

Computer Vision, Speech Communication & Signal Processing Group, Intelligent Robotics and Automation Laboratory Institute of Communication and Computer Systems (ICCS) National Technical University of Athens, Greece (NTUA)

Part 5: Audio-Visual HRI in Social Robotics for Child-Robot Interaction

Petros Maragos and Petros Koutras

Tutorial at IEEE International Conference on Image Processing 2019, Taipei, Taiwan, September 22, 2019

Child-Robot Interaction: Demo

 Develop core audio-visual processing technology to extract low-, mid-, & high-level HRI information from AV sensors.

Perception System

Action Branch: A closer look

• recognize the child's multimodal activities: e.g. speech, movements, gestures

Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Action Branch: Developed Technologies

3D Object Tracking

Speaker Localization and Distant Speech Recognition

Multi-view Gesture Recognition

Multi-view Action Recognition

Hadfield et al. In Proc. IROS, 2018 Tsiami et al. In Proc. ICASSP, 2018. Tsiami et al. In Proc. ICRA, 2018. Efthymiou et al. In Proc. ICIP, 2018.

Behavioral Branch: A closer look

• recognize and identify the behavior of the child that is expressed as facial expressions and emotions, skeleton pose, engagement

Behavioral Branch: Developed Technologies

Engagement Estimation Hadfield et al. In Proc. IROS, 2019.

Multi-cue Visual Emotion Recognition

Filntisis et al., IEEE Robotics and Automation Letters, 2019.

Child Robot Interaction: Experimental Setup and Data

Experimental Setup: Floorplan

Experimental Setup: Lightweight

Linux (ROS) - Master

- Manage all writings • and synchronization
- Record Kinect #1 streams: Depth. Color, Audio
- Runs GSR, ASR, SLOC & Person Detection (+Fusion on GSR, ASR, SLOC)

- Record Kinect #4 streams: Depth, Color, Audio, Body Index, Body (Skeleton), Face, HD Face
- Runs Touch Screen Games
- Runs IrisTK and Robot • Integration Software
- Runs Kinect API recognizers

- Lightweight setup for school usage
- Designed for the needs • of ASD experiments in schools
- Games implemented as tablet applications

Zeno

Tu

Experimental Setup: Multi Robot Extension

- "Act states":
 - Decouple robot details from core dialog flow
 - Intermediate layer between core dialog and robot
 - The robot is just another parameter
 - Easier to add new robots to the system

Data Collection – Overview

- 20 adults
- 31 TD children 6 10 years old (aver. 8 years old)
- 15 ASD children
- 2 types of data
 - Development corpus for Training/Testing algorithms (acted)
 - Experimental corpus related to usecases (spontaneous)

Data Collection – Development Corpus

- Children and adults were asked to do the following sequentially. The robots didn't interfere.
- TD Children data collection
 - 7 gestures
 - 6 emotions
 - 12 pantomimes
 - 40 phrases
- Adults data collection for comparisons
 - 7 gestures
 - 12 pantomimes
 - 100 phrases

Data Collection – Experimental Corpus

Kids interacted with robots by playing the following games. During the experiment, we used the WoZ and we also tested the integrated recognition modules

- Individual games (1 child each time)
 - Joint Attention
 - Introduction
 - "Show me the gesture"
 - Emotion Recognition
 - Pantomime
 - "Guess the object"

- Co-operative games (2 children)
 - "Form a Farm"
 - "Rock-Paper-Scissors"

	Distant Speech	Detect	Speaker	Visual Activity Recogni	
	Recognition	& Track	Localization	Gesture	Action
Show me the Gesture	\checkmark		\checkmark	\checkmark	
Pantomime	\checkmark		\checkmark		\checkmark
Assembly Game		\checkmark	\checkmark		
Form a Farm	\checkmark		\checkmark	\checkmark	

Experimental Corpus: Annotation

- Increasing the benefits of the collected data
- Provide ground truth for experimental corpus
 - Low level annotation for action branch technologies (Gesture, DSR, Action)
 - High level annotation for child behavior monitoring (emotion recognition, cognitive state, engagement)

Collected Data	Events' Type	# of Events
	Utterances	1120
Development	Gestures	196
Data	Pantomimes	336
Use-case	Utterances	630
Related	Gestures	143
Data	Pantomimes	109

