employ the binary cross-entropy (BCE) loss. Since in most
annotated databases only a small portion of the whole video

action

fall_floor: 0.005
jump: 0.0002

…
talk: 0.35
walk: 0.44

wave: 0.0001

pamulti-class cross-entropy

62 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

SUSiNet architecture - summarization

7x7x7
3D

conv1 /2

3D conv5
action

block /2

1d
 F

C
Si

gm
oi

d

1x1
2D conv
fusion

16d
feats

fall_floor: 0.005
jump: 0.0002

…
talk: 0.35
walk: 0.44

wave: 0.0001Video Clips
(16 video frames)

� � 3x3x3
3D Max
Pool /2

3D
conv2
block

� � 3D
conv3

block /2
� � 3D conv4

block
� �3D

conv4
block /2

3D conv5
summ.
block /2

Global
Average

Pool

Global
Average

Pool 51
d

FC
So

ftm
ax

Sp
at

ia
l

Si
gm

oi
d

Sigmoid Score
Human Annot.

Summ. Loss

Action Loss

Saliency Loss

Estimated Map

Eyetracking Map

DSAM2 DSAM3 DSAM4DSAM1

X1

M1

X̃1

S1

A1 A2 A3

S4
S3S2

M2 M3 M4

X4X3X2

X̃2 X̃3 X̃4

SF
P

Yden

pa

�(psum)

ysum

A4

L(Wall) = ↵sal

X

j2B
Lj
sal(W

0
sal) + ↵act

X

j2B
Lj
act(W

0
act) + ↵sum

X

j2B
Lj
sum(W0

sum)

is annotated as important and selected for final summary,
the ground truth data are heavily biased. Thus we use a
weighted variant of the BCE based on the ratio � = |S�|

|S+|
between the number of negative and positive samples in the
whole training dataset:

Lj
sum(W0

sum) = �� · yj
sum · log(�(pj

sum(W0
sum))

�(1 � yj
sum) · (1 � log(�(pj

sum(W0
sum))),

(10)

where yj
sum 2 [0, 1] denotes the ground truth annotation

regarding the importance of the j-th video clip.

3.3. Multi-task Training
For the end-to-end training of the whole

multi-task spatio-temporal network (Wall =
[WGL,W1:4

AM ,Wsal,Wact,Wsum]) we can simply
minimize the sum of the above task-specific losses over all
the samples of the batch B:

L(Wall) = ↵sal

X

j2B
Lj

sal(W
0
sal)

+ ↵act

X

j2B
Lj

act(W
0
act) + ↵sum

X

j2B
Lj

sum(W0
sum),

(11)

where ↵sal, ↵act, ↵sum are weights that control the contri-
bution of each task. This approach, which has been fol-
lowed in many static multi-task networks [13, 15, 21], as-
sumes that each sample of the batch has annotations for all
tasks. However, as [34] has mentioned, this is not a realistic
scenario, especially for our tasks where none of the anno-
tations can be derived from the other tasks’ annotations, as
in object detection and semantic segmentation. Thus, we
use the Asynchronous Stochastic Gradient Descent (SGD)
algorithm, which has been proposed in [34], that allows us
to have different effective batchsizes Bsal, Bact, Bsum and
update the parameters of the task-specific layers once we
have seen enough samples. The updates for the shared pa-
rameters W 0

GL = [WGLW1:4
AM] of the multi-task network

are based on the sum of the gradients from all losses:

dW0
GL =

X

j2B
↵salrW0

GL
Lj

sal(W
0
sal) (12)

+ ↵actrW0
GL

Lj
act(W

0
act) + ↵sumrW0

GL
Lj

sum(W0
sum),

where B = Bsal [Bact [Bsum is the total minibatch that
contains all the training samples. The updates for the task-
specific parameters depend only on the gradient of each dif-
ferent loss:

dWsal =
X

j2Bsal

↵salrWsalL
j
sal(W

0
sal)

dWact =
X

j2Bact

↵actrWactL
j
act(W

0
act)

dWsum =
X

j2Bsum

↵sumrWsumLj
sum(W0

sum)

(13)

