

Computer Vision, Speech Communication & Signal Processing Group, Intelligent Robotics and Automation Laboratory National Technical University of Athens, Greece (NTUA) Robot Perception and Interaction Unit, Athena Research and Innovation Center (Athena RIC)

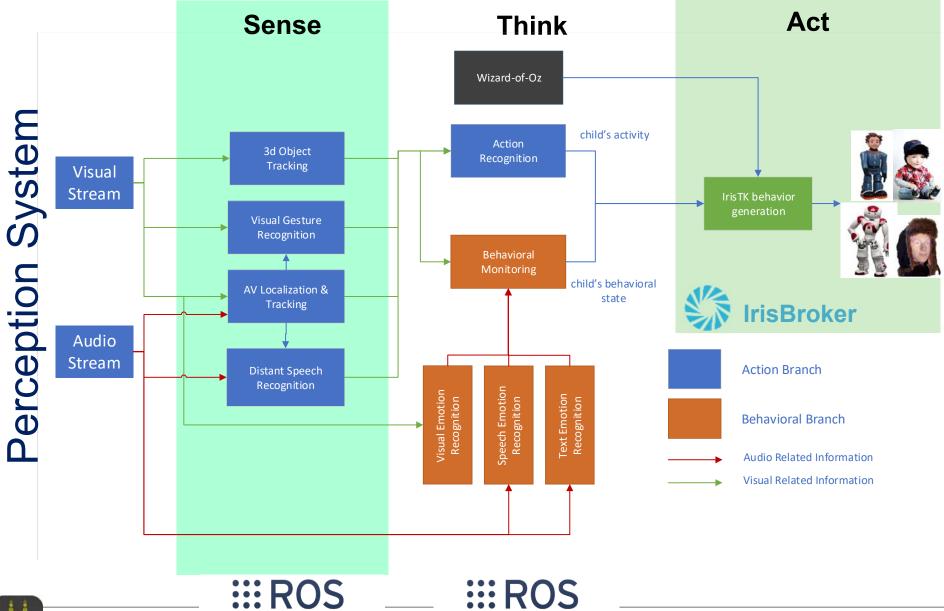
Part 3: Audio-Visual Child-Robot Interaction

Petros Maragos

slides: http://cvsp.cs.ntua.gr/interspeech2018

Tutorial at INTERSPEECH 2018, Hyderabad, India, 2 Sep. 2018

EU project BabyRobot: Experimental Setup Room



TD experiments video

<u>1st Game:</u> Joint Attention

- In/out-of-reach objects
- Attempt to establish joint attention without verbal prompts

Interspeech 2018 Tutorial: Multimodal Speech & Audio Processing in Audio-Visual Human-Robot Interaction

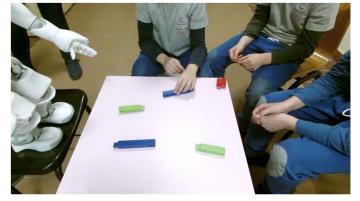
Experimental Setup: Hardware & Software

Kinect #1	Kinect #2	Kinect #3	Kinect #4
Linux (ROS) - Master	Linux (ROS) - Slave	Linux (ROS) - Slave	Windows (Custom Software) – Slave
 Manage all writings and synchronization Record Kinect #1 streams: Depth, Color, Audio Runs GSR, ASR, SLOC & Person Detection (+Fusion on GSR, ASR, SLOC) 	 Record Kinect #2 streams: Depth, Color, Audio Runs GSR, ASR, SLOC 	 Record Kinect #3 streams: Depth, Color, Audio Runs GSR, ASR, SLOC 	 Record Kinect #4 streams: Depth, Color, Audio, Body Index, Body (Skeleton), Face, HD Face Runs Touch Screen Games Runs IrisTK and Robot Integration Software Runs Kinect API recognizers

Zeno

Furhat

Nao


9 9

Talking Head

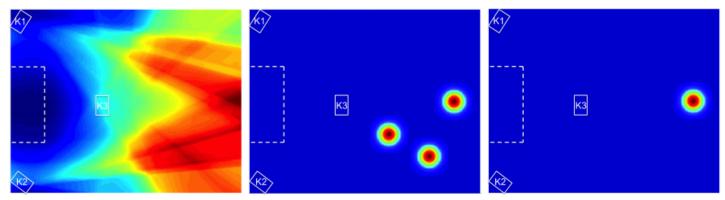
Tablet

Action Branch: Developed Technologies

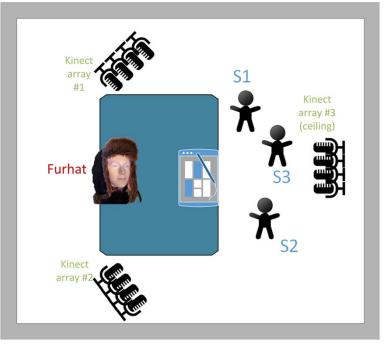
3D Object Tracking

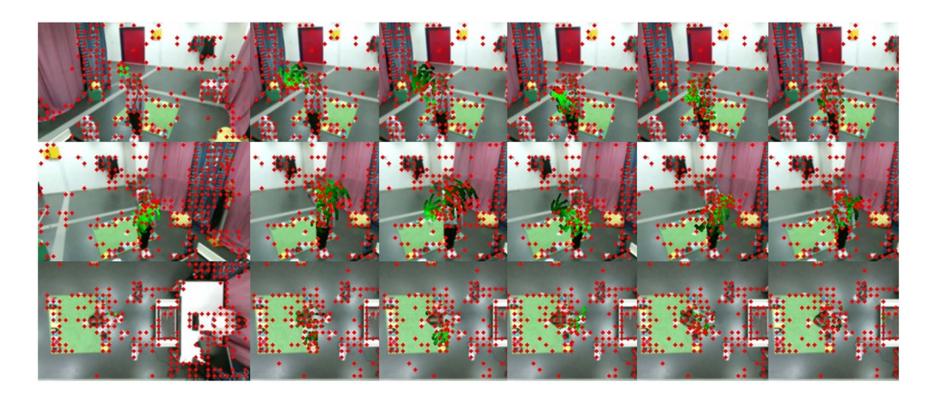
Speaker Localization and Distant Speech Recognition

Multiview Gesture Recognition



Multiview Action Recognition


Audio-Visual Localization Evaluation


- Track multiple persons using Kinect skeleton.
- Select the person closest to the auditory source position.
- Rcor: percentage of correct estimations (deviation from ground truth less than 0.5m)
 - Audio Source Localization: 45.5%

Audio-Visual Localization: 85.6%

Multi-view Gesture Recognition

- Multiple views of the child's gesture from different sensors
- Fusion of the three sensors' decisions

Gesture Recognition – Vocabulary

Nod

Sit

Greet

Stop

Come Closer

Point

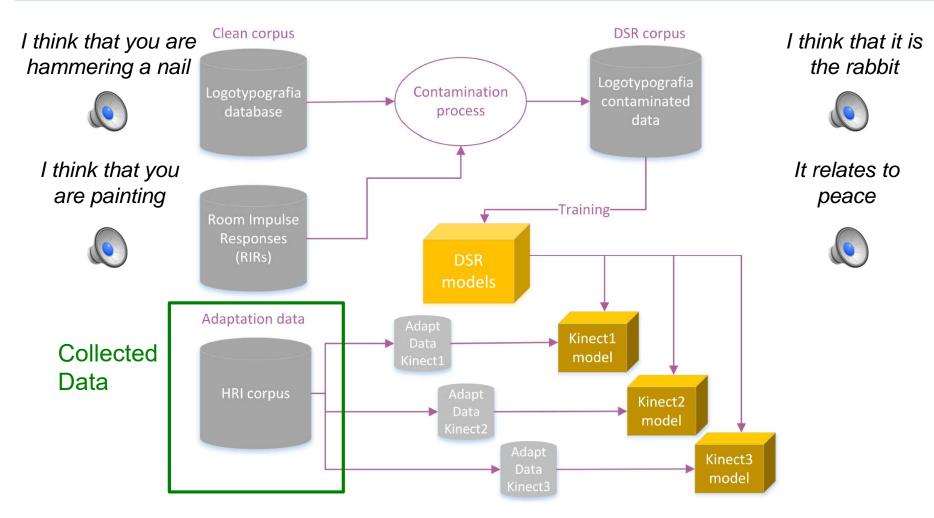
Circle

Multi-view Gesture Recognition - Evaluation

	S	ingle Camer		Fusion		
Feat.	Kinect #1	Kinect #2	Kinect #2 Kinect #3 N		MIN	MAX
Traj.	68.75	66.90	65.74	76.62	75.00	71.53
HOG	40.74	33.33	29.40	39.58	36.57	39.58
HOF	70.83	70.37	69.21	78.01	77.55	76.39
MBH	76.85	67.82	68.29	83.80	80.09	78.24
Comb.	77.78	73.84	73.61	81.94	83.56	77.55

