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Spatio-temporal Computer Vision problems

B automatic video understanding becomes one of the
most essential and demanding challenges

B static computer vision problems:
- image domain = no temporal evolution
B object detection, semantic segmentation, pose estimation

] deep learning and large datasets boosted the performance

B spatio-temporal problems:
- video domain - related with the temporal information

B spatio-temporal saliency, action recognition, video
summarization

[ require the integration and modeling of the temporal evolution
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Action Recognition

B automated classification and detection of human activities on
videos

1 action labels from human annotations
- many large datasets: Hollywood2, UCF101, HMDB51, Kinetics

open car door open door walk talk

-
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Action Recognition Tasks

» classification

« detection

|
walking
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Video understanding applications

Indexing and Augmented reality Sports analysis
analysis of big and interactive
video data video games
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Video understanding robotic applications

Human-Robot Interaction (HRI)
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Action Recognition - Challenges
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« EXxecution
variability

« Camera angle
variability
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Action Recognition - Challenges

Occlusions, visual noise, shadows, different scales
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Action Recognition - Datasets Evolution

Number of classes SP0T887-1 M

UCF Olympic HMmDB51
51
6 10 12 16 101
- —i- i
2004 2008 2009 2010 2011 2012 2014

year
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Video Processing and Action
Recognition using
Local Representations
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Local Representations for Visual Processing

M [ocal video representations
1 Describe the whole video as a set of independent local descriptors
] Detect independent interest points according a saliency function
. Describe the detected points with features descriptors

[ Represent the video by encoding the statistical properties of the local
Interest points

2D Harris Detector 3D Harris Detector
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Traditional Action Recognition Pipeline

Codebook
Generation

Training
Videos

» Feature

Extraction

=

Class
Probabilities
(SVM scores)

Feature - Feature
Extraction Encoding

Testi ng »

Video
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Spatio-Temporal Interest Points (STIP)

« Detect points with large variation w.r.t. 3
direction of videos (x,y,t)

« Extract descriptors inside spatio-temporal

volume around each interest point second moments matrix
2 LL, Lt
/ 2 2
M= g<56’7 Y t; 0;y T ) * LxLy L?/ Lth
Ll Ll I
Gaussian
kernel image gradient

| Descriptors: cornerness citerion

. | -HOG: static appearance 3
o (image gradient) H= )\1)\2>\3 —k ()\1 + )\2)\3>
.H(?\Alj) motion (optical eigenvalues

I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Proc. IEEE Conf. CVPR, 2008
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Energy-based Interest Points

Action Detection

Energy map

Ao

K. Maninis, P. Koutras and P. Maragos. Proc. ICIP 2014 Feature EXtraCtlon
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Video processing with Gabor3D filterbanks

Spatial Filters

Temporal Filters

Original Video

Video Energy

Sum/Max

. 4
rT a1
B |\
l| KI {3

| 3D Local
A - Maxima
] | ] | ]

3D Filtering with a total of 400 filters

@105

Interest Points

Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

15



Spatial Gabor Filterbank

Full Spatial Reduced Spatial
Filterbank Filterbank
(40 Filters) (12 Filters)

8 orientations 8 orientations

5 scales
3 scales

(a) Full filterbank a and (b) Reduced filterbank at w;, and
(top view). —wt (top view).

5 Positive & 5 Negative
Temporal Frequencies
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Spatio-Temporal Gabor Filterbank

[ Full Spatio-Temporal Filterbank in 3D Space ]

1 orientation

2 24
2 S 1.
g g
i g ‘T: 0
R -
g8 | Dscales 2
£ .1 5 Temporal 5
[ .
2 Frequencies 2.
‘ >
2 > € L
. —=2 3 Temporal 2
> > : , 0
A 0 Frequencies 2 S
Spatial Freq. V 2 -2 Spatial Freq. U Spatial Freq. V Spatial Freq. U
P. Koutras and P. Maragos. Signal Processing: Image Communication, vol 38, pp. 15-31, 2015.
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Histographic Gradient Descriptors

