

Computer Vision, Speech Communication & Signal Processing Group, Intelligent Robotics and Automation Laboratory Institute of Communication and Computer Systems (ICCS) National Technical University of Athens, Greece (NTUA)

Part 1: Spatio-Temporal Visual Processing

Petros Maragos and Petros Koutras

Tutorial at IEEE International Conference on Image Processing 2019, Taipei, Taiwan, September 22, 2019

Spatio-temporal Computer Vision problems

automatic video understanding becomes one of the most essential and demanding challenges

static computer vision problems:

 \Box image domain \rightarrow no temporal evolution

object detection, semantic segmentation, pose estimation

- deep learning and large datasets boosted the performance
- **spatio-temporal** problems:
 - \Box video domain \rightarrow related with the temporal information
 - spatio-temporal saliency, action recognition, video summarization

require the integration and modeling of the temporal evolution

Action Recognition

automated classification and detection of human activities on videos

- action labels from human annotations
- □ many large datasets: Hollywood2, UCF101, HMDB51, Kinetics

Action Recognition Tasks

- classification
- detection

Video understanding applications

Indexing and analysis of big video data Augmented reality and interactive video games Sports analysis

Video understanding robotic applications

Human-Robot Interaction (HRI)

Patient monitoring – assistive robotics

Action Recognition - Challenges

 Execution variability

 Camera angle variability

Action Recognition - Challenges

• Occlusions, visual noise, shadows, different scales

Action Recognition - Datasets Evolution

Video Processing and Action Recognition using Local Representations

Local Representations for Visual Processing

- Local video representations
 - Describe the whole video as a set of independent local descriptors
 - Detect independent interest points according a saliency function
 - Describe the detected points with features descriptors
 - Represent the video by encoding the statistical properties of the local interest points

3D Harris Detector

Traditional Action Recognition Pipeline

Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Spatio-Temporal Interest Points (STIP)

- Detect points with large variation w.r.t. 3 direction of videos (x,y,t)
- Extract descriptors inside spatio-temporal volume around each interest point

Descriptors:

- **HOG:** static appearance (image gradient)
- HOF: motion (optical flow)

second moments matrix

I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Proc. IEEE Conf. CVPR, 2008

Energy-based Interest Points

Action Detection

Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Video processing with Gabor3D filterbanks

Spatial Gabor Filterbank

Spatio-Temporal Gabor Filterbank

P. Koutras and P. Maragos. Signal Processing: Image Communication, vol 38, pp. 15-31, 2015.

Histographic Gradient Descriptors

Visual Action Classification

Action recognition with STIP- Results

KTH Action Database

• 6 Actions, 2391 videos

Accuracy of various methods on the KTH Action Dataset

Method	DCA3D	Cuboids	Harris3D	Gabor3D
Accuracy	78.8%	90%	91.8%	93.5%

Hollywood2 Action Database

- 12 Actions, 1707 videos
 - Large variation in action performances
 - Moving camera and scene changes
 - Multiple actors, background clutter and occlusion

Mean Average Precision for the 12 action classes of the Hollywood2 Dataset

Method	Cuboids	Harris3D	Gabor3D
mAP	46.2%	45.2%	47.7%

Action recognition with STIP- Challenges

- Camera movement
- Generalization
- Scene changes \rightarrow visual noise

SitDown

StandUp

Video Processing and Action Recognition using Dense Trajectories

Dense Trajectories - Overview

- Feature trajectories have shown to be efficient for representing videos
- The trajectories are obtained by tracking **densely sampled** points rather than **sparse STIP** using optical flow fields
- A local descriptor is introduced that overcomes the problem of camera motion
- The descriptor extends the motion coding scheme based on motion boundaries

H. Wang, A. Klaser, C. Schmid, and C. Liu, Proc. CVPR 2011.

Feature Extraction with Dense Trajectories

1. Feature points are sampled on a regular grid in multiple scales

3. Descriptors are computed in spacetime volumes along trajectories

Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Dense Trajectories - Tracking

- Feature points are sampled on a grid spaced by W pixels and tracked in each scale separately (8 scales)
- Each point in a certain frame is tracked to the next frame using median filtering in a dense optical flow field

Dense Trajectories - Descriptors

t t+1 t+2

Descriptors:

- •HOG: static appearance (image gradient)
- •HOF: motion (optical flow)
- •MBH: motion(motion gradient)
- •**Trajectory:** consecutive points of the trajectory
- Trajectories are limited to 'L' frames in order to avoid drift from their initial location

Trajectory Descriptors

- Histogram of Oriented Gradient (HOG)
- Histogram of Optical Flow (HOF)
- HOGHOF
- Motion Boundary Histogram (MBH)
 - Take local gradients of x-y flow components and compute HOG as in static images