7 classes: nod, greet, come closer, sit, stop, point, circle

- Average classification accuracy (%) for the employed gestures performed by 28 children (development corpus).
- Results for the five different features for both single and multi-steam cases.


Multi-view Gesture Recognition -Children vs. Adults

			Gesture Recognition -Training scheme			
			Adults	Children	Mixed	
	Test		Acc.	Acc.	Acc.	
different training		Kinect #1	84.79	60.21	87.81	
schemes	lts	Kinect #2	89.27	53.13	92.19	
00101100	Adults	Kinect #3	85.42	55.63	82.08	
Adults models	A	Avg	86.49	56.32	87.36	
		Fuse	92.19	62.08	95.10	
Children models	Children	Kinect #1	60.42	76.85	77.31	
Mixed model		Kinect #2	46.99	67.82	68.75	
	nild	Kinect #3	42.36	68.29	70.83	
Employed Features: MBH	C	Avg	49.92	70.99	72.30	
		Fuse	56.25	83.80	80.09	

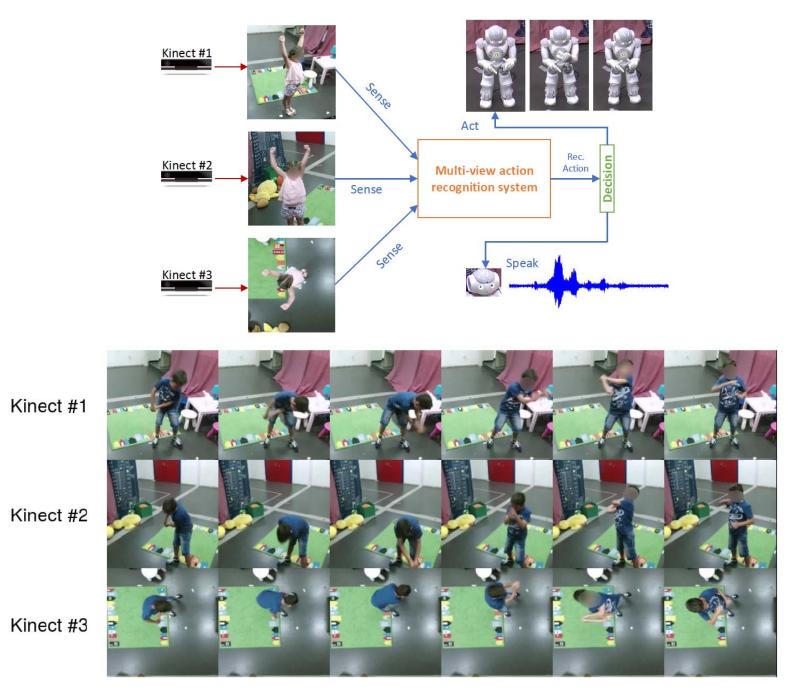
A. Tsiami, P. Koutras, N. Efthymiou, P. Filntisis, G. Potamianos, P. Maragos, "Multi3: Multi-sensory Perception System for Multi-modal Child Interaction with Multiple Robots", *Proc. ICRA*, 2018.