3.4. Implementation
Our implementation and experimentation with the pro-

posed multi-task network uses as backbone the 3D ResNet-
50 architecture [25] that has showed competitive perfor-
mance against other deeper architectures for the task of ac-
tion recognition in terms of performance and computational
budget. As starting point we used the weights from the pre-
trained model in the Kinetics 400 database.
Training: For the training we used the asynchronous ver-
sion of stochastic gradient descent with momentum 0.9
while we also assign a weight decay of 1e-5 for regular-
ization. We have also employed effective batchsizes of 128
samples for all tasks while the learning rate has started from
0.01 and divided by 10 when the loss saturated. The weights
w1, w2, w3 for the saliency loss are selected 0.1, 2, 1 af-
ter experimentation, while the ratio � in the summarization
loss was set to 3.06 based on the statistics of the employed
training datasets. The weights ↵sal, ↵act, ↵sum, which con-
trol the importance of each task, have been experimentally
tuned to 0.1, 1, 1 (based on the losses’ ranges) in order to
avoid the overfitting of the network to one task.
Data Augmentation: The input samples in the network
consist of 16-frames RGB video clips spatially resized at
112 ⇥ 112 pixels. We have also applied data augmenta-
tion for random generation of training samples. For the
action recognition task we randomly sampled a 16-frame
clip from each training video and afterwrds we followed the
procedure of random multi-scale spatial cropping and flip-
ping, which is described in [61]. For the summarization task
we divided the initial long-duration videos into 90-frames
non-overlapping segments and generated the 16-frames clip
following the same procedure as in action recognition task.
Regarding the human annotations we took its average inside
the created clips, that gave training samples with slightly
different annotation scores and helped us to avoid the net-
work’s overfitting. For data augmentation in the saliency
estimation task, we followed a similar approach as in sum-
marization task without the random cropping step. We ap-
plied the same spatial transformations to the 16 frames of
the video clip and the eye-tracking based saliency maps of
the median frame, which has been considered as the the
ground truth map of the whole clip.
Testing: During the testing phase, for the action recognition
task we extracted the network predictions using a 16-frames
non-overlapping sliding window where each clip is spatially
cropped at the center position with scale 1. Then, we com-
puted the final action label for each video by simply averag-
ing the clips’ predictions, while for the summarization task
we took frame-wise importance scores by repeating the val-
ues of the 16-frame clips’ scores. Finally, for saliency es-
timation we obtained an estimated saliency map per frame
using a 16-frame sliding window with step 1 without any
spatial cropping.

summarization

Sigmoid Score
Human Annot.

�(psum)

ysum

binary cross-entropy (BCE)

63 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

SUSiNet: evaluation procedure

n  evaluation on 7 video datasets (3 for saliency, 2 for
action, 3 for summarization)

n  training using a cross-validation approach over different
splits of diverse datasets
q  data augmentation (e.g. spatial and temporal cropping)

q  asynchronous Stochastic Gradient Descent (SGD)

n  multi-task network performs equally well or in some
cases even better than the single-task methods à
requires less computational budget
q  multiple evaluation metrics

64 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

SUSiNet evaluation results - saliency

n  evaluation on 3 eye-tracking video datasets:
q  DIEM, DFK1K, ETMD (Eye-Tracking Movie Database)

n  4 widely used evaluation metrics:
q  CC, NSS, AUC-J, sAUC

n  compare performance against 5 state-of-the-art deep
learning methods :
q  both spatial and spatio-temporal models

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

CVPR
#0010

CVPR
#0010

CVPR 2019 Submission #0010. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Method
Dataset DIEM DFK1K ETMD

CC " NSS " AUC-J " sAUC " CC " NSS " AUC-J " sAUC " CC " NSS " AUC-J " sAUC "
SUSiNet (1-task) [ST] 0.6138 2.4267 0.8736 0.6747 0.4676 2.5908 0.8843 0.6991 0.5523 2.8365 0.9173 0.7312
SUSiNet (multi) [ST] 0.5614 2.1398 0.8810 0.6736 0.4116 2.2092 0.8910 0.6980 0.4780 2.3642 0.9162 0.7272
Deep-Net [45] [S] 0.4305 1.6238 0.8401 0.6262 0.2969 1.5804 0.8421 0.6432 0.3438 1.6523 0.8712 0.6588
DVA [62] [S] 0.5179 2.1607 0.8599 0.6400 0.3593 2.0644 0.8609 0.6572 0.4228 2.2507 0.8848 0.6843
SAM [12] [S] 0.5352 2.2482 0.8651 0.6429 0.3684 2.1180 0.8680 0.6562 0.4345 2.3155 0.8890 0.6875
ACLNet [63] [ST] 0.5626 2.2168 0.8717 0.6228 0.4167 2.2962 0.8883 0.6523 0.4508 2.2058 0.9073 0.6482
DeepVS [31] [ST] 0.4885 2.0352 0.8448 0.6248 0.3500 1.9680 0.8561 0.6405 0.4316 2.3030 0.8955 0.6672

Table 1. Evaluation results for the visual saliency estimation task. In most cases, the proposed multi-task SUSiNet outperforms the existing
state-of-the-art methods for video saliency over all three different datasets according the four evaluation metrics. [ST] stands for spatio-
temporal models while [S] denotes a spatial only model that is applied to each frame independently.