H. Wang, A. Klaser, C. Schmid, and C. Liu, Proc. CVPR 2011.

Traditional Action Recognition Pipeline

Features Clustering and Dictionary

Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Advanced Feature Encodings: VLAD, Fisher Vector

 \mathbf{d}_k : visual word

\mathbf{X}_n : feature vector

Fisher Vector:

 $\begin{array}{ll} \gamma_{n,k} &: \text{soft assignment of each feature} \\ \mathbf{x}_n \in \mathbf{X}, n = 1 \dots N \\ & \text{to the k-th } \mathbf{GMM's \ Gaussian \ with} \\ & \text{parameters } \mu_k, \sigma_k \end{array}$

Classification

- Support Vector Machines
- Kernels:

 \Box Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$

Features Fusion:
$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\sum_c \frac{1}{A^c} D(\mathbf{x}_i^c, \mathbf{x}_j^c))$$

c: different channels (descriptors)

Dense Trajectories - Results

Features Encoding: Spatio-Temporal Pyramids

Integrate spatial and temporal structure:

- Divide the 3D video volume into sub-volumes (cells)
- Compute a Bag-of-Words histogram for each cell
 - Histogram concatenation

Features Encoding: Spatio-Temporal Pyramids

Channel fusion of different grids:

HMDB51 (51 classes)

VLAD and Fisher Vector: Results

Better encoding depends on each problem/database

Video Processing and Action Recognition using Deep Neural Networks

Single Stream CNN-based Architectures

- Explore ways to fuse temporal information from consecutive frames using 2D pre-trained CNNs
- Cannot learn motion related patterns

Karpathy et al. CVPR 2014.

CNN + LSTM Architectures

- Long-term Recurrent Convolutional Networks
 - □ 2D CNN features (encoder)
 - employ LSTMs on top of them to capture the temporal information (decoder)
- end-to-end trainable architecture
- RNN (Recurrent Neural Networks)
 - model temporal dynamics
- LSTM (Long Short Term Memory)
 - □ learn when to "forget" previous hidden states
 - learn when to update hidden states given new information

Donahue et al. Proc. CVPR, 2015

Input Visual Sequence Output **Features** Learning **LSTM** CNN LSTM CNN **LSTM** CNN **RNN Unit** LSTM Unit Output Input Gate Gate

Input Modulation Gate

σ

Forget Gate

Two Streams CNN: RGB + Optical Flow

2D CNN architecture with two separate networks:

- \Box one for spatial context (pre-trained) \rightarrow input: single video frame
- explicitly capturing local temporal movement
- trained separately and combined using SVM

Simmoyan and Zisserman. Proc. NIPS, 2014

Two Streams CNN: Advanced Fusion Schemes

- Fusion of spatial and temporal streams (how and when)
- Fusion at two layers (after conv5 and after fc8)
 - one as a hybrid spatiotemporal net
 - one as a purely spatial network
- Combining temporal net output across time frames
 → model long term dependencies

Feichtenhofer, Pinz and Zisserman. Proc. CVPR, 2016

Temporal Segment Networks

- two stream architecture
- suggest sampling clips sparsely across the video to better model long range temporal stimuli
- combine scores of temporal and spatial streams separately by averaging across snippets
- L. Wang et al. Proc. ECCV, 2016

3D Convolutional Neural Networks

- Employ 3D convolutional networks as feature extractors instead of using 2D convolutions across frames

D. Tran et al. Proc. ICCV, 2015

Spatio-temporal 3D CNN – Transfer Learning

- propose 3D CNNs based on ResNet architectures
- very deep 2D CNNs trained on ImageNet generates outstanding progress in image related tasks
- 3D CNNs trained on large scale action datasets can generate similar progress in computer vision for videos

Hara, Kataoka and Satoh. Proc. CVPR, 2018

Factorized Spatio-temporal CNN

- empirically show that factorizing the 3D convolutional filters into separate spatial and temporal components yields significantly gains in accuracy
- design of a new spatiotemporal convolutional block "R(2+1)D"

Net	# params	Clip@1	Video@1	Clip@1	Video@1	
Input		8×11	2×112	16×112×112		
R2D	11.4M	46.7	59.5	47.0	58.9	
f-R2D	11.4M	48.1	59.4	50.3	60.5	
R3D	33.4M	49.4	61.8	52.5	64.2	
MC2	11.4M	50.2	62.5	53.1	64.2	
MC3	11.7M	50.7	62.9	53.7	64.7	
R(2+1)D	33.3M	52.8	64.8	56.8	68.0	

