Pre-Training Music Classification Models via Music Source Separation

EUSIPCO 2024

Christos Garoufis^{1,2,3}, Athanasia Zlatintsi^{1,2,3} and Petros Maragos^{2,3}

christos.garoufis@athenarc.gr, nancy.zlatintsi@athenarc.gr, maragos@cs.ntua.gr

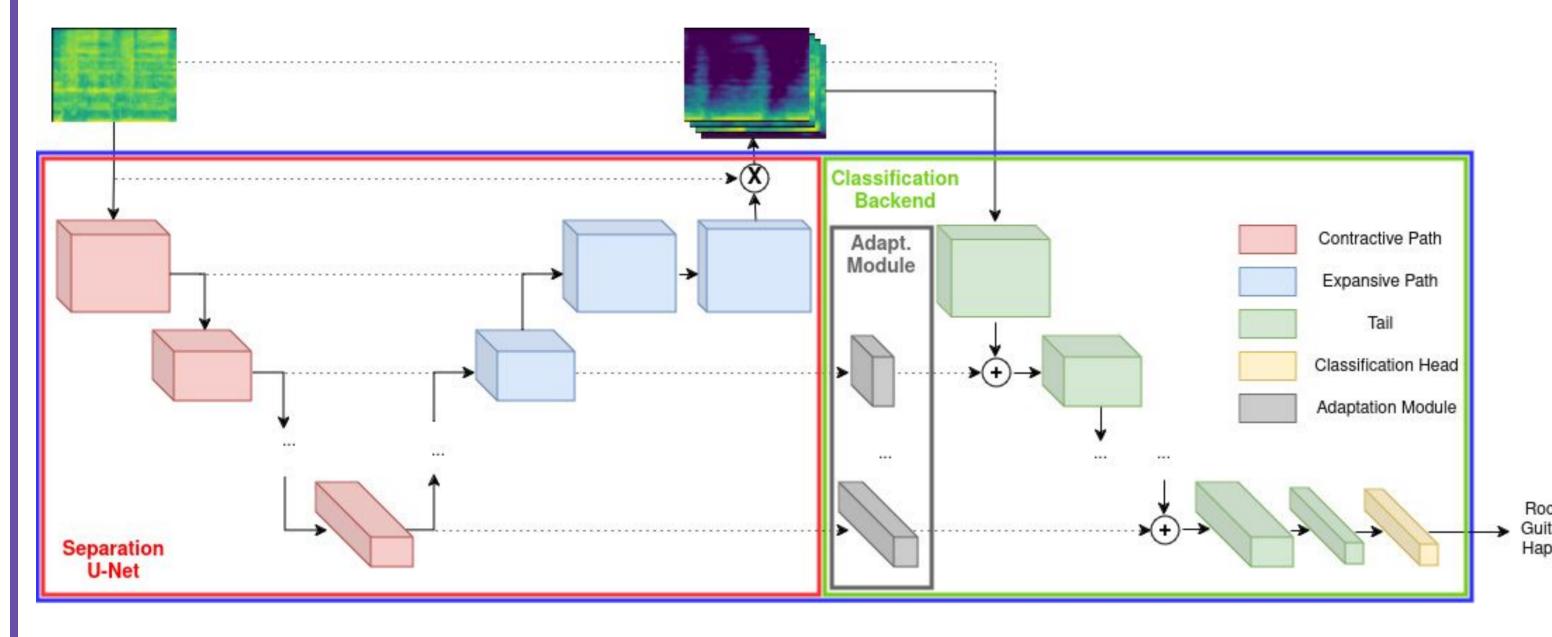


1. Introduction

- Motivation: The task of music source separation, i.e., decomposing a musical piece into its vocal or instrumental components, can aid in music representation learning:
 - o Particular timbral or semantic attributes are mostly tied to different sources.
 - o Features learned by separation networks might also contain high-level information.
- Contribution: A two-stage framework for music classification tasks:
 - Pre-train a U-Net frontend on music source separation.
 - Connect a classification backend to the U-Net, and finetune them jointly on the
- Experiments with two music classification datasets and two different backends:
 - Improved performance compared to 1) the <u>bare backend</u>, 2) the joint network without music source separation pre-training.
 - The increased performance can be traced to specific source-related tags.

2. Methodology

desired task.



The proposed framework employs a composite architecture, entailing a separation network, a classification backend and a feature adaptation module, inspired by [1].

- Separation Network: Convolutional U-Net network, based on [2]:
 - STFT magnitude as network input.
 - Contractive Path (Encoder): 6 blocks, with 2 convolutional layers and max pooling.
 - Expansive Path (Decoder): Symmetric to the encoder, contains transposed convolutions and upsampling layers. Connected to the encoder via skip connections.
- Classification Backend: Experiments with two different architectures:
 - Short-Chunk CNN [3]: 7 convolutional blocks with 2 layers in each block, followed by a 2-layer MLP for classification.
 - Audio Spectrogram Transformer (AST) [4]: Input patchfied into 16x16 patches, using a 48x8 grid. 12 Transformer blocks, linear layer for classification ■ ImageNet weights used for Transformer initialization.
- Input internally transformed into the mel scale (128 bands).
- Adaptation Module: Convolutional layers that change the dimensionality of the expansive features, propagating them to the classification backend.
 - CNN: Convolutions with 1x1 kernels and max pooling across the frequency dimension before feature summation, before each convolutional block.
 - AST: Intermediate representations are patchified, with appropriate kernels to align them with the internal AST resolution (48x8 grid), and inserted into the AST every two Transformer blocks.
- <u>Training Scheme:</u> We devise a three-stage training protocol:
 - Pre-train the U-Net with a music source separation objective.
 - (Optionally) pre-train the classification backend in the target task until convergence.
 - Jointly finetune the complete network at the desired task.