Distant Speech Recognition System

DSR model training and adaptation per Kinect (Greek models)

Spoken Command Recognition Evaluation

	No-adapt		Adap	ot-all	Adapt-per-array		
	WCOR	SCOR	WCOR	SCOR	WCOR	SCOR	
Kinect #1	79.30	70.53	98.41	95.95	98.30	95.95	
Kinect #2	81.04	72.48	97.56	95.95	97.35	95.95	
Kinect #3	76.85	66.83	97.45	94.60	97.56	94.60	
Fusion	_	64.17	-	98.97	-	96.30	


- TD (Typically-Developing) children data: 40 phrases
- average word (WCOR) and sentence accuracy (SCOR) for the DSR task, per utterance set for all adaptation choices.
- 4-fold cross-validation

Spoken Command Recognition – Children vs Adults

			DSR-Adaptation scheme			
			No-adapt	Adults	Children	Mixed
		Test	SCOR	SCOR	SCOR	SCOR
different training		Kinect #1	91.76	98.95	94.52	98.69
schemes	Children Adults	Kinect #2	90.60	98.70	90.99	97.85
3011011103		Kinect #3	91.39	98.95	94.11	98.75
Adults models		Avg	91.25	98.87	93.20	98.43
		Fuse	92.41	99.82	94.42	99.77
Children models		Kinect #1	70.53	72.31	95.95	82.95
Nived model		Kinect #2	72.48	73.85	95.95	82.52
Mixed model		Kinect #3	66.83	67.63	94.60	80.70
	C	Avg	69.95	71.20	95.50	82.06
		Fuse	64.17	66.02	98.97	95.51

the other interspeech 2018

Interspeech 2018 Tutorial: Multimodal Speech & Audio Processing in Audio-Visual Human-Robot Interaction

Action Recognition- Vocabulary

Cleaning a window

Wiping the floor

Driving a bus

Painting a wall

Swimming

Working Out

Dancing

Multi-view Action Recognition - Evaluation

	S	ingle Camer		Fusion	~	
Feat.	Kinect #1	Kinect #2	Kinect #3	MEAN	MIN	MAX
Traj.	63.08	48.62	45.54	64.00	61.23	62.15
HOG	39.69	32.00	27.69	43.38	35.38	41.85
HOF	68.31	56.31	48.62	68.31	65.54	68.92
MBH	70.77	60.92	61.85	74.46	73.54	72.31
Comb.	73.85	63.38	60.00	74.46	74.46	73.85

- 13 classes of pantomime actions
- Average classification accuracy (%) for the employed gestures performed by 28 children (development corpus).
- Results for the five different features for both single and multi-steam cases.

N. Efthymiou, P. Koutras, P. Filntisis, G. Potamianos, P. Maragos, "Multi-view Fusion for Action Recognition in Child-Robot Interaction", *Proc. ICIP*, 2018.

Multi-view Action Recognition – Children vs Adults

different training schemes

- Adults models
- Children models
- Mixed model

		Action Recognition -Training schem				
		Adults	Children	Mixed		
	Test	Acc.	Acc.	Acc.		
	Kinect #1	79.67	67.58	78.02		
lts	Kinect #2	83.52	62.09	79.12		
Adults	Kinect #3	71.98	59.34	78.02		
A	Avg	78.39	63.00	78.39		
	Fuse	87.36	72.53	86.26		
	Kinect #1	53.85	73.85	73.67		
ren	Kinect #2	47.63	63.38	64.20		
Children	Kinect #3	38.18	60.00	59.76		
C	Avg	46.55	65.74	65.88		
	Fuse	56.51	74.46	74.26		

Employed Features: MBH

Children-Robot Interaction: TD video - Rock Paper Scissors

A. Tsiami, P. Filntisis, N. Efthymiou, P. Koutras, G. Potamianos, P. Maragos, "Multi3: Multi-sensory Perception System for Multi-modal Child Interaction with Multiple Robots", *Proc. ICRA*, 2018.

Interspeech 2018 Tutorial: Multimodal Speech & Audio Processing in Audio-Visual Human-Robot Interaction

Part 3: Conclusions

Synopsis:

- Data collection and annotation: 28 TD and 15 ASD children (+ 20 adults)
- Audio-Visual localization and tracking
- 3D Object tracking
- Multi-view Gesture and Action recognition
- Distant Speech recognition
- Multimodal Emotion recognition

Ongoing work:

- Evaluate the whole perception system with TD and ASD children
- Extend and develop methods for engagement and behavioral understanding

Tutorial slides: http://cvsp.cs.ntua.gr/interspeech2018

For more information, demos, and current results: <u>http://cvsp.cs.ntua.gr</u> and <u>http://robotics.ntua.gr</u>

