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Abstract

In this work we deal with the problem of modelling and
exploiting the interaction between the processes of image
segmentation and object categorization. We propose a novel
framework to address this problem that is based on the com-
bination of the Expectation Maximization (EM) algorithm
and generative models for object categories. Using a con-
cise formulation of the interaction between these two pro-
cesses, segmentation is interpreted as the E step, assigning
observations to models, whereas object detection/analysis
is modelled as the M-step, fitting models to observations.
We present in detail the segmentation and detection pro-
cesses comprising the E and M steps and demonstrate re-
sults on the joint detection and segmentation of the object
categories of faces and cars.

Figure 1. Overview of our approach
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1 Introduction

Two major computer vision problems, image segmen-
tation and object recognition, have been traditionally dealt
with using a strict, bottom-up ordering [18]: first segments
are formed and subsequently recognition takes place. This
typically results in suboptimal segmentations and numer-
ous false detections; the cooperation of these two processes
however can result in enhanced performance (Synergy).

In this paper we present a probabilistic approach to mod-
elling and exploiting the interaction between these two
problems that is based on the Expectation Maximization
(EM) [10] algorithm, as shown in Fig. 1. EM is a well es-
tablished algorithm for maximum likelihood parameter es-
timation, and as we show in this work facilitates the coop-
eration of bottom-up and top-down processes in an elegant
and principled manner. We have systematically applied this
approach to two categories of images, faces and cars, and
obtained convincing results indicating its suitability for this
problem.

After briefly presenting previous work, in section 2 we
present our approach. In section 3 we describe the detec-
tion, segmentation and object analysis components of our
system and in section 4 describe in detail the application of
the EM algorithm. Experimental results are given in section
5.

1.1 Previous Work

Models that integrate high- and low-level processes of
vision have been proposed during the previous decade by
researchers in the biological vision community [27, 23, 25]
but only recently have such models been made practically
applicable to computer vision problems [30, 26, 6, 17, 9, 13,
22]. In order to clarify how our system relates to previous
research on the same area, we briefly present the work in
[30, 26, 6, 17] which lies closer to ours.
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The approach of Tu, Chen, Yuille and Zhu [26] performs
a stochastic search in the space of regions and hypotheses:
hypotheses are generated, merged, split or discarded using
bottom up proposals to guide the search while the regions
corresponding to these hypotheses are evolved according to
the region competition functional [31]. Our approach is mo-
tivated by similar ideas, since we use generative models to
explain portions of the image in terms of objects, but we
use the deterministic EM algorithm instead of the stochas-
tic search procedure proposed in [26]. Even though the EM
algorithm can get stuck in local minima, our experience
has shown that it performs reasonably well and is signifi-
cantly faster. Concerning the model’s architecture, we use
directly the outputs of a low-level segmentation algorithm,
thereby introducing an intermediate layer that drastically re-
duces the computational burden. Related ideas have been
proposed in [2] as being applicable to the model in [26].

An approach that uses the EM algorithm to perform an
object-specific segmentation of an image is the ‘sprites &
layers’ model of [14], where an E-step assigns observa-
tions to objects (‘sprites’) and updates the transformation
of a prototypical object and the M-step updates the object
parameters. In this work it is not finally decided whether
an object exists in the image, while the background model
is estimated from a fixed set of images, thereby introduc-
ing strong prior knowledge that may not be available in the
general setting.

The object representation of Borenstein & Ullman [6, 5]
and Leibe et al [17] uses codebooks of local appearance,
which are brought together to build a segmentation map as
shown in Fig. 2(b). It is known from the training stage
which pixels in the patch belong to the object and which to
the background, so this serves as a point of reference for
all segmentations that are compliant with the existence of
an object at a specific location. Codebook representations
are typically high dimensional, while the segmentation de-
pends on the ability to cover a large area of the object using
overlapping patches, rather than fitting a model to an image.

In another approach using the architecture of Fig. 2(b),
Xu and Shi [30] propose using an object-sensitive affinity
measure, and find a global minimum of the data partition-
ing cost. The affinity measure used leads to a grouping of
pixels based on both low level cues (absence of edges, sim-
ilarity) and high level knowledge. However, the absence of
a probabilistic interpretation impedes the cooperation with
other processes while the system does not eventually help
determine whether there is an object in the image.

2. EM Approach to Synergy

As in most top-down models of vision [24, 25, 26], in
our approach scene analysis is formulated as the estima-
tion of the parameters of a set of hypotheses that explain

(a) (b) (c)

Figure 2. Architectures for synergy (a) Our model (b)
Models of [30, 6, 17] (c) Models of [26, 14]. Edges denote
interactions leading to grouping.

an observed image. According to this analysis-by-synthesis
framework, models of objects are fit to the image, and to
each object is assigned that part of the image that it best
explains. This is a typical ‘chicken-and-egg’ problem for
which we use the EM-algorithm. We note here that the
use of the EM algorithm for image segmentation problems
is certainly not novel; it has been used previously for low
level problems like feature-based image segmentation or
layered motion estimation [28]. In this work we introduce
the EM algorithm as a natural and well-founded framework
to model the high level problem of the interaction between
object categorization and image segmentation.

Before presenting our approach we introduce notation
and the basic concepts with a brief review of the application
of the EM algorithm to the problem of parameter estimation
for a mixture distribution along the lines of [4].

2.1. EM algorithm for mixture modelling: Basic
Concepts

Assume we are given a set of N independent observa-
tions X = {X1, . . . , XN} which can be modelled by a
mixture of K distributions Pk(X|θk) with mixing weights
π1 . . . πK , considered known for simplicity. The log-
likelihood of the observations is given by:

log(P (X)) =
∑

n

log

(∑
k

πkPk(Xn|θk)

)
(1)

Maximizing this sum with respect to θk is intractable, since
a summation appears inside the logarithms. We introduce
for each observation n a vector of mutually exclusive hidden
binary variables Zn = {z1,n, . . . zK,n} s.t.

∑
k zk,n = 1,

with zl,n = 1 if Xn is due to cause l. The logarithm of
P (X,Z) for a fixed Z is then given by:

log(P (X,Z)) =
∑

n

∑
k

zk,n log (πkPk(Xn|θk)) (2)

For a set of parameters θ∗ the posterior distribution of Z is:

Rn,k = P (zn,k = 1|Xn, θ∗k) =
πkPk(Xn|θ∗k)∑
j πjPj(Xn|θ∗j )

(3)
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Input Image
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Face Support, iteration 1 Face Support, iteration 5 Face Support, iteration 40

Synthesis, iteration 1 Synthesis, iteration 5 Synthesis, iteration 40

(b) (c) (d)

Figure 3. Input image (a) and EM iterations (b) - (d). Top row: evolution of the support of the face hypothesis on a pixel-wise
basis (E-step). Bottom row: synthesis results, using the above supports (M-step).

Using Eqn. (3) the expectation of the expression in Eqn. (2)
becomes:

EZ(log(P (X,Z|θ))|θ∗k)=
∑
n,k

Rn,klog (πkPk(Xn|θk)) (4)

This last expression can be directly optimized with respect
to θk since the summation is outside the logarithm. The
EM algorithm amounts to repeatedly estimating the values
of Rn,k using θ∗ (E-step) and then maximizing Eqn. (4)
w.r.t. θ (M-step); this process consistently increases the log-
likelihood [10] and converges to a local maximum of Eqn.
(1).

2.2. Application to Synergy

We can apply the EM framework to the problem we ad-
dress by treating segmentation as the E-step, where the parts
of the image which belong to each object are assigned to it
and object analysis as the M-step, where the model param-
eters are fit to the data that it has occupied.

In order to clarify the main idea, we present how it works
using only one hypothesis H0 for the background and an-
other, H1 for the object. As in the EM algorithm, we intro-
duce two non-overlapping fields of hidden binary random
variables, Z0, Z1, corresponding to these two hypotheses.
For a set of parameters of the two models, we have a poste-
rior distribution R on Z; we will be referring to the support
of hypothesis k as the set Sk = {n : Rn,k = maxj Rn,j}.

For equal mixing weights the expectation of the log-
likelihood of the image I can then be written as:

EZ(log P (I, Z|θ)|θ∗) =
∑

n

∑
k=1,2

Rn,k log
(

1
2
Pk(In|θk)

)

where n indexes the image pixels. This leads to the follow-

ing EM scheme:

E : Rn,k =
Pk(In|θ∗k)∑

j=1,2 Pj(In|θ∗j )

M : θ∗k = argmaxθ

∑
n

Rn,kPk(In|θk)

We can see the result of alternatively applying these two
steps in Fig. 3: a location in the image proposed by a front-
end detection system is used to initialize the object’s sup-
port. Subsequently an initial synthesis of the object is es-
timated using this small area, which leads subsequently to
the assignment of a larger area to the object; in the E-step
information about neighboring labels is used to avoid the
emergence of wiggly boundaries. The synthesis and seg-
mentation gradually improve, converging to a solution that
adequately models a region of the image in terms of an ob-
ject.