4. Results & Discussion

- We compare our framework, over various source pre-training configurations, to the following baselines (standard training-validation-testing splits):
 - Bare classification backends (without the U-Net) top row.
 - The proposed joint architecture, without a pre-training scheme second row.
- Segment-level training and inference; per-excerpt results obtained via averaging.

			CNN Backend			AST Backend		
U-Net	Pre- Training	Source(s)	MTAT		FMA	MTAT		FMA
			ROC-AUC	PR-AUC	WA (%)	ROC-AUC	PR-AUC	WA (%)
X	75	0.40	91.47 ± 0.03	46.50 ± 0.11	66.30 ± 0.31	91.65 ± 0.05	46.82 ± 0.20	67.22 ± 0.25
/	X	-	91.38 ± 0.08	46.32 ± 0.35	66.53 ± 0.13	91.58 ± 0.04	46.77 ± 0.12	67.10 ± 0.61
/	/	Bass	91.45 ± 0.08	46.48 ± 0.18	66.58 ± 0.24	91.69 ± 0.08	47.00 ± 0.24	67.89 ± 0.31
/	/	Drums	91.47 ± 0.07	46.68 ± 0.20	66.80 ± 0.19	91.57 ± 0.03	46.57 ± 0.20	66.11 ± 0.46
1	/	Other	91.59 ± 0.07	46.98 ± 0.13*	$67.14 \pm 0.12^*$	91.78 ± 0.12	47.49 ± 0.23	67.09 ± 0.33
1	/	Vocals	$91.85 \pm 0.03^*$	$47.16 \pm 0.17^*$	66.10 ± 0.41	$91.89 \pm 0.08^*$	47.21 ± 0.34	66.77 ± 0.14
1	/	Multiple	91.50 ± 0.02	46.65 ± 0.12	66.52 ± 0.21	$91.87 \pm 0.08^*$	47.31 ± 0.13*	67.40 ± 0.93

Main Takeaways:

- Random initialization of the U-Net does not consistently improve performance.
- On the other hand, using a music source separation objective to pre-train the U-Net can lead to better results, according to the pre-training source:
 - The most consistent improvement is achieved for accompaniment separation.
 - Significant boost in auto-tagging for vocal separation \rightarrow vocal-specific tags?
 - Middling results for the multi-source case, contrary to self-supervised pre-training [5].
- AST appears to have a higher ceiling as a backend, in both datasets.

Impact of the training scheme (accompaniment separation, MTAT):

- CNN: Three-stage scheme → better results. AST: Better results via a two-stage scheme!
- Pre-trained ImageNet weights provide a
- robust starting point for training. ○ No inductive biases → overfitting?
- Per-tag differential for selected MTAT tags, for various separation pre-training objectives, between the proposed framework and the bare backend:

ROC-AUC

 91.35 ± 0.15

 91.59 ± 0.07

PR-AUC

 46.15 ± 0.44

 46.98 ± 0.13

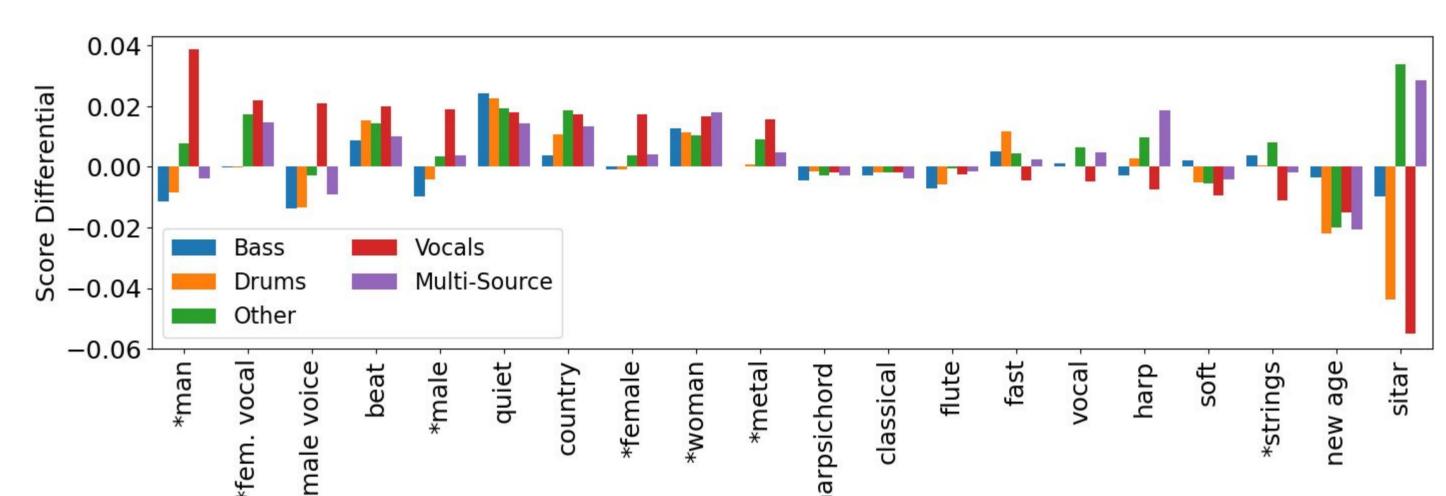
 46.58 ± 0.16

Backend Pre-Training

CNN

AST

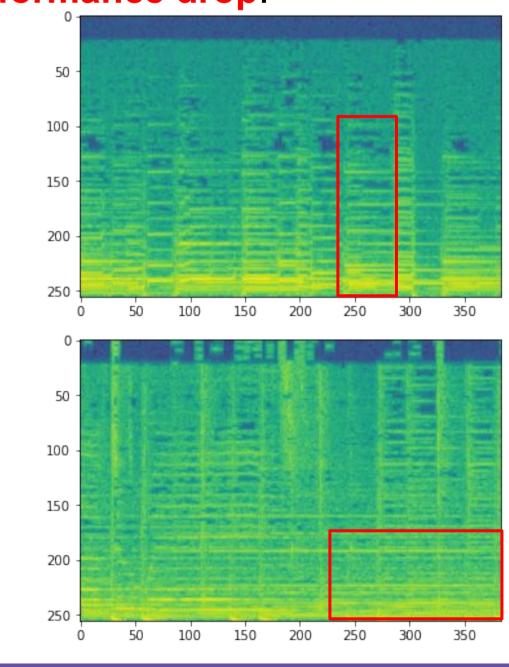
AST



- Pre-training in particular sources can lead in increased tag-wise performance:
 - Tags related to attributes or the appearance of vocals mostly benefit from vocal pre-training.
 - Conversely, instrument tags report a slight performance drop.

Qualitative Analysis (MTAT):

- The baseline backend may mistake highpitched instrumental parts for vocals, while the vocally pre-trained composite network is more confident about the absence of vocals.
- Conversely, some instances of sustained female notes will get detected by the vocally pre-trained network but discarded by the baseline backend.



3. Experimental Setup

U-Net Pre-Training:

- Dataset: musdb18
 - 150 songs, sampled at 44.1 kHz, total duration of approx. 10 hours.
 - Apart from the full tracks, contains vocal, drum, bass and melodic accompaniment stems.
- U-Nets pre-trained for all uni-source cases, as well as multi-source separation. **Downstream Training:**
 - Music auto-tagging: Magna-Tag-A-Tune (MTAT)
 - 25,863 29-sec song excerpts, sampled at 16 kHz (duration: 210 hours)
 - 50 most frequent tags commonly used as a classification benchmark.
 - Multi-class classification problem → BCE loss, ROC-AUC/PR-AUC as metrics. Genre classification: Free Music Archive (FMA, medium subset):
 - 25,000 30-sec song excerpts, sampled at 44.1 kHz (duration: 208 hours)
 - Each excerpt is annotated with 1 out of 16 root genres.
 - Binary classification problem → CCE loss, weighted accuracy (%) as the metric.

All audio were resampled to 16 kHz for compatibility purposes.

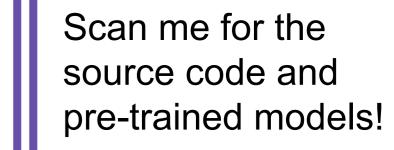
• STFT computation parameters: 512-sample window length, 160-sample hop size.

5. Conclusions

- Investigated the suitability of music source separation as a partial pre-training strategy for music classification models, in two different downstream tasks.
 - Improved performance over 1) <u>bare classification backends</u> and 2) <u>non pre-trained</u> composite architectures, for accompaniment and vocal (auto-tagging) separation.
 - Steerable to particular attributes, according to the pre-training sources.
- Future work:
 - Increase the pre-training scale using automatically estimated source excerpts.
 - Explore in-domain pre-trained weights for the backend network.

References

- [1] M. Velez-Vasquez et al., "Tailed U-Net: Multi-Scale Music Representation Learning", Proc. ISMIR 2022
- [2] Q. Kong et al., "Decoupling Magnitude and Phase Estimation with Deep Res-U-Net for Music Source Separation", Proc. ISMIR 2021
- [3] M. Won et al., "Evaluation of CNN-Based Automatic Music Tagging Models", Proc. SMC 2020 [4] Y. Gong et al., "AST: Audio Spectrogram Transformer", Proc. Interspeech 2021
- [5] C. Garoufis et al., "Multi-Source Contrastive Learning from Musical Audio", Proc. SMC 2023



Acknowledgements

Data Preprocessing: