Classical Guitar Duet Separation Using Guitar Duets:

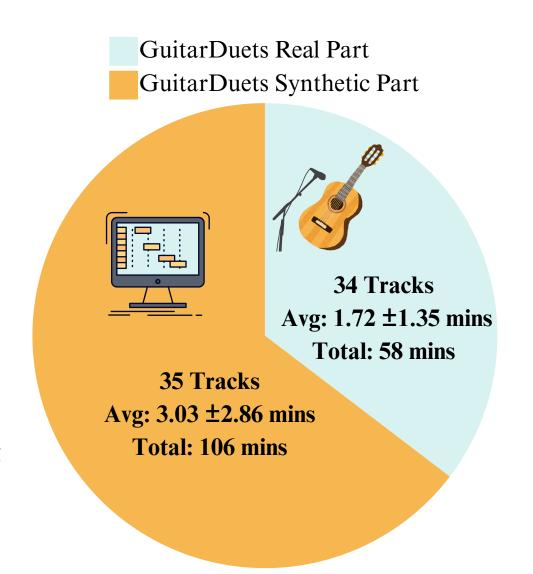
A Dataset of Real and Synthesized Guitar Recordings

Marios Glytsos¹³, Christos Garoufis¹²³, Athanasia Zlatintsi¹²³, Petros Maragos¹³

¹Robotics Institute, Athena Research Center, Athens, Greece ²Institute of Language and Speech Processing, Athena Research Center, Athens, Greece ³School of ECE, National Technical University of Athens, Athens, Greece mariosgly@gmail.com, {christos.garoufis,athanasia.zlatintsi}@athenarc.gr, maragos@cs.ntua.gr

Introduction

Music Source Separation (MSS) focuses on separating instruments from composite audio. Research typically targets multi-timbral separation, where instruments have distinct sounds (e.g., vocals, drums).


<u>Challenge:</u> In contrast, monotimbral MSS, deals with separating instrumental tracks of the <u>same type</u> (e.g. bowed strings, guitars), which poses a challenge due to the similar timbres of the instruments.

Contribution:

- Introduction of the GuitarDuets dataset, consisting of 3 hours of real & synthesized classical guitar duet stem recordings coupled with note-level annotations for the synthesized part.
- Cross-dataset evaluation using **DeMucs**, a state-of-the-art separation model.
- Exploration of score integration into the architecture, via a joint transcription-separation framework.

Dataset

- Real Recordings Guitar Duets (R):
 - Simultaneously recorded performances from 2 guitars.
 - Recording settings: Acoustically treated room, highquality (Presonus PM-2) microphone.
 - Timbral diversity ensured by using multiple guitars.
 - Independently recorded, bleeding-free testing set.
- Synthesized Recordings Guitar Duets (S):
 - Utilized MIDI scores and a variety of virtual instrument **plugins** → diverse timbral characteristics.

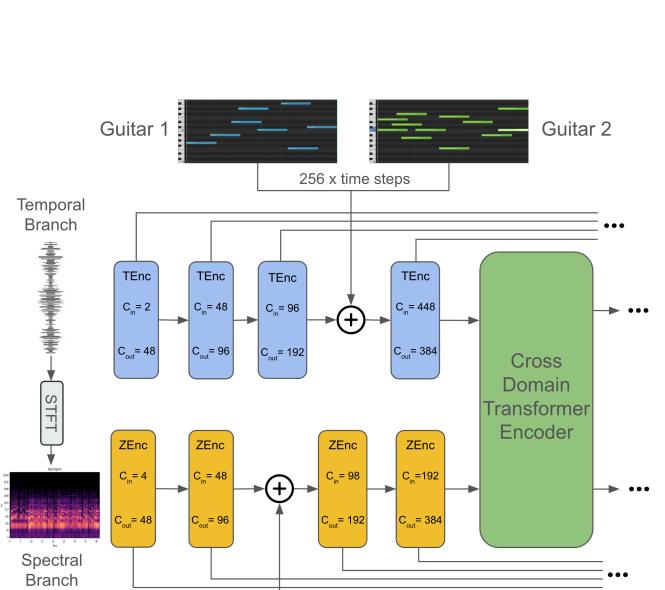
Datasets	Real Data Incl.	Monotimbral	Polyphonic	Note Annotations	Duration
musdb18	✓	×	✓	×	ca. 10h
MoisesDB	✓	Х	√	×	ca. 14.5h
URMP	✓	Х	√	✓	1h 6min
SLAKH	×	X	✓	✓	ca. 145h
EnsembleSet	×	✓	×	✓	6h 9min
GuitarSet	✓	✓	✓	✓	3h 3min
GuitarDuets	√	√	✓	Partial	2h 44min

Methodology

Separation Model:

• Hybrid Transformer DeMucs (HT-DeMucs) [1]: Combines U-Nets in temporal and spectral domains.

Joint Transcription-Separation Framework:


• Independent networks for transcription and separation purposes.

Transcription Network:

- Based on the Residual Shuffle-Exchange (RSE) network [2].
- Intakes combined audio from both guitars.
- Generates pianoroll estimates, separate for each guitar.

Separation Network:

- Adaptation of the baseline HT-Demucs model.
- Receives the generated pianoroll estimates as an external condition, along with the mixed audio.
- Creates separate audio outputs for each guitar.

Transcription model *

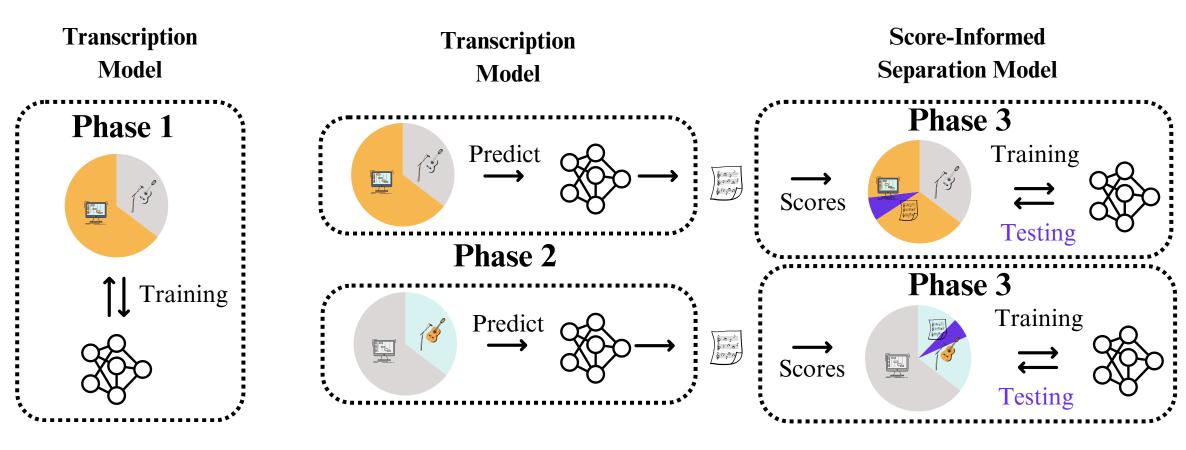
Transcribed

- Note Interdependencies: The transcription network captures patterns and interdependencies between notes and guitars.
- The separation model refines the output based on timbre, leveraging the transcription information to improve accuracy.

Loss Function: Permutation-invariant L1 loss: Addresses the challenge of separating monotimbral sources. Metrics: SDR, SI-SDR, SIR, SAR between the estimated guitar tracks and the ground truth audio.

Acknowledgments

This research was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "3rd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers" (Project Number: 7773). For more information: https://i-mreplay.athenarc.gr/


Experimental Setup

Cross-Dataset Experiments: Conducted using various combinations of Guitar Duets(R), GuitarDuets(S), and GuitarSet [3] using HT-DeMucs; test results correspond to GuitarDuets(R)

Joint Transcription and Separation Experiments:

First Experiment: Experimented with GuitarDuets(S) to determine the optimal branch of Demucs for inputting note-level annotations using ground truth labels.

Second Experiment: 1) Trained a transcription model on GuitarDuets(S) using its ground-truth annotations, 2) Used it to generate transcript estimates on both GuitarDuets(S) and GuitarDuets(R) and 3) Utilized the estimated transcripts as auxiliary information for separation in both subsets.

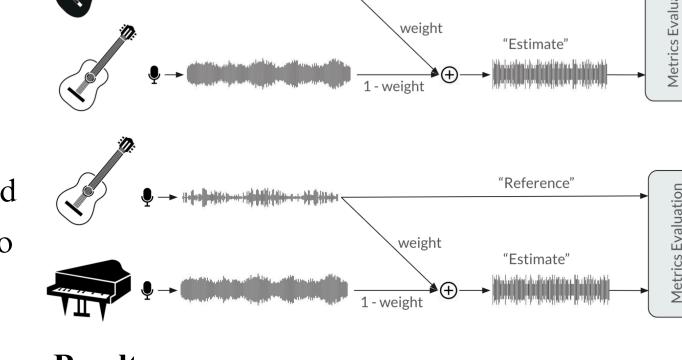
Results & Discussion

Cross-Dataset Evaluation:

Se	Metrics					
GuitarDuets(R)	GuitarDuets(S)	GuitarSet	SDR	SI-SDR	SAR	SIR
√	✓	✓	2.566	0.262	4.866	7.631
✓	Х	✓	2.941	1.021	10.191	6.952
X	✓	✓	2.815	-0.018	8.248	7.560
X	X	✓	3.005	1.337	7.152	8.145
X	✓	×	1.836	-1.098	6.357	6.359
✓	X	X	2.983	0.019	4.526	7.643
√	✓	X	3.401	0.591	4.692	7.905

- Combining real and synthesized data from GuitarDuets leads to the highest SDR scores.
- Artifact introduction when mixing different domains/datasets due to structural differences.

Score-Informed Evaluation:


Dataset	Note Labels	Branch Conditioning		Metrics			
Dataset	Note Labels	Time	Frequency	SDR	SI-SDR	SAR	SIR
	Ground Truth X X X X X X X X X X X X X X X X X X	X	2.572	-0.039	3.973	9.256	
GuitarDuets(S)		✓	Х	4.404	1.595	4.085	10.352
Guitai Ducis(S)		Х	✓	3.924	1.442	4.068	9.703
		√	✓	4.790	1.766	4.339	11.309

- Ground-truth note labels: Significant metric improvement, especially regarding SIR.
- Better results when conditioning on both DeMucs branches.

			O 11.1	T	3.7	•		
Dataset	Note Labels	Branch Conditioning		Metrics				
Dataset	Note Labels	Time	Frequency	SDR	SI-SDR	SAR	SIR	
GuitarDuets(S)	Estimated	✓	✓	2.696	-0.057	3.271	8.845	
Guitar Ducts(5)	None	X	X	2.572	-0.039	3.973	9.256	
GuitarDuets(R)	Estimated	✓	✓	3.174	0.531	4.818	8.100	
Outtai Ducts(IX)	None	X	Х	2.983	0.019	4.526	7.643	

- Evident improvement in all metrics when using estimated transcripts on GuitarDuets(R).
- Slightly deteriorated performance in $GuitarDuets(S) \rightarrow reduced generalization of the transcription$ model?

Comparison to SOTA?: Most studies focus on distinct instruments, making direct comparison of our results difficult due to the timbral similarity of the guitars.

Thus, (SI-)SDR values were calculated for normalized artificial guitar-guitar (monotimbral) and guitar-piano (multitimbral) mixtures, mixed at varying ratios a.

SDR for Guitars vs Different Instruments SI-SDR for Guitars vs Different Instruments Different Instruments -4.56-10.48-16.400.6 Mixing Ratio

Results:

- Higher SDR/SI-SDR values for guitar mixtures than for different instruments.
- SDR value of 5 required a approx. 0.8 for multitimbral but 0.6 for monotimbral, showing timbral similarity affects metric accuracy.

Conclusions & Future Work

- Presented the GuitarDuets dataset for the task of mono-timbral music source separation.
- Note-level information can aid separation through a joint transcription-separation framework, when integrated within a permutation-invariant training scheme...

Future Work:

- Expand the size of the dataset, by both recording and synthesizing additional data.
- Explore different architectures and conditioning methods for the joint framework.

References

[1] Rouard, Simon, Francisco Massa, and Alexandre Défossez. "Hybrid transformers for music source separation.", in Proc. ICASSP 2023. [2] Andis Draguns, Emils Ozolins, Agris Sostaks, Matiss Apinis, and Karlis Freivalds. "Residual shuffle-exchange networks for fast processing of long sequences". CoRR, abs/2004.04662, 2020.

[3] Xi, Qingyang, et al. "GuitarSet: A Dataset for Guitar Transcription.", in Proc. ISMIR 2018.