D. Tran et al. Proc. CVPR, 2018

Spatio-Temporal DNN-based Approaches

Most DNN-based methods for video processing and recognition are improvisations on top of some basic approaches

Carreira and Zisserman, Proc. CVPR 2017

I3D: Inflated 3D ConvNet

- Two-Stream Inflated 3D
 ConvNet (I3D) based on
 2D ConvNet inflation
 - filters and pooling kernels of very deep image classification CNN are expanded into 3D
 - possible to learn
 seamless spatio-temporal
 feature extractors from
 video while leveraging
 successful ImageNet
 architecture designs/
 parameters

Model	UCF-101	HMDB-51
Two-Stream [27]	88.0	59.4
IDT [33]	86.4	61.7
Dynamic Image Networks + IDT [2]	89.1	65.2
TDD + IDT [34]	91.5	65.9
Two-Stream Fusion + IDT [8]	93.5	69.2
Temporal Segment Networks [35]	94.2	69.4
ST-ResNet + IDT [7]	94.6	70.3
Deep Networks [15], Sports 1M pre-training	65.2	-
C3D one network [31], Sports 1M pre-training	82.3	-
C3D ensemble [31], Sports 1M pre-training	85.2	-
C3D ensemble + IDT [31], Sports 1M pre-training	90.1	-
RGB-I3D, Imagenet+Kinetics pre-training	95.6	74.8
Flow-I3D, Imagenet+Kinetics pre-training	96.7	77.1
Two-Stream I3D, Imagenet+Kinetics pre-training	98.0	80.7
RGB-I3D, Kinetics pre-training	95.1	74.3
Flow-I3D, Kinetics pre-training	96.5	77.3
Two-Stream I3D, Kinetics pre-training	97.8	80.9

Carreira and Zisserman, Proc. CVPR 2017

Multi-task Spatio-Temporal Networks for Video Understanding

Koutras and Maragos, SUSiNet: "See, Understand and Summarize It", Proc. CVPRW, 2019

Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Action Recognition

automated classification and detection of human activities on videos

- action labels from human annotations
- □ many large datasets: Hollywood2, UCF101, HMDB51, Kinetics

Spatio-Temporal Visual Saliency

spatial saliency

- predict viewers fixations in image plain
- static eye-tracking datasets:
 Toronto data set, MIT CAT200,
 SALICON, ...

spatio-temporal saliency

- predict viewers fixations both in space and time
- dynamic eye-tracking datasets: CRCNS, DIEM, DHF1K, ...

Video Summarization

- summarization task refers to producing a shorter version of a video:
 - video skims that contain only the necessary and non redundant information required for context understanding
 - human annotated importance scores per frame/segment
 - annotated video datasets from multiple people: SumMe, TVSum50, COGNIMUSE

model's imprtance score human annotation

Multi-task Networks: goal-motivation

- all these problems require the integration and modeling of the temporal evolution:
 - > spatio-temporal saliency estimation $\leftarrow \rightarrow$ eye-tracking data
 - \succ visual concept understanding (i.e. actions) $\leftarrow \rightarrow$ annotated labels
 - \succ video summarization $\leftarrow \rightarrow$ importance scores from humans
- can we jointly tackle these problems like humans do in the sense of:

Spatial Multi-task Networks

recent works for spatial computer vision tasks train multi-task networks or find the structure among visual tasks and apply transfer learning

Detection Semantic Boundaries & Segmentation Human Parts

I. Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. In *Proc. CVPR*, 2017.

Spatio-Temporal Multi-task Networks

can we design and train a single multi-task
 network for solving multiple spatio-temporal
 problems with less computational resources

SUSiNet

SUSiNet Contributions

- ① multi-task spatio-temporal network that is jointly end-to-end trained for above tasks with multiple and diverse datasets:
 - employs the same video input
 - produces **multiple output types** (saliency maps or classification labels)
- 2 deeply supervised mechanism through an attention module related to human attention as it is expressed by eye-tracking data
- **③ extensive evaluation** on 7 different datasets:
 - multi-task network performs as well as single-task methods (or in some cases better) and requires less computational budget

SUSiNet architecture

$$\mathcal{L}(\mathbf{W}_{all}) = \alpha_{sal} \sum_{j \in \mathcal{B}} \mathcal{L}_{sal}^{j}(\mathbf{W}_{sal}') + \alpha_{act} \sum_{j \in \mathcal{B}} \mathcal{L}_{act}^{j}(\mathbf{W}_{act}') + \alpha_{sum} \sum_{j \in \mathcal{B}} \mathcal{L}_{sum}^{j}(\mathbf{W}_{sum}')$$

multi-task spatio-temporal network based on 3D ResNet

- global and task-specific modules
- DSAM: deeply supervision attention module
- multi-task and end-to-end training