CRI Modules: Building New Models

- Usages of development corpus
 - Training new models for gesture and action recogniton
 - Adapt pretrained models for speech recognition
 - Evaluate the developed modules

Gesture, DSR, Action: Children vs. Adult Models

different training schemes

- Adults models
- Children models
- Mixed model

need for children specific models

		Gesture Recognition						Action Recognition			
Training scheme				Training scheme				ne			
Test		Adults	Children	Mixed		Test		Adults	Children	Mixed	
Adults Avg Fuse	Avg	86.49	56.32	87.36		Adulta	Avg	78.39	63.00	78.39	
	Fuse	92.19	62.08	95.10		Aduns	Fuse	87.36	72.53	86.26	
Children	Avg	49.92	70.99	72.30		Children	Avg	46.55	65.74	65.88	
Cindicil	Fuse	56.25	83.80	80.09		Children	Fuse	56.51	74.46	74.26	

	DSR-Adaptation scheme								
	No-a	No-adapt Adults Children M						ked	
Test	WCOR	SCOR	WCOR	SCOR	WCOR	SCOR	WCOR	SCOR	
Adults	97.54	91.25	99.58	98.87	96.73	93.20	99.50	98.43	
Children	79.06	69.95	75.31	71.20	97.81	95.50	90.71	82.06	

Child Robot Interaction: Perception Modules Details

Action Branch: Modules

• recognize the child's multimodal activities: e.g. speech, movements, gestures

Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Object Detection & Tracking (I)

- 6-DoF tracking of multiple objects.
- Used to track bricks in assembly experiments.
- The resulting poses are used to understand the assembly state.

Hadfield et al. In Proc. IROS, 2018

Object Detection & Tracking (II)

- Detection using color histogram models.
- 2D tracking: Match detected regions to objects (Hungarian algorithm).
- 3D tracking: Particle Filter.
 - 2D estimates treated as process input, depth values as measurements.
 - Pixel-wise occlusions are also modeled.
 - Object intersections penalized in update phase.

Object Assembly: School Experiments

Square

- Children are responsible for the manipulation of the assembly's subcomponents, while the robot provides instructions and feedback
- Set up was placed in a Greek primary school
- 21 children (aged 9-10)
- 6 played on their own
 15 played in group of fives

	Correct	t Connections	Total C	Connections		
	5s	20s	5s	20s	Avg mist/trial	Time
Rectangle	50.0	56.25	70.00	80.00	0.86	48.49
Square	43.24	59.46	39.39	57.58	0.67	110.09

Object Assembly: Snapshots

(a) correct connection successfully recognized

(b) incorrect action successfully recognized

(c) correct action not recognized

(d) false alarm

3D Human Detection and Tracking

- Detect human joints in 3D space
 - Detect 2D body keypoints \rightarrow OpenPose library
 - Employ depth stream \rightarrow 3D pose estimation
- Transform points to global frame (detected using principal normals in point cloud)

Zimmermann et al. In Proc. ICRA, 2018.

Child's pose detection from each view

Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

3D Child's Pose: fusion of detected poses

Hadfield et al. In Proc. IROS, 2019

3D Child's Pose: fusion results

Audio-Visual Active Speaker Localization

- person tracking using 3D skeleton
- choosing the person closest to the auditory source position
- Rcor: percentage of correct estimations (deviation from ground truth less than 0.5m)
 - Audio Source Localization: 45.51%
 - Audio-Visual Localization: 85.58%

Tsiami et al. In Proc. ICASSP, 2018.

Visual Gesture Recognition System

Gesture recognition system

□ Using only RGB (no depth) \rightarrow can employ every camera

Trained using data from adults or children

- Based on state-of-the-art framework for action recognition
 - Dense trajectories from Optical Flow

Tsiami et al. In Proc. ICRA, 2018.

Multi-view Gesture Recognition

- Multiple views of the child's gesture from different sensors
- Extract Dense Trajectory features from each view
- Encoding Frameworks:
 - □ Bag of Visual Words (BoW)
 - Vector of Locally Aggregated Descriptors (VLAD)
- Employ different fusion schemes

Multi-view Fusion for Gesture Recognition

- Feature Fusion: Early fusion of low-level descriptors
- Encodings Fusion: Middle fusion of encodings
- Score Fusion: Late fusion deploying the resulted probabilities for the recognition, from each sensor

Gesture Recognition – Vocabulary

Nod

Greet

Stop

Come Closer

Point

Circle

Multi-view Gesture Recognition - Evaluation

							Develop	ment Data						
	Single Camera									Fusion				
Feat.	Kin	ect #1	Kin	ect #2	Kine	ect #3	Kine	ect #4	Fea	tures	Enco	odings	Scores	
	BoW	VLAD	BoW	VLAD	BoW	VLAD	BoW	VLAD	BoW	VLAD	BoW	VLAD	BoW	VLAD
Traj.	68.75	70.83	66.90	64.58	65.74	65.74	68.52	62.96	75.00	76.39	76.85	79.63	77.31	78.24
HOG	40.74	33.33	33.33	31.25	29.40	30.79	41.20	31.94	39.81	40.28	41.67	39.35	41.20	37.04
HOF	70.83	72.69	70.37	71.76	69.21	66.67	63.43	53.70	71.76	74.07	77.78	81.48	75.93	81.94
MBH	76.85	75.93	67.82	73.38	68.29	68.75	65.28	57.41	76.39	76.85	81.02	81.48	82.87	83.80
Comb.	77.78	80.79	73.84	78.24	73.61	73.84	75.00	70.83	81.48	82.87	82.87	83.80	82.87	85.19
							Experim	ental Data						
				Single	Camera						Fu	sion		
Feat.	Kin	ect #1	Kin	ect #2	Kine	ect #3	Kine	ect #4	Fea	tures	Enco	odings	Sc	ores
	BoW	VLAD	BoW	VLAD	BoW	VLAD	BoW	VLAD	BoW	VLAD	BoW	VLAD	BoW	VLAD
Traj.	45.76	50.55	42.12	45.19	45.41	58.85	45.56	43.84	54.16	58.90	51.88	58.39	49.00	65.37
HOG	24.13	28.32	29.70	22.26	17.09	19.13	41.25	27.79	37.84	35.59	31.79	27.76	34.48	31.78
HOF	56.92	66.93	54.49	65.93	57.10	63.01	51.97	37.14	54.56	71.61	58.01	74.73	63.26	74.83
MBH	62.70	63.00	56.47	65.95	60.15	68.04	54.25	56.33	65.32	72.70	67.72	72.52	66.73	72.72
Comb.	57.96	70.77	54.08	67.87	67.03	71.73	59.16	60.54	61.51	69.85	63.38	73.95	64.82	73.35

Improved performance with VLAD encodings and multi-sensor fusion

Distant Speech Recognition System

Spoken Command Recognition Evaluation

Development Data: 40 phrases

	DSR-Adaptation scheme								
	No-a	No-adapt Adults Children						Mixed	
Test	WCOR	SCOR	WCOR	SCOR	WCOR	SCOR	WCOR	SCOR	
Adults	97.54	91.25	99.58	98.87	96.73	93.20	99.50	98.43	
Children	79.06	69.95	75.31	71.20	97.81	95.50	90.71	82.06	

Experimental Data: All Annotated Utterenaces

		No-adaj	pt	Adapt-all				
	WCOR	SCOR	LabelCOR	WCOR	SCOR	LabelCOR		
Single Game	56.68	29.52	55.12	59.64	43.77	55.12		
Cooperative Game	72.95	61.02	63.16	78.00	67.69	70.51		

- Evaluation Metrics: average word accuracy (WCOR), sentence accuracy (SCOR), label accuracy (LabelCOR).
- Improved performance with children adapted models

Multi-view Child Action Recognition System

- Same frontend with Gesture Recognition
- Recognize challenging human movements like

Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Multi-view fusion for action recognition

- Employ the same multi-view fusion approaches as in gesture recognition
- Compare with an additional implemented method for multi-view action recognition pre-trained CNN features