2.3. EM for segments

The discussion up to now has dealt with the problem
pixel-wise, treating each pixel as a separate observation,
while the whole image is explained in terms of only two
models, object and background. This does not apply to
most practical situations where background regions are of
highly variable structure, so simple models rarely suffice
for the whole background. Another problem is that when
performing this hypothesis-competition process on a pixel-
wise basis many resources can be spent until an obviously
homogeneous image patch is passed from one hypothesis to
the other, while it is easier to get stuck in local minima.

In our approach we perform the competition process over
segments instead of pixels, as shown in Fig.2(a). This re-
sults on the one hand in robustness, since better background
models can be built over small image regions and on the
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other hand in increased efficiency since the computational
burden is lightened and local minima are avoided. The pre-
vious discussion about the EM algorithm can be repeated as
is, with the modification that the observations are not sin-
gle pixels but the whole content of a segment. This means
that the Rn,k that were previously estimated on a per-pixel
basis are estimated at the level of segments, and are inher-
ited to the underlying pixels. Details about the how these
quantities can be estimated will be given in section 4.

3. Synergy System Components

Our system accepts as its bottom-up input an overseg-
mentation of the image and a set of locations proposed by
an object detection system. The components we have used
for bottom up segmentation and detection combine simplic-
ity and efficiency; we do not elaborate on these since other
models could be used as well, as long as we get an over-
segmentation of the image and few misses from the detec-
tor. Details will be given in a larger version of the paper.

3.1 Low Level Segmentation

The goal of this stage is to partition the image into re-
gions of pixels that should come together, whatever higher-
level object they may belong to. Accomplishing this step is
not trivial, but we can get acceptable results for our purpose
if we oversegment the input image.

Given that low-level segmentation on its own is not the
objective of this paper, we have experimented with efficient
segmentation algorithms and decided to use the morpholog-
ical watershed algorithm [3]. The boundaries of the image
are found using the Brightness-Gradient edge detector of
[19] and the regional minima of edge strength are used as
markers. Even though more elaborated image segmentation
schemes could be used they would add unnecessary com-
plexity to the overall system. We note that we have exper-
imented with different segmentation algorithms but found
no significant difference in overall performance.

3.2. Object Detection System

We experimented initially with the parts-based detection
system of [11] which relies on a Markov Random Field
(MRF) formulation for object detection and estimates the
object locations by efficiently performing message pass-
ing operations. After filtering the image with a multiscale
derivative-of-Gaussians filterbank, a set of probabilistic de-
tectors is used to estimate the probability Φ(ln) = P (F|ln)
of the filterbank outputs F being due to the existence of ob-
ject part n at location ln. Likely sets of locations of object

parts L = {l1, . . . , ln} are found at maxima of the quantity

P (F|I) =
∏
n

Φn(ln)
∏

n,m∈V

Ψn,m(ln, lm) (5)

where V denotes the set of vertices of the MRF, and the
clique potentials Ψn,m encode information about the rela-
tive positions of the object keypoints.

A drawback of this model is that it requires training with
hand-labelled keypoint data which are difficult to determine
for arbitrary object categories. We therefore experimented
with a simplification of the bottom-up part of the model in
[17], which uses an interest point operator to automatically
determine salient object points during training. A detailed
presentation of this method can be found in [17], so below
we only sketch how it works. During the training phase an
interest operator is used to pick up salient object parts and
a codebook of joint local appearance and figure-ground la-
bels is built along the lines of [1] by clustering the observa-
tions around the detected keypoints. When presented with a
new image the regions picked up by the interest operator are
matched to the codebook entries and vote for potential ob-
ject locations. For each hypothesized object a segmentation
map is built using the figure/ground masks of the codebook
entries that led to its detection.

A simplification we introduced was to cluster the key-
points based on both edge and intensity information using
a k-means procedure similar to [29], thereby obtaining a
compact codebook. The codebook used in [17] has more
than 103 entries while ours uses less than 50. Only a small
proportion of the object is covered using such a codebook,
but this is compensated by the global generative models we
use subsequently.