SUSiNet architecture - saliency

SUSiNet architecture – saliency losses

$$\mathcal{L}_{sal}(\mathbf{W}'_{sal}) = \mathcal{D}(\mathbf{W}'_{sal}|\sigma(S^{F}), Y_{sal}) + \sum_{m=1}^{4} \mathcal{D}(\mathbf{W}_{AM}^{m}|\sigma(A^{m}), Y_{sal}),$$

$$\tilde{\mathcal{D}}_{CE}(\mathbf{W}|P, \tilde{Y}_{den}) = -\beta \cdot \sum_{x,y \in \mathcal{Y}_{+}} \log(P(x, y; \mathbf{W})) - (1 - \beta) \cdot \sum_{x,y \in \mathcal{Y}_{-}} (1 - \log(P(x, y; \mathbf{W}))),$$

$$\mathcal{D}_{CC}(\mathbf{W}|P, Y_{den}) = -\frac{\operatorname{cov}(P(x, y; \mathbf{W}), Y_{den}(x, y))}{\rho(P(x, y; \mathbf{W})) \cdot \rho(Y_{den}(x, y))},$$

$$\mathcal{C}C \text{ loss}$$

$$\mathcal{D}_{NSS}(\mathbf{W}|\tilde{P}, Y_{fix}) = -\frac{1}{N_{f}} \sum_{x,y} \tilde{P}(x, y; \mathbf{W}) \odot Y_{fix}(x, y),$$

$$NSS \text{ loss}$$

SUSiNet architecture - saliency

$$\mathcal{L}(\mathbf{W}_{all}) = \alpha_{sal} \sum_{j \in \mathcal{B}} \mathcal{L}_{sal}^{j}(\mathbf{W}_{sal}') + \alpha_{act} \sum_{j \in \mathcal{B}} \mathcal{L}_{act}^{j}(\mathbf{W}_{act}') + \alpha_{sum} \sum_{j \in \mathcal{B}} \mathcal{L}_{sum}^{j}(\mathbf{W}_{sum}')$$

$$\mathcal{L}_{sal}^{j}(\mathbf{W}'_{sal}) = w_1 \mathcal{L}_{CE}^{j} + w_2 \mathcal{L}_{CC}^{j} + w_3 \mathcal{L}_{NSS}^{j},$$

m=1

$$\mathcal{L}_{sal}(\mathbf{W}'_{sal}) = \mathcal{D}(\mathbf{W}'_{sal}|\sigma(S^F), Y_{sal}) + \sum_{i=1}^{4} \mathcal{D}(\mathbf{W}^m_{AM}|\sigma(A^m), Y_{sal}),$$

deep supervision

Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Deeply supervised attention module

SUSiNet architecture - action

SUSiNet architecture - summarization

summarization

SUSiNet: evaluation procedure

- evaluation on 7 video datasets (3 for saliency, 2 for action, 3 for summarization)
- training using a cross-validation approach over different splits of diverse datasets
 - □ data augmentation (e.g. spatial and temporal cropping)
 - asynchronous Stochastic Gradient Descent (SGD)
- multi-task network performs equally well or in some cases even better than the single-task methods -> requires less computational budget
 - multiple evaluation metrics

SUSiNet evaluation results - saliency

Data	set	DIEM			DFK1K				ETMD				
Method		$CC\uparrow$	NSS ↑	AUC-J↑	sAUC ↑	$CC\uparrow$	NSS ↑	AUC-J↑	sAUC ↑	$CC\uparrow$	NSS ↑	AUC-J↑	sAUC ↑
SUSiNet (1-	task) [ST]	0.6138	2.4267	0.8736	0.6747	0.4676	2.5908	0.8843	0.6991	0.5523	2.8365	0.9173	0.7312
SUSiNet (m	ulti) [ST]	0.5614	2.1398	0.8810	0.6736	0.4116	2.2092	0.8910	0.6980	0.4780	2.3642	0.9162	0.7272
Deep-Net		0.4305	1.6238	0.8401	0.6262	0.2969	1.5804	0.8421	0.6432	0.3438	1.6523	0.8712	0.6588
DVA		0.5179	2.1607	0.8599	0.6400	0.3593	2.0644	0.8609	0.6572	0.4228	2.2507	0.8848	0.6843
SAM		0.5352	2.2482	0.8651	0.6429	0.3684	2.1180	0.8680	0.6562	0.4345	2.3155	0.8890	0.6875
ACLNet	[ST]	0.5626	2.2168	0.8717	0.6228	0.4167	2.2962	0.8883	0.6523	0.4508	2.2058	0.9073	0.6482
DeepVS	[ST]	0.4885	2.0352	0.8448	0.6248	0.3500	1.9680	0.8561	0.6405	0.4316	2.3030	0.8955	0.6672

evaluation on 3 eye-tracking video datasets:

DIEM, DFK1K, ETMD (Eye-Tracking Movie Database)

4 widely used evaluation metrics:

CC, NSS, AUC-J, sAUC

- compare performance against 5 state-of-the-art deep learning methods :
 - both spatial and spatio-temporal models

SUSiNet evaluation results – action recognition

Method	Aver. Accuracy
SUSiNet (1-task)	60.2
SUSiNet (multi)	62.7
C3D	51.6
3D ResNet-18	56.4
3D ResNet-50	61.0
3D ResNeXt-101	63.8
RGB I3D (64f)	66.4

- evaluation on all splits of HMDB51
- compare performance against several other approaches based on 3D CNN networks
- multi-task SUSiNet outperforms the single-task as well as several state-of-the-art methods

SUSiNet evaluation results – video summarization

Method	SumMe (F-score)	TVSum50 (F-score)
SUSiNet (1-task)	41.10	59.20
SUSiNet (multi)	40.80	57.00
vsLSTM	37.6 [41.6]	54.2 [57.9]
HSA-RNN	44.1	59.8
SEQ2SEQ	40.8	56.3
SUM-FCN	47.5 [51.1]	56.8 [59.2]

- evaluation over the SumMe and TVSum50 datasets
- evaluation protocol based on the F-score
 - keyshot-based summary
- SUSiNet performs very close to its single-task variant
- 3D network outperforms many methods based on the sequential estimation of the clip based importance score

COGNIMUSE Database Saliency, Semantic & Cross-Media Events Database

http://cognimuse.cs.ntua.gr/database

including:

- framewise importance annotation on multiple layers
- audio & visual events annotation
- COSMOROE cross-media relations annotation
- Emotion annotation
- ETMD: eye-tracking annotations for the COGNIMUSE videos

database content:

- 7 30-min movie clips from: Beautiful Mind (BMI), Chicago (CHI), Crash (CRA), The Departed (DEP), Gladiator (GLA), Lord of the Rings III: The return of the king(LOR), Finding Nemo (FNE)
- **1** 100-min **movie**: Gone with the Wind (GWTW)

evaluation results - COGNIMUSE database

Task	Saliency	' (sAUC)	Action	(Acc.)	Summar. (AUC)		1	
SUSiNet	1-task	multi	1-task	multi	1-task	multi	0.8	
BMI	-	-	51.54	49.88	0.7831	0.8023	0.0	
GLA	0.6859	0.6727	48.92	46.77	0.7863	0.7843	0.6	
CHI	0.7601	0.7565	49.41	50.82	0.7901	0.7826	call	, Martin Land
FNE	0.7224	0.7236	-	-	0.5490	0.5306	۵ 0.4	
LOR	0.7297	0.7325	50.70	54.93	0.7602	0.7557		
CRA	0.7056	0.7058	49.83	47.83	0.7424	0.7105	0.2	ICIP15 (0.6857) ↓ V/MSP18 (0.6995)
DEP	0.7837	0.7721	58.86	60.76	0.8069	0.8279		-* SUSINet-1task (0.7368)
GWW	-	-	36.24	37.70	0.6762	0.6806	0	
Aver.	0.7312	0.7272	49.36	49.81	0.7368	0.7343	- (False Positive Rate

evaluation over multi-task COGNIMUSE db:

- □ saliency, action, summarization
- in many cases multi-task network achieves better performance
- **Iow performance** for FNE \rightarrow no other animation movie in training set
- SUSiNet outperforms the two other state-of-the-art methods for the
 - summarization task according to the ROC-AUC metric

Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

SUSiNet: demo video

with dotted lines the annotated actions that are not correctly recognized

Part 1: Conclusions

- Cover state-of-the-art approaches for video processing and especially for action recognition
 - classic computer vision methods (i.e. dense trajectories)
 - modern CNN-based approaches
- Present **multi-task spatio-temporal** network that can jointly tackle the multiple spatio-temporal problems
 - common 3D network architecture for all tasks
 - □ multi-task network performs equally well or even better than the single-task methods → requires less computational budget
- Future work:
 - explore audio-visual multi-task network in order to handle the multimodal aspects of these tasks

For more information, demos, and current results: http://cvsp.cs.ntua.gr and http://robotics.ntua.gr

