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1. Introduction 
● Motivation: The task of music source separation, i.e., decomposing a musical piece 

into its vocal or instrumental components, can aid in music representation learning:
○ Particular timbral or semantic attributes are mostly tied to different sources.
○ Features learned by separation networks might also contain high-level information.

● Contribution: A two-stage framework for music classification tasks:
○ Pre-train a U-Net frontend on music source separation.
○ Connect a classification backend to the U-Net, and finetune them jointly on the 

desired task.
● Experiments with two music classification datasets and two different backends:

○ Improved performance compared to 1) the bare backend, 2) the joint network 
without music source separation pre-training.

○ The increased performance can be traced to specific source-related tags.

2. Methodology

The proposed framework employs a composite architecture, entailing a separation 
network, a classification backend and a feature adaptation module, inspired by [1]. 

● Separation Network: Convolutional U-Net network, based on [2]:
○ STFT magnitude as network input. 
○ Contractive Path (Encoder): 6 blocks, with 2 convolutional layers and max pooling.
○ Expansive Path (Decoder): Symmetric to the encoder, contains transposed 

convolutions and upsampling layers. Connected to the encoder via skip connections.

● Classification Backend: Experiments with two different architectures:
○ Short-Chunk CNN [3]: 7 convolutional blocks with 2 layers in each block, followed by 

a 2-layer MLP for classification.
○ Audio Spectrogram Transformer (AST) [4]: Input patchfied into 16x16 patches, 

using a 48x8 grid. 12 Transformer blocks, linear layer for classification
■ ImageΝet weights used for Transformer initialization.

● Input internally transformed into the mel scale (128 bands).

● Adaptation Module: Convolutional layers that change the dimensionality of the expansive 
features, propagating them to the classification backend.
○ CNN: Convolutions with 1x1 kernels and max pooling across the frequency dimension 

before feature summation, before each convolutional block.
○ AST: Intermediate representations are patchified, with appropriate kernels to align 

them with the internal AST resolution (48x8 grid), and inserted into the AST every two 
Transformer blocks.

● Training Scheme: We devise a three-stage training protocol:
○ Pre-train the U-Net with a music source separation objective.
○ (Optionally) pre-train the classification backend in the target task until convergence.
○ Jointly finetune the complete network at the desired task.  

3. Experimental Setup
U-Net Pre-Training:

● Dataset: musdb18
○ 150 songs, sampled at 44.1 kHz, total duration of approx. 10 hours.
○ Apart from the full tracks, contains vocal, drum, bass and melodic accompaniment 

stems. 
● U-Nets pre-trained for all uni-source cases, as well as multi-source separation.

Downstream Training:
● Music auto-tagging: Magna-Tag-A-Tune (MTAT)

○ 25,863 29-sec song excerpts, sampled at 16 kHz (duration: 210 hours)
○ 50 most frequent tags commonly used as a classification benchmark.
○ Multi-class classification problem → BCE loss, ROC-AUC/PR-AUC as metrics.

● Genre classification: Free Music Archive (FMA, medium subset):
○ 25,000 30-sec song excerpts, sampled at 44.1 kHz (duration: 208 hours)
○ Each excerpt is annotated with 1 out of 16 root genres.
○ Binary classification problem → CCE loss, weighted accuracy (%) as the metric.

Data Preprocessing:
● All audio were resampled to 16 kHz for compatibility purposes.
● STFT computation parameters: 512-sample window length, 160-sample hop size.

4. Results & Discussion
● We compare our framework, over various source pre-training configurations, to the 

following baselines (standard training-validation-testing splits):
○ Bare classification backends (without the U-Net) – top row.
○ The proposed joint architecture, without a pre-training scheme – second row.

● Segment-level training and inference; per-excerpt results obtained via averaging.

Main Takeaways:
● Random initialization of the U-Net does not consistently improve performance.
● On the other hand, using a music source separation objective to pre-train the U-Net 

can lead to better results, according to the pre-training source:
○ The most consistent improvement is achieved for accompaniment separation.
○ Significant boost in auto-tagging for vocal separation → vocal-specific tags? 
○ Middling results for the multi-source case, contrary to self-supervised pre-training [5].

● AST appears to have a higher ceiling as a backend, in both datasets.

Impact of the training scheme (accompaniment separation, MTAT):
● CNN: Three-stage scheme → better results.
● AST: Better results via a two-stage scheme!

○ Pre-trained ImageNet weights provide a
robust starting point for training.

○ No inductive biases → overfitting?

● Per-tag differential for selected MTAT tags, for various separation pre-training objectives, 
between the proposed framework and the bare backend:

● Pre-training in particular sources can lead in increased tag-wise performance:
○ Tags related to attributes or the appearance of vocals mostly benefit from vocal 

pre-training.
○ Conversely, instrument tags report a slight performance drop.
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5. Conclusions
● Investigated the suitability of music source separation as a partial pre-training 

strategy for music classification models, in two different downstream tasks.
○ Improved performance over 1) bare classification backends and 2) non pre-trained 

composite architectures, for accompaniment and vocal (auto-tagging) separation.
○ Steerable to particular attributes, according to the pre-training sources.

● Future work:
○ Increase the pre-training scale using automatically estimated source excerpts. 
○ Explore in-domain pre-trained weights for the backend network.

Qualitative Analysis (MTAT):

● The baseline backend may mistake high- 
pitched instrumental parts for vocals, while 
the vocally pre-trained composite network is 
more confident about the absence of vocals.

● Conversely, some instances of sustained 
female notes will get detected by the vocally 
pre-trained network but discarded by the 
baseline backend.

Scan me for the 
source code and 
pre-trained models! 
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