B HOG/HOF [Dpalal et.al, CVPR 05, ECCV 06], [Laptev et.al, CVPR 08]
A

Optical flow HOG/HOF Descriptor

Gradients

B HOG3D [kisser et.al, BMVC 08]

L | s K A - “] 1l
~\~\ ~~~~~
- " il = Histogram
Blocks Cells Quantlzatlon Computation
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Visual Action Classification

Visual Processing

_Pattern Classification

Test Data

|

-BoF Representation

m==p BoF Representation

- «Words»/Centers of
Bag-of-Features (BoF)

‘HH

BANTAL A ’I

Classification
(with SVMs)
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Action recognition with STIP- Results

KTH Action Database
« 6 Actions, 2391 videos

Accuracy of various methods on the KTH Action Dataset
Method DCA3D Cuboids Harris3D Gabor3D
Accuracy 78.8% 90% 91.8% 93.5%

Hollywood2 Action Database
« 12 Actions, 1707 videos

M Large variation in action performances
B Moving camera and scene changes

B Multiple actors, background clutter and occlusion
Mean Average Precision for the 12 action classes of the

Hollywood2 Dataset
Method Cuboids Harris3D Gabor3D
mAP 46.2% 45.2% 47.7%
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Action recognition with STIP- Challenges

B Camera movement
B Generalization

B Scene changes - visual noise

StandUp StandUp
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Video Processing and Action
Recognition using
Dense Trajectories
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Dense Trajectories - Overview

B Feature trajectories have
shown to be efficient for
representing videos

B The trajectories are obtained
by tracking densely sampled
points rather than sparse STIP
using optical flow fields

B A local descriptor is introduced
that overcomes the problem of
camera motion

B The descriptor extends the
motion coding scheme based
on motion boundaries

KLT Dense trajectories

H. Wang, A. Klaser, C. Schmid, and C. Liu, Proc. CVPR 2011.
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Feature Extraction with Dense Trajectories

S

HU *ﬂ“ *W

R S e N s
N HOG HOF MBH
{T! \
™ ==

-

1. Feature points are sampled on a 3. Descriptors are computed in space-
regular grid in multiple scales time volumes along trajectories

7 1
/ /
/ /

. .1 .o 2.Feature points are tracked through [ Wang et al.
consecutive video frames ' IJCV 2013 ]
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Dense Trajectories - Tracking

B Feature points are sampled on a grid spaced by W pixels
and tracked in each scale separately (8 scales)

B Each point in a certain frame is tracked to the next frame
using median filtering in a dense optical flow field
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Dense Trajectories - Descriptors
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Descriptors:

HOG: static appearance (image
gradient)

HOF: motion (optical flow)

MBH: motion(motion gradient)

Trajectory: consecutive points of
the trajectory

B Trajectories are limited to 'L’ frames in order to avoid drift
from their initial location
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Trajectory Descriptors

B Histogram of Oriented Gradient (HOG)
® Histogram of Optical Flow (HOF)
® HOGHOF
B Motion Boundary Histogram (MBH)
(d Take local gradients of x-y flow components and compute HOG as in static
images
Optical flow Motion boundaries on I,
@K'.J' "
4 - -l
S ?ﬁ‘ \
~ Gradient information Motion boundaries on I,
/ f y \
q) s \,
£ | \
\/

H. Wang, A. Klaser, C. Schmid, and C. Liu, Proc. CVPR 2011.
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Traditional Action Recognition Pipeline

Codebook
Generation

Training

Feature -
Extraction

Video Extraction Encoding

Testing - Feature ‘ Feature

Class
Probabilities
(SVM scores)
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Features Clustering and Dictionary

Feature

Samples

v
A ]
* ]
- o | X

Y

K-means or GMMs Dictionary
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Encodings @
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VLAD - Size: K*
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Advanced Feature Encodings: VLAD, Fisher Vector