Action Recognition – Vocabulary

Painting a wall

Swimming

Working Out

Playing the guitar

Reading

Dancing

Multi-view Gesture Recognition - Evaluation

							Develop	ment Data						
	Single Camera									Fusion				
Feat.	Kin	ect #1	Kine	ect #2	Kin	Kinect #3 Kinect #4		Fea	Features Encodings			Scores		
	BoW	VLAD	BoW	VLAD	BoW	VLAD	BoW	VLAD	BoW	VLAD	BoW	VLAD	BoW	VLAD
Traj.	63.08	60.31	48.62	48.62	45.45	46.46	49.73	55.08	62.15	60.00	66.15	66.77	64.31	69.50
HOG	36.69	36.69	32.00	38.15	27.69	34.46	28.30	50.15	48.62	50.15	49.85	54.15	44.31	58.00
HOF	68.31	69.85	56.31	63.08	48.62	50.46	53.85	63.69	66.77	67.08	68.00	69.23	68.62	75.50
MBH	70.77	72.92	60.92	68.62	61.85	60.00	55.22	72.92	76.00	76.69	76.92	76.92	74.46	76.50
Comb.	73.85	74.15	63.38	69.23	60.00	58.46	61.45	76.31	75.08	76.92	77.23	77.85	75.08	79.00
							Experim	ental Data						
				Single	Camera						Fu	sion		
Feat.	Kin	ect #1	Kine	ect #2	Kin	ect #3	Kine	ect #4	Fea	tures	Enco	odings	Sc	ores
	BoW	VLAD	BoW	VLAD	BoW	VLAD	BoW	VLAD	BoW	VLAD	BoW	VLAD	BoW	VLAD
Traj.	47.89	50.84	38.49	43.75	25.52	22.61	44.14	44.64	58.26	52.30	50.79	54.87	47.45	56.99
HOG	30.98	23.10	23.95	27.51	16.53	19.73	21.76	34.14	37.41	31.49	26.95	36.26	29.14	31.44
HOF	46.34	51.00	46.19	51.78	25.50	26.13	47.70	44.67	63.08	61.02	49.87	56.17	52.59	57.99
MBH	61.42	56.86	46.28	45.82	31.59	29.44	45.57	56.11	70.25	67.97	57.70	59.04	62.18	62.49
Comb.	52.59	59.16	46.74	51.51	36.62	38.22	48.16	55.11	63.52	69.37	60.75	61.55	55.00	64.90

- Improved performance with VLAD encodings and multi-sensor fusion
 - Bigger improvement in the experimental data

Convolutional Neural Network Approach

- Pretrained 3D CNNs on the Sports1M corpus* (487 classes)
- Finetuning:
 - Split each video in 16 frame clips with the 15 frames overlapping
- Testing:
 - Extract features from FC6, FC7, pool5, conv5b layers
 - Average over each clip to obtain a descriptor for each video
- Fusion: early, middle and late as in dense trajectories

Efthymiou et al. In Proc. ICIP, 2018. D. Tran et al., In in Proc. ICCV, 2015.

CNN Approach: Single-view Evaluation

CNN Approach: Multi-view Evaluation

CNN Features									
Fusion	Feature	Encodings	Score						
C3D Feats.	Fusion	Fusion	Fusion						
conv5b	58.77	61.23	62.46						
pool5	60.31	61.23	63.08						
FC6	60.31	63.08	62.46						
FC7	63.08	63.08	62.15						
Comb.	60.31	61.23	63.69						
end-to-end	-	-	61.72						

- Fusion schemes achieve to improve the performance of the singleview approach
- Recognition accuracy isn't sufficient for a CRI task
- Dense Trajectories perform better than Deep Learning features:
 - Pretrained models on very different datasets (sports, movies)
 - Not enough CRI data for training end-to-end deep models

Behavioral Branch: Modules

• recognize and identify the behavior of the child that is expressed as facial expressions and emotions, skeleton pose, engagement

Engagement in Child-Robot Interaction

Engagement is important for lasting use of robots by children

- Robot should be able to recognize the status of a child's engagement
- Robot should be able to react to disengagement with reengaging actions

Multi-view Engagement Estimation

Classify the engagement level of children in joint attention tasks

Hadfield et al. In Proc. IROS, 2019

Engagement: Fusion of 3D Child Pose

Engagement: Feature extraction

Engagement: Classifier Architecture

Engagement: Evaluation Results

2.18	77.11	61.88
5.23	71.86	58.46
4.78	70.60	56.30
4.45	69.71	56.91
	5.23 4.78 4.45	5.23 71.80 4.78 70.60 4.45 69.71

Cross-validation results for different network architectures

-	Method	Mean F-Score	Accuracy	Balanced Accuracy
-	Majority class	27.90	71.97	33.33
	Gaze LSTM	32.78	71.58	36.10
	SVM	54.79	68.27	58.61
	RF	56.41	68.60	61.78
	$\overline{3}FC+LSTM^{-1}$	62.18	77. 11	<u> </u>
Performance results of different algorithms				

Engagement: Features Importance

Feature importance of input variables based on their average input gradient over 100 trained networks

Engagement: Demo Video

Visual Emotion Recognition - Patterns

happiness mainly facial, rare jumping and/or open raised hands, body erect, upright head

sadness crying (with hands in front on face), motionless, head looking down, contracted chest

surprise

expanded chest, hand movement without specific patterns, either positive or negative surprise

fear quick eye gaze, weak facial expressions, arms crossed in front of body, head sink

disgust mainly with facial expression (tongue out), movement away from/hands against robot

anger

clenched fists, arms crossed, squared shoulders

Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Visual Emotion Recognition – HMT network

Hierarchical Multi-label training (HMT) for recognition of affect from multiple visual cues.

$$\mathcal{L} = \mathcal{L}^f(y^f, \tilde{s}^f) + \mathcal{L}^b(y^b, \tilde{s}^b) + \mathcal{L}^w(y, \tilde{s}^w) + \mathcal{L}^d(y, \tilde{s}^d)$$

Filntisis et al., IEEE Robotics and Automation Letters, 2019.

Visual Emotion Recognition - Database

30 children × 6 emotions for two sessions:		Total (#)	Facial (#)	Body (#)
Acted and Spontaneous	Neutral	-	37	99
	Happiness	44	44	9
	Sadness	35	25	18
	Surprise	30	30	13
	Fear	32	14	31
	Disgust	43	42	19
	Anger	27	19	22

Statistics of multi-label annotations

Example multi-label annotations

Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Emotion Recognition with HMT - Results

	Label	y (6 classes)		y^f (7 classes)		y^b (7 classes)	
		F1	ACC	F 1	ACC	F 1	ACC
	Joint-1L	0.64 (0.66)	0.65 (0.67)	-	-	-	-
SEP	Body br.	0.29 (0.29)	0.35 (0.33)	-	-	0.36 (0.53)	0.38 (0.56)
	Face br.	0.57 (0.60)	0.61 (0.63)	0.50(0.59)	0.52 (0.61)	-	-
	Sum Fusion	0.63 (0.66)	0.65 (0.67)	-	-	-	-
HMT-3a	Body br.	0.32 (0.33)	0.36 (0.35)	-	-	0.35 (0.48)	0.39 (0.47)
	Face br.	0.54 (0.57)	0.59 (0.63)	0.48 (0.57)	0.52 (0.61)	-	-
	Fusion	0.64 (0.67)	0.66 (0.68)	-	-	-	-
HMT-3b	Body br.	0.32 (0.32)	0.36 (0.34)	-	-	0.36 (0.50)	0.39(0.49)
	Face br.	0.53 (0.56)	0.59(0.63)	0.51 (0.60)	0.54 (0.63)	-	-
	Whole body br.	0.64 (0.66)	0.66 (0.68)	-	-	-	-
HMT-4	Body br.	0.32 (0.32)	0.36 (0.34)	-	-	0.34 (0.47)	0.38(0.46)
	Face br.	0.53 (0.56)	0.58(0.62)	0.49 (0.58)	0.53 (0.62)	-	-
	Fusion	0.69 (0.71)	0.71 (0.72)	-	-	-	-

Visual Emotion Recognition: Demo Video

Examples of hierarchical recognitions of the HMT network in videos

Top Rectangle Box: final prediction Middle Oval Box: face branch prediction Bottom Rectangle Box: body branch prediction

Green Color: correct prediction

Red Color: incorrect prediction

Tutorial: Multisensory Video Processing and Learning for Human-Robot Interaction

Child-Robot Interaction: Multiple Children

Part 5: Conclusions

- Present and discuss many perception modules for CRI based on video processing and machine learning techniques
- Describe a database for CRI applications and highlight the importance for collecting children data to improve the performance of recognition algorithms
- Present integrated systems for CRI by employing multi-modal perception modules and multiple robots
- Future work:
 - Deploy the developed technology to more challenging CRI scenes
 - Explore ideas from zero-shot learning in order to design more generic interaction perception systems

For more information, demos, and current results: <u>http://cvsp.cs.ntua.gr</u> and <u>http://robotics.ntua.gr</u>