3.3 Morphable Models

A core idea of our approach is that generative models
can quantify how well a part of the observed image can be
explained by an object hypothesis; this leads to the assign-
ment of that part of the image to the object’s support. The
generative models for objects that we use are based on Ac-
tive Appearance/Morphable Models [16, 7, 20] which have
been successful in high level tasks like object recognition,
pose estimation etc. Our focus is on their probabilistic in-
terpretation which we review below.

Morphable models are based on separating the spatial
deformations and appearance variations of the images be-
longing to an object category, thereby reducing the ghost
effects of typical PCA analysis techniques [21]. Matching
an observed image I to a morphable model is phrased as the
minimization of

E(S, T ) =
∑
i∈PT

(I(S(i)) − Ti)
2 (6)
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where S (Shape) is a deformation that brings I into reg-
istration with the prototypical object, T (Texture) is the
shape-free prediction of the image appearance according
to the model and PT is the set of template pixels. S
and T are expressed in terms of the expansion coefficients
S = (s1, . . . , sNS ), T = (t1, . . . , tNT ) on a low dimen-
sional set of eigenvectors, S and T respectively:

S = S0 +
NS∑
i=1

siSi, T = T0 +
NT∑
i=1

tiTi, (7)

S0 and T0 being the mean shape and texture vectors. These
eigenvectors are found during a training phase using either
labelled data [7] or bootstrapping [16].

During the matching phase, the deformation S and syn-
thesis T are iteratively updated to minimize the above cri-
terion by performing gradient descent on S,T. This match-
ing process can be seen [8] as a maximum-likelihood es-
timation of the model parameters, by writing P (I) ∝
exp(−E(S, T )), so that the matching process converges
to a mode of P (I). By adding a penalty term on the ex-
pansion coefficients the matching process provides a max-
imum a posteriori estimate of the model parameters, since
the penalty acts like a prior term.

The likelihood of the data inside the object’s support can
be expressed as:

P (I|O) =
∫
S,T

P (I|S,T)P (S,T|O)dSdT (8)

Using a common series of simplifications, we assume ini-
tially that the integral is dominated by a small area around
the maximum location S∗,T∗ of the integrated function.
We also assume that the prior on the model parameters is
separable into two independent distributions over S and
T, and the noise process is considered independently dis-
tributed. The above expression is then proportional to

P (I|O) ∝
∏

i∈PT

P (Ii|S∗,T∗)P (S∗|O)P (T∗|O) (9)

Assuming the modelling error is an independent Gaussian
process and the distribution of the model parameters is a
Gaussian with diagonal covariance matrix, the logarithm
L = log P (I|O) of the above expression becomes:

L =
∑
i∈PT

(I(S(i)) − Ti)2

2σ2
i

+
NS∑
i=1

s2
i

2λSi

2 +
NT∑
i=1

t2i
2λTi

2 + c

(10)
where λSi

, λTi
are the variances of the model parameters

and c is a constant.
A noteworthy point is that in Eqn. (10) the reconstruc-

tion error variance σi is usually considered to equal a con-
stant; this is a strong assumption and does not account for

Figure 4. The variance of the reconstruction error for a
morphable model for cars and faces is larger at areas of high
complexity, like wheels and eyes, respectively.

the varying difficulty in modelling different object areas.
For example, cars have both large uniform areas like doors
which can be modelled well using as few as 2 or 3 eigen-
vectors and more difficult areas like wheels where a larger
modelling error is expected. We estimated the variance of
the reconstruction error by backward wrapping the mod-
elling error for each of the training images onto the model
template end estimating for each template point the error’s
mean square value across the training set. As can be seen
in Fig. 4 the variance of the error is far from homogeneous
across the template support. We observed experimentally
that using this spatially varying map gives better results dur-
ing the E-step.

4 E and M steps

Our system works by iteratively labelling image patches
as belonging to either objects or background, according to
how well each hypothesis explains their content. The back-
ground hypothesis assumes that the intensity distribution
can be modelled using a Gaussian distribution; this arguably
simple distribution can usually model adequately the obser-
vations within each segment. We describe below how the
EM-based approach to synergy applies to our system.

4.1 E-step: Object-Based Segmentation

In the E-step the object and background hypotheses com-
pete for the occupancy of image regions. The content IR of
region R is modelled by generative models, which means
that we have a term P (IR|Hk) for each hypothesis Hk;
these terms can be used to assign segments to hypotheses
in a soft manner, based on Bayes’ formula. It is natural
however that a global object model cannot describe the ob-
servations within each segment as accurately as the locally
determined background model. It is therefore necessary to
modify the straightforward application of the E-step so as
to make up for this imbalance. We therefore introduce a
penalty term on the increased number of parameters used
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by the background models in order to explain the same im-
age area with a global object model. The modified log-
likelihood of IR under hypothesis Hk can be written

L′(IR|Hk) = log Pk(IR|F ∗
k ) + log Pk(F ∗

k ) − Ck (11)

In the above expression F ∗ are the generative model param-
eters, which are the mean and deviation for the background
model and the shape and texture expansion coefficients for
the morphable model. Pk(F ∗

k ) is a prior on the model pa-
rameters and Ck is the coding cost for the model parame-
ters. The assignment of region IR to hypothesis k can then
be expressed according to the formula

P (Hk|IR) =
exp(L′(IR|Hk))∑
j exp(L′(IR|Hj))

(12)

Despite its simplicity this approach faces practical prob-
lems; for example the pixel observations are typically cor-
related and numerous, so the white Gaussian noise model
results in almost binary decisions leading easily to local
minima. Weighting terms should therefore be introduced
in Eqn. (11) to avoid overly basing our decision on pixel
intensity information.

After the introduction of weighting terms in the criterion
above, the posterior probability of IR belonging to hypoth-
esis 1 can be written as the output of a sigmoidal function:

P1 =
1

1+exp(
∑

j=1,2

αj log Pj(IR|F ∗
j )+βj log Pj(F ∗

j )+γjCj)

The weights αj , βj , γj of this expression have been es-
timated during the training phase using gradient descent,
maximizing the likelihood of the figure/ground labels for
the segments in the training set.

4.2 M-step - Parameter Estimation

In the M-step the parameters of the morphable models
are updated in order to model the areas of the image as-
signed to them during the E-step. This can be phrased
straightforwardly based on the probabilistic analysis of
morphable models of section 3.3 by modifying the data like-
lihood term in Eqn. (10) according to Eqn. (4):

L =
∑
i∈PT

R(S(i))
(I(S(i)) − Ti)2

2σ2
i

+
NS∑
i=1

s2
i

2λSi

2 +
NT∑
i=1

t2i
2λTi

2

(13)
In the above expression S(i) is the image pixel registered to
the template pixel i by S, and R(S(i)) equals the expected
value of pixel S(i) being assigned to the object hypothesis.
This is what has been estimated during the E-step.

This expression can be minimized using a simple modifi-
cation of the original matching equations [16], that weighs

by R(S(i)) the error terms involved in the parameter up-
date rules. Efficient algorithms like those in [20] can also
be applied with minor modifications.

An interesting point is how to incorporate other sorts of
information, like knowledge about the object location de-
rived during the detection process; this can constrain the
top-down matching process by exploiting the estimate pro-
vided by the bottom-up detection process [8]. These con-
straints can be incorporated in the parameter update rules
for both the original and the EM-based matching functional.

For example, the figure/ground label P (F |Hk) provided
by the codebook-based detection system of [17] can be con-
sidered as an observation that has to be explained by the ob-
ject’s shape. This can be expressed by modifying the origi-
nal likelihood function P (I|S,T) as

P (I, F |S,T) = P (I|S,T)P (F |S) (14)

where the image intensity and figure/ground labelling are
considered independent. The last term forces the deforma-
tions to satisfy the constraints imposed by the detection pro-
cess, namely the part of the image labelled figure by the de-
tection system should fall within the object’s support. This
term can be expressed as:

P (F |S) =
∏
P

P (FP |S) (15)

where FP is the figure-ground labelling at pixel P . The
product is over all pixels for which some observation
is available concerning their figure-ground labelling and
P (OP |S) is a generative model of the object’s support ob-
tained by deforming the template’s support using S. For
convenience we have used a Gaussian distribution, though
different models could probably be more appropriate.

When using the MRF-based detection system, the work
in [8] can be directly applied to force the detected keypoint
locations to be registered with the template keypoint loca-
tions.