® VLAD:
Vi = Z Hxn_dkH7k:1K
XnECk
T T 717
VLAD: V = [V1 vl VK}

N
R

d; :visual word

X, :feature vector

B Fisher Vector:

I & X L
. n — Mk

Xy ,Uk ~
o,k N\/WZ nk k 1)
v |(6%)T (@) (65" (0%

“Ink :soft assignment of each feature
X, €EX,n=1...N
to the k-th GMM'’s Gaussian with
parameters [, 0
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Classification

B Support Vector Machines

B Kernels:

3 Linear:  K(x;,%;) =x'x;

1 X (g — wy)? distance
[ Chi-squared: D(x;x;) = 52 ; between
=t T histograms

1
K(XwXJ)—eXP( AD(Xian)) SVM kernel

J Features Fusion: K<Xiyxj):exp(_Z%D(xicyxjc»

c: different channels (descriptors)
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Dense Trajectories - Results

UCF Sports (12 classes) HMDB51 (51 classes)
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classification accuracy (%)
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o
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Features Encoding: Spatio-Temporal Pyramids

Integrate spatial and temporal

structure: \
I

B Divide the 3D video volume

into sub-volumes (cells)

e

B Compute a Bag-of-Words \E\ “““““““““““ \
histogram for each cell \ -

B Histogram concatenation

h = by hyfhy| ..
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Features Encoding: Spatio-Temporal Pyramids

B Channel fusion of different grids:

HMDB51 (51 classes)

@

(8)
o

1 C C
K(x;,%;) = exp(~ ) D))

w b
o O O

classification accuracy (%)
w
o

25
20
--------------- @ & P O
o O @) e <&
O NS Q Q? o

c: different channels (grids)
®BoW HEgt pyramids
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VLAD and Fisher Vector: Results

B Better encoding depends on each problem/database

KTH (6 classes) UCF Sports (10 classes)

— o 85

L 95 > %0

— >
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3 o 2

&) ®

@® 89 - 65

5 S 60

g ol | ‘

% 85 I g 50

3 S P & &N L © Q o o QD

3 & ¥ L & ¥ S & S & &FE ¥
&‘(b\ 006\ &@\ 006‘
BoW Bs.it pyramids VLAD BFisher BoW Bs.t pyramids VLAD ®Fisher
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Video Processing and Action
Recognition using
Deep Neural Networks
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Single Stream CNN-based Architectures

B Explore ways to fuse temporal information from consecutive
frames using 2D pre-trained CNNs

B Cannot learn motion related patterns

Single Frame Late Fusion Early Fusion  Slow Fusion

L ] [ ] | |
l ] [ ] [ ]

HETTHINT
ITTHIN

gl RLHi

UL
% %Hgbnunu

Karpathy et al. CVPR 2014.
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CNN + LSTM Architectures

Input Visual Sequence  Output
[ Long-te rm Recurrent Features Learning

Convolutional Networks
1 2D CNN features (encoder)

J employ LSTMs on top of
them to capture the temporal
information (decoder)

B end-to-end trainable
architecture

B RNN (Recurrent Neural Networks)

U model temporal dynamics

B LSTM (Long Short Term Memory)

U learn when to “forget” previous hidden states

U learn when to update hidden states given
new information

Donahue et al. Proc. CVPR, 2015

| @ I 901 9 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction 39



Two Streams CNN: RGB + Optical Flow

Spatial stream ConvNet

convi || conv2 || conv3 || conv4 || conv5 fullé full7 ||softmax
7X7x96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2
smgle frame  [P0o! 2x2 ||pool 2x2 class
" / score
. , Temporal stream ConvNet fusion
’ - conv1 || conv2 || conv3 || conv4 || conv5 fullé full7 ||softmax -
\ 7X7x96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
input norm. || pool 2x2 pool 2x2
video multi-frame pool 2x2

\__optical flow

® 2D CNN architecture with two separate networks:
] one for spatial context (pre-trained) - input: single video frame

] one for motion context - optical flow stacked across for 10
successive frames

B explicitly capturing local temporal movement

B trained separately and combined using SVM

Simmoyan and Zisserman. Proc. NIPS, 2014
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Two Streams CNN: Advanced Fusion Schemes

B Fusion of spatial and

temporal streams (how and

when)

B Fusion at two layers (after
conv5 and after fc8)
] one as a hybrid
spatiotemporal net

] one as a purely spatial
network
B Combining temporal net
output across time frames
- model long term
dependencies

Loss
fc8
fc7
fcb
pool5
conv5
fusion
conv4 conv4
conv3 conv3
pool2 pool2
conv2 conv2
pooll pooll
convl convl

Loss
fusion
/
fc8 \
fc7 fc8
fc6 fc7
pool5 fc6
fusion po:IS
4 ~
conv5 convs
conv4 conv4
conv3 conv3
pool2 pool2
conv2 conv2
pooll pooll
convl convl

W B W P

Feichtenhofer, Pinz and Zisserman. Proc. CVPR, 2016

| @ I 901 9 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

41



Temporal Segment Networks

Video Snippets Temporal Segment Networks
“““ |

I 1
ﬁ—ﬁp Spatial ConvNet E I
1! I

I
e e I

k- ?(
' 1
!»%\
il

Segmental
Consensus

| i

TERRRRRRgnnnnnnnneinnm

HF:‘“{”‘A““” II:II‘

High Jump

Class Score
Fusion

-
—

¢
e |

.—

Segmental
Consensus

i
v.11

iy 8 P a

/ ' ..4i Ly ¢
at p ¥ 2 N
o

Sy

| ., Sy —

2|
3

B two stream architecture

M suggest sampling clips sparsely across the video to better
model long range temporal stimuli

B combine scores of temporal and spatial streams separately by
averaging across snippets

L. Wang et al. Proc. ECCV, 2016
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3D Convolutional Neural Networks

JL T Dj . O )~

k
output output
L L output

S

X
=
Q’
-

w

(a) 2D convolution (b) 2D convolution on multiple frames (C) 3D convolution

B Employ 3D convolutional networks as feature extractors
instead of using 2D convolutions across frames

B Applying 3D convolution on a video volume results in another
volume - preserving temporal information

M ENEIEEEEEEIEEEEE

D. Tran et al. Proc. ICCV, 2015
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Spatio-temporal 3D CNN - Transfer Learning

Success in image recognition Advances in other tasks |_
: cony, 33, F
1.2M images é’ Detection
(&)
ImageNet \ Q Segmentation
Il 5
= .
2D CNN \ § Captioning
°
12 [
°
cony, 33, F
____________ s
__________ ! : I
300K videos é) 152 layers g - _D_e’Ee_CEI(_)fJ I g@
(&) AT ., $ZZ]00909092r e, sem=eeses A}
. . this stud I . .
Kinetics = ( ) r< 1+ Summarization |
RS '_'_': p L L LT LR L LT
£ »" | Optical FI !
g i Optical Flow
3DCNN 8 \___________.,] RelLU
o)
13 14 15 16 17 7 )
o o)

Success in action recognition ResNet (basic)

B propose 3D CNNs based on ResNet architectures

m very deep 2D CNNs trained on ImageNet generates outstanding
progress in image related tasks

B 3D CNNs trained on large scale action datasets can generate
similar progress in computer vision for videos

Hara, Kataoka and Satoh. Proc. CVPR, 2018
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Factorized Spatio-temporal CNN

' v
Ispace-time pool| |space-time pooll Ispace-time pool| Ispace-time pooll |space-time pooII Ixdxd
[ 2Dconv | [ 2Dconv |  [[3Dconv ] txdxd S
[2conv | [ 20com |  [IE0CR . (e
[ 2Dconv | [2Dconv |  [[3Dconv | ;
[bcon | 3D cony (2+1)D cony
—
clip clip clip clip clip
(@) R2D (b) MCx (c) rMCx (d)R3D (e) RR+1)D
B empirically show that factorizing
. . . Net # Clip@1 | Video@1 | Clip@1 | Video@1
the 3D convolutional filters into oat T pOL [ Video@1 | CUpO1 | Videos
. R2D 4 46. 59.5 47.0 58.9
separate spatial and temporal trop | 1iam | 451 | s | 503 | cos
. . ' g R3D 334 49 .4 61.8 52.5 64.2
components yields significantly Mz |t | so2 | e2s | w1 | ese
. . MC3 11.7M 50.7 62.9 53.7 64.7
gains In accuracy RQ+1D| 333M | 52.8 64.8 56.8 68.0
B design of a new spatiotemporal
convolutional block “R(2+1)D" D. Tran et al. Proc. CVPR, 2018
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Spatio-Temporal DNN-based Approaches

B Most DNN-based methods for video processing and recognition
are improvisations on top of some basic approaches

a) LSTM b) 3D-ConvNet c) Two-Stream d) 3D-Fused e) Two-Stream
Two-Stream 3D-ConvNet
Action
Action Action Action i Action
) 7 ,T, D ConvNet T
|LSTM |— o0 — .STM | o Gl ) \/ , o \/
| ERECRR——— A / — \ \
a0 ConvNetJ ( | % ‘ 3D ConvNet 3D ConvNet
‘ConvNet‘ oo |ConvNet “ L I L ConvNet || ConvNet ‘ H /
~ f ad - f = . — ‘\, ) T _ - L(
Images .
Image 1 | oo | Image K 110 K Image 1 Optical o | Images Optical
e Flow 1 to N Image 1|| Optica TtoK || Flow 1toK
— time /’ \ Flow 1 to N |H |
time time \__ / fime

time

Carreira and Zisserman, Proc. CVPR 2017
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I3D: Inflated 3D ConvNet

B Two-Stream Inflated 3D
ConvNet (I13D) based on
2D ConvNet inflation

Action

:

LSD ConvNet || 3D ConvNet

AN

Images { Optical m
 filters and pooling kernels ftoft [ljflowto K/
. time
of very deep image
Model | UCF-101 | HMDB-51 |
classification CNN are Two-Stream [27] 88.0 59.4
IDT [33] 86.4 61.7
expanded |nt0 3D Dynamic Image Networks + IDT [2] 89.1 65.2
TDD + IDT [34] 91.5 65.9
C Two-Stream Fusion + IDT [8] 93.5 69.2
D pOSSIbIe to Iearn Temporal Segment Networks [35] 94.2 69.4
: ST-ResNet + IDT 94.6 70.3
seamless spatio-temporal eslet + IDT 1] _
Deep Networks [15], Sports 1M pre-training 65.2
fe atu re extracto rs from C3D one network [31], Sports 1M pre-training 82.3
C3D ensemble [31], Sports 1M pre-training 85.2
VldeO Wh'le Ieve raglng C3D ensemble + IDT [31], Sports 1M pre-training 90.1 -
RGB-I3D, Imagenet+Kinetics pre-training 95.6 74.8
successful Im age Net Flow-I3D, Imagenet+Kinetics pre-training 96.7 77.1
Two-Stream I3D, Imagenet+Kinetics pre-training 98.0 80.7 |
architecture desi gns / RGB-I3D, Kinetics pre-training 05.1 43
Flow-I3D, Kinetics pre-training 96.5 77.3
p a ramete rs Two-Stream 13D, Kinetics pre-training 97.8 80.9
Carreira and Zisserman, Proc. CVPR 2017
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Multi-task
Spatio-Temporal
Networks for Video
Understanding

Koutras and Maragos, SUSiNet: “See, Understand and Summarize It”, Proc. CVPRW, 2019
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Action Recognition

B automated classification and detection of human activities on
videos

1 action labels from human annotations
- many large datasets: Hollywood2, UCF101, HMDB51, Kinetics

open car door open door walk talk

-
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Spatio-Temporal Visual Saliency

B spatial saliency
) predict viewers fixations in image
plain
] static eye-tracking datasets:

Toronto data set, MIT CAT200,
SALICON, ...

B spatio-temporal saliency

) predict viewers fixations both in
space and time

J dynamic eye-tracking datasets:
CRCNS, DIEM, DHF1K, ...
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Video Summarization

B summarization task refers to producing a shorter version
of a video:

] video skims that contain only the necessary and non redundant
information required for context understanding

J human annotated importance scores per frame/segment

 annotated video datasets from multiple people: SumMe,
TVSum50, COGNIMUSE

' ‘ I Ak, ‘J \ - 1 b— — — 4
\ LB ‘ & : w »y v
R ol L7, B f |
5 : .
“l“ Y \
{ \ b . ) ¥
‘!ﬂ : i 44
J At 2 ¥ A |
W ! ] !
v e L A 'y N o 0.2
VY ¢ A { \
T it ‘ A ]

model’s imprtance score
human annotation

o

o
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Multi-task Networks: goal-motivation

» all these problems require the integration and modeling
of the temporal evolution:

» spatio-temporal saliency estimation €-2> eye-tracking data
» visual concept understanding (i.e. actions) €-> annotated labels

» video summarization €<-> importance scores from humans

» can we jointly tackle these problems like humans do in
the sense of:

B See 2 Understand - Summarize it

(?
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Spatial Multi-task Networks

» recent works for spatial computer vision tasks train
multi-task networks or find the structure among visual
tasks and apply transfer learning

Input Boundaries Saliency Normals

Detection Semantic Boundaries & Segmentation ~Human Parts

|. Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-, and
high-level vision using diverse datasets and limited memory. In Proc. CVPR, 2017.
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Spatio-Temporal Multi-task Networks

network for solving multiple spatio-temporal
problems with less computational resources e

» can we design and train a single multi-task {?

SUSNet

Summarlze it —visual import. - - summar. thresh.
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SUSiNet Contributions

@ multi-task spatio-temporal network that is jointly
end-to-end trained for above tasks with multiple and
diverse datasets:

« employs the same video input

« produces multiple output types (saliency maps or
classification labels)

@ deeply supervised mechanism through an attention
module related to human attention as it is expressed
by eye-tracking data

@ extensive evaluation on 7 different datasets:

« multi-task network performs as well as single-task methods (or
in some cases better) and requires less computational budget
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Video Clips
(16 video frames)

SUSIiNet architecture

3D conv5 Global
summ. Average
block /2 Pool

L P&  3x3x3
U 3D Max conv3
Pool /2 2 block /2

3D conv5 Global

o)

action Average
block /2 Pool

1x1
2D conv
fusion

f
Pa

nnnnnnnn
Action Loss

all_floor: :0.005
jump: 0.0002

talk: 0.35
walk: 0.44
wave: 0.0001

Saliency Loss
=

‘C(Wall) = Qsql Z £Zal< ,sal) T Aact Z ££ct( ZLct) + A sum Z ‘Cgum (W/sum>

jeb

B multi-task spatio-temporal network based on 3D ResNet
] global and task-specific modules

1 DSAM: deeply supervision attention module

B multi-task and end-to-end training
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SUSiNet architecture - saliency

Summ. Loss
3D conv5 Gilobal
summ. Average
block /2 Pool Sigmoid Score
Human Annot
Action Loss
fall_floor: 0.005

jump: 0.0002

3D . 3D conv5 Global
! conv3 conv4 action Average Po k005
block /2 e block /2 ) block /2 Pool walk: 0.44

wave: 0.0001

Video Clips
Saliency Loss

(16 video frames)
)
1x1 Py 0
2D conv
fusion Estimated Map
den
o. &
.

Eyetracking Map|
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SUSINet architecture - saliency losses

Lsal(wlsal) — D(W,sal|0(s )7 Ysal)+
4
Z D(WEM|O-(A )7 1/SCLl)v
m=1

T,YEVy cross-entropy

cov(P(x,y; W), Yaen(z, 1))

(P, 5, W) - p(¥aon(@,9)) CC loss

Do (WP, Yien) = —

- 1 -
Dnss(W|P,Yyi,) = N > P(z,y; W) 0 Yyi(z,y), NSS loss
oY)
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SUSiNet architecture - saliency

3D conv5 Global S B
— "
summ. Average 3 -
block /2 Pool Sigmoid Score

Human Annot.

Action Loss
fall_floor: 0.005
jump: 0.0002

3x3x3 X ! 3D conv5 Global

3D Max conv3 conv4 action Average talk: 0.35

Pool /2 block /2 block /2 block /2 Pool walk: 0.44
wave: 0.0001

Video Clips

(16 video frames) Saliency Loss
)

Estimated Map

= &

.
Eyetracking Map

saliency

£(Wall) = sql Z- + Xgct Z Eact act) + Asum Z £sum sum)
JEB jEB jEB

£sal (W/sal) — D(Vvlsal |U(SF)7 Ytsal)"’

deep supervision
D(W s |0 (A™), Vo), b SUP

iNgE
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Deeply supervised attention module

Deeply Supervised Attention Module (DSAM)

3x3 1x1 , :
oC 2D conv 2D conv sfpeifel attentlon

Average ) ) Softmax
Pool 16 filters 1 filter map

Upscale Upscale
2D deconv 2D deconv
16 filters 1 filter

saliency features activation map

~

Xm=01+M") o X,, m=1,...,4. attention
mechanism

o ep(Am(z, )
M) = s A (,9))
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SUSiNet architecture - action

Summ. Loss
ozl
3D conv5 Global 2RISR
— |
summ. Average S UC_;’ G
block /2 Pool ng dS -

nnnnnnn

X° Xx° Act|on Loss

Xl 3x3x3 3D L X? 3D L X 3D X4 3D convb Global EI_) E fj”rr:lp O:Dggs
OS> 3D Max conv2 OS> conv3 =D conv4 i % action Average R Pa k. 0.35
= A Pool /2 block 2 block /2 e block /2 block /2 Pool o0 walk: 0.44

Video Clips } wave: 0.0001
- 1 2 3
(16 video frames) S S S Saliency Loss
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action

E(Wall = (gql Z Esal sal) T Qget

Jj€EB

jump: 0.0002
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talk: 0.35
walk: 0.44
wave: 0.0001
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Video Clips
(16 video frames)

SUSiNet architecture - summarization
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SUSIiNet: evaluation procedure

B evaluation on 7 video datasets (3 for saliency, 2 for
action, 3 for summarization)

M training using a cross-validation approach over different
splits of diverse datasets
] data augmentation (e.g. spatial and temporal cropping)

[ asynchronous Stochastic Gradient Descent (SGD)

B multi-task network performs equally well or in some
cases even better than the single-task methods 2>
requires less computational budget

J multiple evaluation metrics
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SUSiNet evaluation results - saliency

Dataset
Method

SUSIiNet (1-task) [ST]
SUSiNet (multi) [ST]

Deep-Net

DVA

SAM

ACLNet [ST]
DeepVS [ST]

M evaluation on 3 eye-tracking video datasets:
- DIEM, DFK1K, ETMD (Eye-Tracking Movie Database)

¥ 4 widely used evaluation metrics:
O CC, NSS, AUC-J, sAUC

B compare performance against 5 state-of-the-art deep
learning methods :

1 both spatial and spatio-temporal models
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SUSiNet evaluation results — action recognition

Method Aver. Accuracy
SUSiNet (1-task) 60.2
SUSiNet (multi) 62.7
C3D 51.6
3D ResNet-18 56.4
3D ResNet-50 61.0
3D ResNeXt-101 63.8
RGB I3D (64f) 66.4

B evaluation on all splits of HMDB51

B compare performance against several other approaches
based on 3D CNN networks

B multi-task SUSIiNet outperforms the single-task as well
as several state-of-the-art methods
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SUSIiNet evaluation results — video summarization

Method SumMe (F-score) | TVSum50 (F-score)

vsLSTM 37.6 [41 6] 54.2 [57 9]
HSA-RNN 44.1 59.8
SEQ2SEQ 40.8 56.3
SUM-FCN 47.5 [S51.1] 56.8 [59.2]

B evaluation over the SumMe and TVSum50 datasets

B evaluation protocol based on the F-score

) keyshot-based summary
B SUSIiNet performs very close to its single-task variant

® 3D network outperforms many methods based on the
sequential estimation of the clip based importance score
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COGNIMUSE Database

Saliency, Semantic & Cross-Media Events Database

http.//cognimuse.cs.ntua.gr/database

including:

framewise importance annotation on multiple layers
audio & visual events annotation

O
O
B COSMOROE cross-media relations annotation
B Emotion annotation

O

ETMD: eye-tracking annotations for the COGNIMUSE videos

database content:

® 7 30-min movie clips from: Beautiful Mind (BMI), Chicago (CHI), Crash
(CRA), The Departed (DEP), Gladiator (GLA), Lord of the Rings Ill: The
return of the king(LOR), Finding Nemo (FNE)

® 1 100-min movie: Gone with the Wind (GWTW)

| @ I 901 9 Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

67



evaluation results - COGNIMUSE database

Task Saliency (sAUC) | Action (Acc.) | Summar. (AUC) 1 ' ' ' J;z""’ﬂ
SUSiNet || I-task multi | I-task multi [ l-task multi | R

BMI - - 51.54 4988 | 0.7831 0.8023 ‘,;f;@," -

GLA 0.6859 0.6727 | 48.92 46.77 | 0.7863 0.7843 | R =

CHI 0.7601 0.7565 | 49.41 50.82 | 0.7901 0.7826 & Rt

FNE 0.7224 07236 | - - [0349%0_ 05300},

LOR 0.7297 0.7325 | 50.70 54.93 | 0.7602 0.7557 ,wé"

CRA 0.7056 0.7058 | 49.83 47.83 | 0.7424 0.7105  (o! F;'l e :S,'VFI’;S 1<g-?§_2;)95) ]
DEP 0.7837 0.7721 § 58.86 60.76 | 0.8069 0.8279 ,7' - gggmgmﬁﬁr((&733463€§)
GWW - - 36.24 37.70 | 0.6762 0.6806 03 e ¥ Y Y 1
Aver. 0.7312 0.7272 | 49.36 49.81 | 0.7368 0.7343 " False Positive Rate

B evaluation over multi-task COGNIMUSE db:
 saliency, action, summarization
[ in many cases multi-task network achieves better performance
. low performance for FNE - no other animation movie in training set

 SUSIiNet outperforms the two other state-of-the-art methods for the

summarization task according to the ROC-AUC metric
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SUSiNet: demo video

| —visual import. —run —turn ——fall floor —stand|

with dotted lines the annotated actions that are not correctly recognized
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Part 1: Conclusions
B Cover state-of-the-art approaches for video processing and
especially for action recognition
[ classic computer vision methods (i.e. dense trajectories)
J modern CNN-based approaches
B Present multi-task spatio-temporal network that can jointly
tackle the multiple spatio-temporal problems
J common 3D network architecture for all tasks

 multi-task network performs equally well or even better than the
single-task methods = requires less computational budget

B Future work:

] explore audio-visual multi-task network in order to handle the multi-
modal aspects of these tasks

For more information, demos, and current results: http://cvsp.cs.ntua.gr and http://robotics.ntua.gr
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