4. Multiple Tasks Evaluation
4.1. Datasets

For the training and the evaluation of the proposed multi-
task network we wish to have a large scale video database
that will contain eyetracking annotation, labelling of the
performed actions as well as continuous human annotation
of the frames importance or equivalently human created
summaries. However, this is not a realistic scenario since
many datasets have been developed for each task but none
of them contains all of the three required types of annota-
tion. Very recently, [49] proposed a multi-task and multi-
label video dataset aiming to the recognition of different vi-
sual concepts (scenes, objects, actions) which are different
from our investigated tasks. Note that since our multi-task
network is modular, it could be extended to recognize and
understand more visual concepts such as objects or scenes.

The most relevant dataset to our tasks is the
COGNIMUSE database [70, 1], which constitutes a
video database annotated with ground-truth annotations for
frame-wise sensory and semantic importance as well as au-
dio and visual events. It is a generic database that has been
used for video summarization [36], as well as audio-visual
concept recognition [7]. The creators of the database have
also developed the Eye-Tracking Movie Database (ETMD)
[35], which contains eyetracking annotations for a subset
of the COGNIMUSE videos. For our experiments we have
used the 30-minutes excerpts from the seven movies 1 as
well as the full movie “Gone With the Wind” (GWW) that
they have at least two of the three annotation types (see Ta-
ble 4). For the training we followed an 8-fold (leaving one
movie out) cross-validation approach.

One important aspect of the proposed multi-task network
is its ability to be trained with diverse datasets. So, we em-
ploy five more state-of-the-art datasets, containing annota-
tions only for a specific task in order to increase the training
set as well as compare our results with other state-of-the-art
methods. Specifically, for the visual saliency estimation we

1“A Beautiful Mind” (BMI), “Gladiator” (GLA), “Chicago” (CHI),
“Finding Nemo” (FNE), “Lord of the Rings - the Return of the King”
(LOR), “Crash” (CRA), “The Departed” (DEP)

employ the DIEM dataset [43], which contains eyetracking
data for 84 videos with duration between 27-217 sec from
50 observers, and the DFK1K [63], with eyetracking data
from 17 observers over 1000 videos with duration 17-42
sec. During the experiments, for the DIEM we followed the
“train-test” split of [6], while for the DFK1K we used the
validation set for our testing since the test set is not publicly
available. Regarding the action recognition task we employ
the HMDB51 dataset [38] that includes 6766 video from
51 human action classes. We decided to use this additional
dataset because its classes have also been included in the
COGNIMUSE dataset. Finally, for the summarization task
we used the SumMe [23] and the TVSum50 [53] datasets
that include 25 (1.5 to 6.5 minutes length) and 50 (1 to 5
minutes length) videos respectively, mainly from YouTube
resources. For the experiment that involves these datasets
we have followed a 5-fold cross validation.

4.2. Experimental Results

For the evaluation of the multi-task network we have
constructed two types of experiments. In the first, which we
refer as “SUSiNet (1-task)” we trained our network inde-
pendently for each task using only the task-related datasets.
In the “SUSiNet (multi)” we trained the multi-task net-
work jointly for all the three task employing all the avail-
able datasets. Next, we evaluate our results for each dif-
ferent task and compare them with several methods that
have achieved state-of-the-art performance for each task in-
dependently.
Saliency Estimation Evaluation: In Table 1 we present the
evaluation results of the proposed SUSiNet on the 3 differ-
ent datasets and compare its performance against 5 state-
of-the-art methods (using their publicly available codes).
We employed four widely-used evaluation metrics [8]: CC,
NSS, AUC-Judd (AUC-J) and shuffled AUC (sAUC). In
the sAUC we have selected the negative samples from the
union of all viewers’ fixations across all other frames ex-
cept the frame for which we compute the AUC. As we
see, our method outperforms all the other methods over
all the datasets according to all employed metrics. Note
there is a small decrease in the CC and NSS scores of the

6

65 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Method Pre-train dataset Aver. Accuracy
SUSiNet (1-task) Kinetics 60.2
SUSiNet (multi) Kinetics 62.7
C3D [55] Sports-1M 51.6
3D ResNet-18 [25] Kinetics 56.4
3D ResNet-50 [25] Kinetics 61.0
3D ResNeXt-101 [25] Kinetics 63.8
RGB I3D (64f) [10] ImageNet & miniKinetics 66.4

Other Methods
FSTCN [54] ImageNet 59.1
ARTNet [59] Kinetics 67.6
R(2+1)D-RGB [56] Kinetics 74.5
Two-Stream TSN [61] ImageNet 68.5
Two-Stream STM-Nets [19] ImageNet 68.9
Two-Stream I3D (64f)[10] ImageNet & Kinetics 80.7
Two-Stream R(2+1)D [56] Kinetics 78.7

Table 2. Evaluation results for the action recognition task over all
splits of HMDB51. The proposed multi-task SUSiNet outperforms
the single-task as well as several state-of-the-art methods that rely
on 3D convolutions.

multi-task network compared to the single-task, while ac-
cording to AUC-based metrics the multi-task network per-
forms in equally or better than the single one. Moreover,
the SUSiNet, which is based on 3D spatio-temporal convo-
lutions, achieves to outperform other spatio-temporal meth-
ods (ACLNet, DeepVS) that rely on the LSTM based mod-
elling of the visual saliency. In Figures 1, 4 we see examples
of our saliency predictions, which in most cases are focused
on humans or actions.
Action Classification Evaluation: In Table 2 we see the
evaluation results of our method on the HMDB51. We can
observe that the multi-task network achieves better perfor-
mance than the single-task. Comparing our method against
several other approaches, which are based on 3D CNN net-
works, we see that our network performs better than the
most of them. Note that our network is based on ResNet-50
architecture and uses 16-frames inputs, while 3D ResNeXt
or I3D are employing more complex networks or longer
clips. For completeness we also report several other meth-
ods from literature, which are based on techniques for de-
coupling the spatial and temporal parts of 3D convolutions
or employ two-streams (RGB, Optical Flow) networks, that
are not directly compared with our method. However, our
proposed network is modular and can be modified and ex-
tended to include such techniques but we leave this direc-
tion for future work as the scope of this paper is to propose
a multi-task spatio-temporal network rather than achieve the
best performance for each single task.

Finally, in Table 4 we report our method’s results
for action recognition in COGNIMUSE database, where
we see again that the multi-task network slightly outper-
forms the single-task. Regarding the lower recognition
scores (comparing with HMDB51), we have observed that
COGNIMUSE dataset contains many background actions
or supplementary actions that may overlap with a main ac-

Method SumMe (F-score) TVSum50 (F-score)
SUSiNet (1-task) 41.10 59.20
SUSiNet (multi) 40.80 57.00
vsLSTM [67] 37.6 [41.6] 54.2 [57.9]
HSA-RNN [69] 44.1 59.8
SEQ2SEQ [68] 40.8 56.3
SUM-FCN [50] 47.5 [51.1] 56.8 [59.2]

Other Methods
Gygli et al. [24] 39.7 -
dppLSTM [67] 38.6 [42.9] 54.7 [59.6]
SUM-GAN [41] 41.7 [43.6] 56.3 [61.2]
re-SEQ2SEQ [68] [44.9] [63.9]

Table 3. Evaluation results for the video summarization task over
the SumMe and TVSum50 datasets.

Task Saliency (sAUC) Action (Acc.) Summar. (AUC)
SUSiNet 1-task multi 1-task multi 1-task multi
BMI - - 51.54 49.88 0.7831 0.8023
GLA 0.6859 0.6727 48.92 46.77 0.7863 0.7843
CHI 0.7601 0.7565 49.41 50.82 0.7901 0.7826
FNE 0.7224 0.7236 - - 0.5490 0.5306
LOR 0.7297 0.7325 50.70 54.93 0.7602 0.7557
CRA 0.7056 0.7058 49.83 47.83 0.7424 0.7105
DEP 0.7837 0.7721 58.86 60.76 0.8069 0.8279
GWW - - 36.24 37.70 0.6762 0.6806
Aver. 0.7312 0.7272 49.36 49.81 0.7368 0.7343

Table 4. Evaluation results of the proposed multi-task SUSiNet
for the three different tasks over the COGNIMUSE database. We
report results for each movie independently as well as the average
performance for each task.

tion (i.e., in Fig. 4 the action “turn” overlaps with the “run”)
and thus it constitutes a very challenging dataset.
Video Summarization Evaluation: For the evaluation
over the SumMe and TVSum50 datasets we have employed
the evaluation protocol of [67] that is based on the F-
score between a generated keyshot-based summary (shots
are temporally segmented using KTS [48]), with length
15% of the original video duration, and the user created
summaries. In Table 3, we present the evaluation re-
sults for the summarization task over the SumMe and TV-
Sum50 datasets compared against various other state-of-
the-art approaches. Brackets “[·]” denote results obtained
using an augmented dataset that includes videos from aux-
iliary datasets (YouTube [14], OVP [14, 2]) and it is not
directly compared to our method. As we see, the multi-task
SUSiNet performs very close to its single-task variant and
outperforms many methods that are based on the sequential
estimation of the clip based importance score, i.e., using
LSTM networks. On the other hand, our network cannot
perform better than other methods of literature that oper-
ate on the whole video (i.e., using retrospective encoders
[68]) or employ a larger number of video frames (i.e., 128
frames in SUM-FCN [50]), especially when they are trained
on the augmented dataset. However, these approaches could
be added as post-hoc task-specific components and increase
the performance of our network.

Method Pre-train dataset Aver. Accuracy
SUSiNet (1-task) Kinetics 60.2
SUSiNet (multi) Kinetics 62.7
C3D [55] Sports-1M 51.6
3D ResNet-18 [25] Kinetics 56.4
3D ResNet-50 [25] Kinetics 61.0
3D ResNeXt-101 [25] Kinetics 63.8
RGB I3D (64f) [10] ImageNet & miniKinetics 66.4

Other Methods
FSTCN [54] ImageNet 59.1
ARTNet [59] Kinetics 67.6
R(2+1)D-RGB [56] Kinetics 74.5
Two-Stream TSN [61] ImageNet 68.5
Two-Stream STM-Nets [19] ImageNet 68.9
Two-Stream I3D (64f)[10] ImageNet & Kinetics 80.7
Two-Stream R(2+1)D [56] Kinetics 78.7

Table 2. Evaluation results for the action recognition task over all
splits of HMDB51. The proposed multi-task SUSiNet outperforms
the single-task as well as several state-of-the-art methods that rely
on 3D convolutions.

multi-task network compared to the single-task, while ac-
cording to AUC-based metrics the multi-task network per-
forms in equally or better than the single one. Moreover,
the SUSiNet, which is based on 3D spatio-temporal convo-
lutions, achieves to outperform other spatio-temporal meth-
ods (ACLNet, DeepVS) that rely on the LSTM based mod-
elling of the visual saliency. In Figures 1, 4 we see examples
of our saliency predictions, which in most cases are focused
on humans or actions.
Action Classification Evaluation: In Table 2 we see the
evaluation results of our method on the HMDB51. We can
observe that the multi-task network achieves better perfor-
mance than the single-task. Comparing our method against
several other approaches, which are based on 3D CNN net-
works, we see that our network performs better than the
most of them. Note that our network is based on ResNet-50
architecture and uses 16-frames inputs, while 3D ResNeXt
or I3D are employing more complex networks or longer
clips. For completeness we also report several other meth-
ods from literature, which are based on techniques for de-
coupling the spatial and temporal parts of 3D convolutions
or employ two-streams (RGB, Optical Flow) networks, that
are not directly compared with our method. However, our
proposed network is modular and can be modified and ex-
tended to include such techniques but we leave this direc-
tion for future work as the scope of this paper is to propose
a multi-task spatio-temporal network rather than achieve the
best performance for each single task.

Finally, in Table 4 we report our method’s results
for action recognition in COGNIMUSE database, where
we see again that the multi-task network slightly outper-
forms the single-task. Regarding the lower recognition
scores (comparing with HMDB51), we have observed that
COGNIMUSE dataset contains many background actions
or supplementary actions that may overlap with a main ac-

Method SumMe (F-score) TVSum50 (F-score)
SUSiNet (1-task) 41.10 59.20
SUSiNet (multi) 40.80 57.00
vsLSTM [67] 37.6 [41.6] 54.2 [57.9]
HSA-RNN [69] 44.1 59.8
SEQ2SEQ [68] 40.8 56.3
SUM-FCN [50] 47.5 [51.1] 56.8 [59.2]

Other Methods
Gygli et al. [24] 39.7 -
dppLSTM [67] 38.6 [42.9] 54.7 [59.6]
SUM-GAN [41] 41.7 [43.6] 56.3 [61.2]
re-SEQ2SEQ [68] [44.9] [63.9]

Table 3. Evaluation results for the video summarization task over
the SumMe and TVSum50 datasets.

Task Saliency (sAUC) Action (Acc.) Summar. (AUC)
SUSiNet 1-task multi 1-task multi 1-task multi
BMI - - 51.54 49.88 0.7831 0.8023
GLA 0.6859 0.6727 48.92 46.77 0.7863 0.7843
CHI 0.7601 0.7565 49.41 50.82 0.7901 0.7826
FNE 0.7224 0.7236 - - 0.5490 0.5306
LOR 0.7297 0.7325 50.70 54.93 0.7602 0.7557
CRA 0.7056 0.7058 49.83 47.83 0.7424 0.7105
DEP 0.7837 0.7721 58.86 60.76 0.8069 0.8279
GWW - - 36.24 37.70 0.6762 0.6806
Aver. 0.7312 0.7272 49.36 49.81 0.7368 0.7343

Table 4. Evaluation results of the proposed multi-task SUSiNet
for the three different tasks over the COGNIMUSE database. We
report results for each movie independently as well as the average
performance for each task.

tion (i.e., in Fig. 4 the action “turn” overlaps with the “run”)
and thus it constitutes a very challenging dataset.
Video Summarization Evaluation: For the evaluation
over the SumMe and TVSum50 datasets we have employed
the evaluation protocol of [67] that is based on the F-
score between a generated keyshot-based summary (shots
are temporally segmented using KTS [48]), with length
15% of the original video duration, and the user created
summaries. In Table 3, we present the evaluation re-
sults for the summarization task over the SumMe and TV-
Sum50 datasets compared against various other state-of-
the-art approaches. Brackets “[·]” denote results obtained
using an augmented dataset that includes videos from aux-
iliary datasets (YouTube [14], OVP [14, 2]) and it is not
directly compared to our method. As we see, the multi-task
SUSiNet performs very close to its single-task variant and
outperforms many methods that are based on the sequential
estimation of the clip based importance score, i.e., using
LSTM networks. On the other hand, our network cannot
perform better than other methods of literature that oper-
ate on the whole video (i.e., using retrospective encoders
[68]) or employ a larger number of video frames (i.e., 128
frames in SUM-FCN [50]), especially when they are trained
on the augmented dataset. However, these approaches could
be added as post-hoc task-specific components and increase
the performance of our network.

SUSiNet evaluation results – action recognition

n  evaluation on all splits of HMDB51
n  compare performance against several other approaches

based on 3D CNN networks

n  multi-task SUSiNet outperforms the single-task as well
as several state-of-the-art methods

66 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Method Pre-train dataset Aver. Accuracy
SUSiNet (1-task) Kinetics 60.2
SUSiNet (multi) Kinetics 62.7
C3D [55] Sports-1M 51.6
3D ResNet-18 [25] Kinetics 56.4
3D ResNet-50 [25] Kinetics 61.0
3D ResNeXt-101 [25] Kinetics 63.8
RGB I3D (64f) [10] ImageNet & miniKinetics 66.4

Other Methods
FSTCN [54] ImageNet 59.1
ARTNet [59] Kinetics 67.6
R(2+1)D-RGB [56] Kinetics 74.5
Two-Stream TSN [61] ImageNet 68.5
Two-Stream STM-Nets [19] ImageNet 68.9
Two-Stream I3D (64f)[10] ImageNet & Kinetics 80.7
Two-Stream R(2+1)D [56] Kinetics 78.7

Table 2. Evaluation results for the action recognition task over all
splits of HMDB51. The proposed multi-task SUSiNet outperforms
the single-task as well as several state-of-the-art methods that rely
on 3D convolutions.

multi-task network compared to the single-task, while ac-
cording to AUC-based metrics the multi-task network per-
forms in equally or better than the single one. Moreover,
the SUSiNet, which is based on 3D spatio-temporal convo-
lutions, achieves to outperform other spatio-temporal meth-
ods (ACLNet, DeepVS) that rely on the LSTM based mod-
elling of the visual saliency. In Figures 1, 4 we see examples
of our saliency predictions, which in most cases are focused
on humans or actions.
Action Classification Evaluation: In Table 2 we see the
evaluation results of our method on the HMDB51. We can
observe that the multi-task network achieves better perfor-
mance than the single-task. Comparing our method against
several other approaches, which are based on 3D CNN net-
works, we see that our network performs better than the
most of them. Note that our network is based on ResNet-50
architecture and uses 16-frames inputs, while 3D ResNeXt
or I3D are employing more complex networks or longer
clips. For completeness we also report several other meth-
ods from literature, which are based on techniques for de-
coupling the spatial and temporal parts of 3D convolutions
or employ two-streams (RGB, Optical Flow) networks, that
are not directly compared with our method. However, our
proposed network is modular and can be modified and ex-
tended to include such techniques but we leave this direc-
tion for future work as the scope of this paper is to propose
a multi-task spatio-temporal network rather than achieve the
best performance for each single task.

Finally, in Table 4 we report our method’s results
for action recognition in COGNIMUSE database, where
we see again that the multi-task network slightly outper-
forms the single-task. Regarding the lower recognition
scores (comparing with HMDB51), we have observed that
COGNIMUSE dataset contains many background actions
or supplementary actions that may overlap with a main ac-

Method SumMe (F-score) TVSum50 (F-score)
SUSiNet (1-task) 41.10 59.20
SUSiNet (multi) 40.80 57.00
vsLSTM [67] 37.6 [41.6] 54.2 [57.9]
HSA-RNN [69] 44.1 59.8
SEQ2SEQ [68] 40.8 56.3
SUM-FCN [50] 47.5 [51.1] 56.8 [59.2]

Other Methods
Gygli et al. [24] 39.7 -
dppLSTM [67] 38.6 [42.9] 54.7 [59.6]
SUM-GAN [41] 41.7 [43.6] 56.3 [61.2]
re-SEQ2SEQ [68] [44.9] [63.9]

Table 3. Evaluation results for the video summarization task over
the SumMe and TVSum50 datasets.

Task Saliency (sAUC) Action (Acc.) Summar. (AUC)
SUSiNet 1-task multi 1-task multi 1-task multi
BMI - - 51.54 49.88 0.7831 0.8023
GLA 0.6859 0.6727 48.92 46.77 0.7863 0.7843
CHI 0.7601 0.7565 49.41 50.82 0.7901 0.7826
FNE 0.7224 0.7236 - - 0.5490 0.5306
LOR 0.7297 0.7325 50.70 54.93 0.7602 0.7557
CRA 0.7056 0.7058 49.83 47.83 0.7424 0.7105
DEP 0.7837 0.7721 58.86 60.76 0.8069 0.8279
GWW - - 36.24 37.70 0.6762 0.6806
Aver. 0.7312 0.7272 49.36 49.81 0.7368 0.7343

Table 4. Evaluation results of the proposed multi-task SUSiNet
for the three different tasks over the COGNIMUSE database. We
report results for each movie independently as well as the average
performance for each task.

tion (i.e., in Fig. 4 the action “turn” overlaps with the “run”)
and thus it constitutes a very challenging dataset.
Video Summarization Evaluation: For the evaluation
over the SumMe and TVSum50 datasets we have employed
the evaluation protocol of [67] that is based on the F-
score between a generated keyshot-based summary (shots
are temporally segmented using KTS [48]), with length
15% of the original video duration, and the user created
summaries. In Table 3, we present the evaluation re-
sults for the summarization task over the SumMe and TV-
Sum50 datasets compared against various other state-of-
the-art approaches. Brackets “[·]” denote results obtained
using an augmented dataset that includes videos from aux-
iliary datasets (YouTube [14], OVP [14, 2]) and it is not
directly compared to our method. As we see, the multi-task
SUSiNet performs very close to its single-task variant and
outperforms many methods that are based on the sequential
estimation of the clip based importance score, i.e., using
LSTM networks. On the other hand, our network cannot
perform better than other methods of literature that oper-
ate on the whole video (i.e., using retrospective encoders
[68]) or employ a larger number of video frames (i.e., 128
frames in SUM-FCN [50]), especially when they are trained
on the augmented dataset. However, these approaches could
be added as post-hoc task-specific components and increase
the performance of our network.

SUSiNet evaluation results – video summarization

n  evaluation over the SumMe and TVSum50 datasets
n  evaluation protocol based on the F-score

q  keyshot-based summary

n  SUSiNet performs very close to its single-task variant

n  3D network outperforms many methods based on the
sequential estimation of the clip based importance score

67 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

COGNIMUSE Database
Saliency, Semantic & Cross-Media Events Database

including:
n  framewise importance annotation on multiple layers

n  audio & visual events annotation
n  COSMOROE cross-media relations annotation

n  Emotion annotation
n  ETMD: eye-tracking annotations for the COGNIMUSE videos

database content:
n  7 30-min movie clips from: Beautiful Mind (BMI), Chicago (CHI), Crash

(CRA), The Departed (DEP), Gladiator (GLA), Lord of the Rings III: The
return of the king(LOR), Finding Nemo (FNE)

n  1 100-min movie: Gone with the Wind (GWTW)

http://cognimuse.cs.ntua.gr/database

68 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

evaluation results – COGNIMUSE database

n  evaluation over multi-task COGNIMUSE db:
q  saliency, action, summarization

q  in many cases multi-task network achieves better performance
q  low performance for FNE à no other animation movie in training set

q  SUSiNet outperforms the two other state-of-the-art methods for the
summarization task according to the ROC-AUC metric

False Positive Rate
0 0.2 0.4 0.6 0.8 1

R
e

ca
ll

0

0.2

0.4

0.6

0.8

1

ICIP15 (0.6857)
IVMSP18 (0.6995)
SUSiNet-1task (0.7368)
SUSiNet-multi (0.7343)

Method Pre-train dataset Aver. Accuracy
SUSiNet (1-task) Kinetics 60.2
SUSiNet (multi) Kinetics 62.7
C3D [55] Sports-1M 51.6
3D ResNet-18 [25] Kinetics 56.4
3D ResNet-50 [25] Kinetics 61.0
3D ResNeXt-101 [25] Kinetics 63.8
RGB I3D (64f) [10] ImageNet & miniKinetics 66.4

Other Methods
FSTCN [54] ImageNet 59.1
ARTNet [59] Kinetics 67.6
R(2+1)D-RGB [56] Kinetics 74.5
Two-Stream TSN [61] ImageNet 68.5
Two-Stream STM-Nets [19] ImageNet 68.9
Two-Stream I3D (64f)[10] ImageNet & Kinetics 80.7
Two-Stream R(2+1)D [56] Kinetics 78.7

Table 2. Evaluation results for the action recognition task over all
splits of HMDB51. The proposed multi-task SUSiNet outperforms
the single-task as well as several state-of-the-art methods that rely
on 3D convolutions.

multi-task network compared to the single-task, while ac-
cording to AUC-based metrics the multi-task network per-
forms in equally or better than the single one. Moreover,
the SUSiNet, which is based on 3D spatio-temporal convo-
lutions, achieves to outperform other spatio-temporal meth-
ods (ACLNet, DeepVS) that rely on the LSTM based mod-
elling of the visual saliency. In Figures 1, 4 we see examples
of our saliency predictions, which in most cases are focused
on humans or actions.
Action Classification Evaluation: In Table 2 we see the
evaluation results of our method on the HMDB51. We can
observe that the multi-task network achieves better perfor-
mance than the single-task. Comparing our method against
several other approaches, which are based on 3D CNN net-
works, we see that our network performs better than the
most of them. Note that our network is based on ResNet-50
architecture and uses 16-frames inputs, while 3D ResNeXt
or I3D are employing more complex networks or longer
clips. For completeness we also report several other meth-
ods from literature, which are based on techniques for de-
coupling the spatial and temporal parts of 3D convolutions
or employ two-streams (RGB, Optical Flow) networks, that
are not directly compared with our method. However, our
proposed network is modular and can be modified and ex-
tended to include such techniques but we leave this direc-
tion for future work as the scope of this paper is to propose
a multi-task spatio-temporal network rather than achieve the
best performance for each single task.

Finally, in Table 4 we report our method’s results
for action recognition in COGNIMUSE database, where
we see again that the multi-task network slightly outper-
forms the single-task. Regarding the lower recognition
scores (comparing with HMDB51), we have observed that
COGNIMUSE dataset contains many background actions
or supplementary actions that may overlap with a main ac-

Method SumMe (F-score) TVSum50 (F-score)
SUSiNet (1-task) 41.10 59.20
SUSiNet (multi) 40.80 57.00
vsLSTM [67] 37.6 [41.6] 54.2 [57.9]
HSA-RNN [69] 44.1 59.8
SEQ2SEQ [68] 40.8 56.3
SUM-FCN [50] 47.5 [51.1] 56.8 [59.2]

Other Methods
Gygli et al. [24] 39.7 -
dppLSTM [67] 38.6 [42.9] 54.7 [59.6]
SUM-GAN [41] 41.7 [43.6] 56.3 [61.2]
re-SEQ2SEQ [68] [44.9] [63.9]

Table 3. Evaluation results for the video summarization task over
the SumMe and TVSum50 datasets.

Task Saliency (sAUC) Action (Acc.) Summar. (AUC)
SUSiNet 1-task multi 1-task multi 1-task multi
BMI - - 51.54 49.88 0.7831 0.8023
GLA 0.6859 0.6727 48.92 46.77 0.7863 0.7843
CHI 0.7601 0.7565 49.41 50.82 0.7901 0.7826
FNE 0.7224 0.7236 - - 0.5490 0.5306
LOR 0.7297 0.7325 50.70 54.93 0.7602 0.7557
CRA 0.7056 0.7058 49.83 47.83 0.7424 0.7105
DEP 0.7837 0.7721 58.86 60.76 0.8069 0.8279
GWW - - 36.24 37.70 0.6762 0.6806
Aver. 0.7312 0.7272 49.36 49.81 0.7368 0.7343

Table 4. Evaluation results of the proposed multi-task SUSiNet
for the three different tasks over the COGNIMUSE database. We
report results for each movie independently as well as the average
performance for each task.

tion (i.e., in Fig. 4 the action “turn” overlaps with the “run”)
and thus it constitutes a very challenging dataset.
Video Summarization Evaluation: For the evaluation
over the SumMe and TVSum50 datasets we have employed
the evaluation protocol of [67] that is based on the F-
score between a generated keyshot-based summary (shots
are temporally segmented using KTS [48]), with length
15% of the original video duration, and the user created
summaries. In Table 3, we present the evaluation re-
sults for the summarization task over the SumMe and TV-
Sum50 datasets compared against various other state-of-
the-art approaches. Brackets “[·]” denote results obtained
using an augmented dataset that includes videos from aux-
iliary datasets (YouTube [14], OVP [14, 2]) and it is not
directly compared to our method. As we see, the multi-task
SUSiNet performs very close to its single-task variant and
outperforms many methods that are based on the sequential
estimation of the clip based importance score, i.e., using
LSTM networks. On the other hand, our network cannot
perform better than other methods of literature that oper-
ate on the whole video (i.e., using retrospective encoders
[68]) or employ a larger number of video frames (i.e., 128
frames in SUM-FCN [50]), especially when they are trained
on the augmented dataset. However, these approaches could
be added as post-hoc task-specific components and increase
the performance of our network.

69 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

SUSiNet: demo video

0.4
0.6
0.8

1

visual import. run turn fall floor stand

with dotted lines the annotated actions that are not correctly recognized

70 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Part 1: Conclusions
n  Cover state-of-the-art approaches for video processing and

especially for action recognition
q  classic computer vision methods (i.e. dense trajectories)
q  modern CNN-based approaches

n  Present multi-task spatio-temporal network that can jointly
tackle the multiple spatio-temporal problems
q  common 3D network architecture for all tasks
q  multi-task network performs equally well or even better than the

single-task methods à requires less computational budget

n  Future work:
q  explore audio-visual multi-task network in order to handle the multi-

modal aspects of these tasks

For more information, demos, and current results: http://cvsp.cs.ntua.gr and http://robotics.ntua.gr