5 Experimental Results

We have evaluated our approach on two object cate-
gories, namely faces and cars. For faces the MRF-based
detection system and the morphable model were trained
using 100 hand-labelled face images from the database in
[15], and the system was evaluated on the data set of [29].
For cars we used 40 manually segmented car images from
the database of [17] to learn the codebook-based detection
model; since no hand-labelled keypoints were available, we
used the bootstrapping algorithm in [16] with 35 of these
images. The system was evaluated on the data set of [1],
according to the criteria described therein. The prior distri-
butions on the model parameters as well as the reconstruc-
tion error variances shown in Fig. 4 were estimated using
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Figure 6. Top-down final segmentations of car and face images. By thresholding the E-step results at a fixed value, the parts of
the image belonging to the objects hypothesis are assigned to it. Please see in color on screen.

(a) (b) (c) (d)

(e) (f) (g)

Figure 5. Use of segmentation information for of object
analysis: Top row: (a) Input Image (b) face synthesis, using
EM (c) E-step results, indicating the hair as occluding part
of the face (d) face synthesis with the same algorithm, but
using no E-step-based weighting term. Bottom row: (e)-(g):
same as (a)-(c) above: the regions occluding the object are
correctly classified as belonging to the background.

200 images from the test sets, that were not included in the
evaluation set.

In Fig. 5 we see the importance of using segmentation
information during the model fitting process: for the face
on the top row our model automatically determines that the
hair on the forehead occludes the face region and accurately
synthesizes the object’s face. Ignoring the segmentation in-
formation the synthesis results deteriorate, since the object’s
forehead would have to be heavily deformed in order to oc-
cupy a thin bright strip and the matching algorithm there-
fore converges to an alternative suboptimal solution. Along
the same lines, in the bottom row we can see that our sys-
tem successfully separates the part of the image belonging
to the object from the occluding regions. Its appearance is
synthesized based only on the parts of the image that are
assigned to it.

In Fig. 6 we view some top-down segmentation results

for faces and cars which validate our system’s ability to seg-
ment objects of varying shape and appearance. We show
the border of the region that is obtained by thresholding
the results of the E-step for the object corresponding to the
strongest bottom-up detection result. We observed that ap-
plying the EM algorithm to object hypotheses correspond-
ing to false positives typically results in lower E-step values,
indicating that the generative model cannot explain well the
corresponding image area.

In order to systematically validate the claim that the joint
treatment of the two tasks actually helps detection and not
only segmentation, we have performed a face detection task
on the database of [29] and a car detection task on the
database provided by [1]. We used our system’s bottom-
up detector outputs and applied the EM-algorithm on the
strongest proposed hypotheses. The score for each object
was set proportional to the evidence received from the im-
age in favor of its hypothesis, estimated in terms of the sum
over the object’s support of the corresponding E-step re-
sults. The scores of the bottom-up detection process and
the top-down support were normalized to lie in [0, 1] and
their average was taken to fuse their results. We show
in Fig. 7 the Receiver Operating Characteristic/Precision-
Recall curves of these three detection systems, along with
the typical performance measures used for these tasks in
related publications [1, 17, 29, 12]. Specifically, for the
fused system the F -measure in the car detection task equals
.91 while the Equal Error Rate for face detection is equal
to 89%; the individual systems have lower performance in
both cases. Even though we have not focused on the object
detection part of our work, these results are only slightly in-
ferior to the current state-of-the-art (e.g. [17],[12]). We
consider it however more important that the use of top-
down information consistently improved the performance
of a baseline bottom-up detection system, demonstrating
that these two streams of information can complement each
other. Similar conclusions have been drawn from a car de-
tection task in [17].
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Figure 7. Precision-Recall Curves for car detection, ROC
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Equal Error Rate values. Please see text for details.

6 Conclusions - Future Work

In this paper we have addressed the problem of the joint
segmentation and analysis of objects, casting it in the frame-
work of the Expectation-Maximization algorithm. This of-
fers a sound mathematical basis for a recently opened prob-
lem and helps clarify some of its aspects. Based on the EM
algorithm we have built a system that has the potential to
segment in a top-down manner images of objects belong-
ing to highly variable categories. Efficiency and simplicity
are two major advantages of our approach, which we have
shown to be able to cooperate in a modular manner with the
bottom-up processes of detection and segmentation.

In future work we wish to extend our approach to ar-
ticulated objects by combining graphical models for object
representation with the EM algorithm. It is also interesting
to examine how low-level affinity information can be com-
bined with top-down information in the E-step, as has been
accomplished in the non-probabilistic framework of [30].
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