

Exploring Polyphonic Accompaniment Generation using Generative Adversarial Networks

D. Charitou³, C. Garoufis^{1,2,3}, A. Zlatintsi^{1,2,3} and P. Maragos^{2,3}

danaecharitou@gmail.com, christos.garoufis@athenarc.gr, nancy.zlatintsi@athenarc.gr, maragos@cs.ntua.gr ¹Institute of Language and Speech Proc., Athena Research Center, Athens, Greece ²Institute of Robotics, Athena Research Center, Athens, Greece ³School of ECE, National Technical University of Athens, Athens, Greece

Non self-taught

For more information: https://i-mreplay.athenarc.gr/

1. Introduction

Motivation & Goal: designing a generative framework for symbolic multi-track music generation that is structurally flexible and adaptable to different musical configurations:

- Unconditional Generation: Generation of multi-track symbolic music from scratch.
- **Conditional Generation**: Generate the multi-track accompaniment, given a single track.

Contributions:

- Proposition of structural improvements upon the unconditional MuseGAN architecture [1].
- Extension of this framework to a cooperative human-Al setup for the generation of polyphonic accompaniments to user-defined tracks:
 - Exploration of multiple structural variants and training schemes
 - Two different candidate conditional instruments: piano and guitar.
- Evaluation of the produced samples for both cases

4. Objective Evaluation

Unconditional Generation (comparison to baseline/MuseGAN)

				EB				U	PC			Q	N		DP			TD	(\downarrow)		
Instruments		В	D	G	Р	S	В	G	Р	S	В	G	Р	S	D	B-G	B-S	B-P	G-S	G-P	S-P
training data	baseline	8.06	8.06	19.4	24.8	10.1	1.71	3.08	3.28	3.38	90.0	81.9	88.4	89.6	88.6	-	-	-	-	-	-
	ours	1.6	1.1	4.1	5.1	3.2	2.48	4.16	4.2	4.57	91.7	85.3	89.7	89.7	83.1	-	-	-	-	-	-
Baseline	jamming	6.59	2.33	18.3	22.6	6.10	1.53	3.69	4.13	4.09	71.5	56.6	62.2	63.1	93.2	1.56	1.60	1.54	1.05	0.99	1.05
	composer	0.01	28.9	1.34	0.02	0.01	2.51	4.20	4.89	5.19	49.5	47.4	49.9	52.5	75.3	1.37	1.36	1.30	0.95	0.98	0.91
	hybrid	2.14	29.7	11.7	17.8	6.04	2.35	4.76	5.45	5.24	44.6	43.2	45.5	52.0	71.3	1.34	1.35	1.32	0.85	0.85	0.83
	ablated	92.4	100	12.5	0.68	0.00	1.00	2.88	2.32	4.72	0.00	22.8	31.1	26.2	0.0	-	-	-	-	-	-
Ours	C_1	0.0	0.7	0.4	1.3	1.2	3.63	4.67	4.64	5.29	55.6	75.8	74.1	75.9	59.5	0.2	0.22	0.2	0.21	0.2	0.21
	C_2	0.3	0.0	0.9	1.9	2.1	2.89	4.4	4.88	5.14	59.0	58.2	57.2	60.8	79.6	0.86	0.91	0.9	0.98	0.99	0.97

- Both models approximate adequately the statistics of the real distribution.
- QN and DP: our framework outperforms almost all baseline variations (colored cells).
- **TD**: C₁ surpasses all baseline architectures (generating harmonic samples)
 - Shared-private design helps in creating harmonically coherent tracks.

 objectively, using a set of widely used musical metrics, and 	• C_2 is weaker than $C_1 \rightarrow$ fine-grained resolution assists in the generative process.							
 <i>subjectively</i>, by conducting a listening test across 40 participants. The proposed modifications and experiments: in the unconditional case lead to auditory improvements over MuseGAN, and in the conditional case provide useful insights about the properties of the generated music. 	Conditional GenerationAutoEncoder Local DiscritPiano models:• 2-phase training (P_{10} and P_{11}) mostly benefits the note density (EB) of the generated samples. P_{00} P_{10} V - V P_{11} V V G_{00}							
 2. Methodology Data format: Multi-track pianorolls (binary matrices, rows ←→ notes, columns ←→ timesteps) Five tracks: Bass (B), Drums (D), Guitar (G), Piano (P), Strings (S) Unconditional model: a GAN model that generates musical phrases of variable length shared-private design for both Generator and Discriminator [3]. convolutional layers developed with respect to tonal/rhythmic parameters (i.e. bar lengths) Generator Discriminator Generator 	• Bass more sparse than the original (EB equal to 17.4%) for P_{10} • Local Discriminator (P_{01} and P_{11}) benefits tonality (SR, UP), fragmentation (QN) and polyphonicity (PR) of each track. Guitar models: • 2-phase training (G_{10} and G_{11}) benefits note density (EB) and tonality (UP, SR), • Local Discriminator: stronger harmonic relations between the tracks (TD), improving also rhythm (DP) and texture elements such as PR. • Carbon density (EB) and toral texture elements such as PR.							
Architecture of the unconditional model Conditional model: extension of the unconditional model to a co-operative setup.	 5. Subjective Evaluation: Listening Test 40 participants, recruited via social circles 							

shared/private design

Familiarity with ML and Al Years of Music Study Proficient

Male

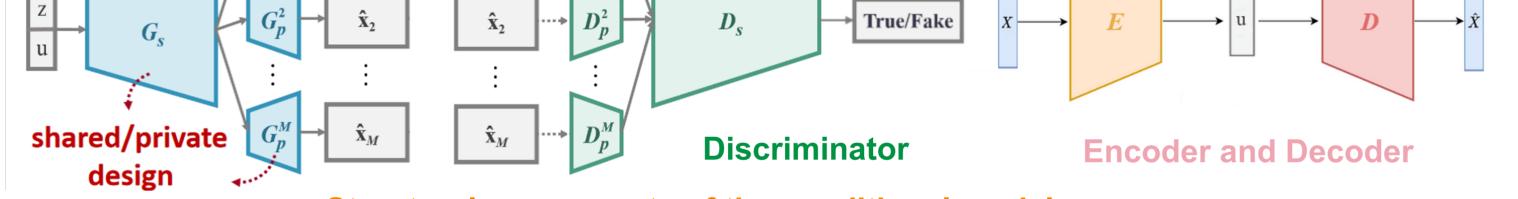
30 plus

22.5% 22.5%

65.0%

17.5% 5-7

Female



Structural components of the conditional model

Structural modifications:

Generator

- **Conditional Generator**: Generates 4 pianoroll tracks, which accompany the conditional one o comprises only 4 *private* subnetworks instead of 5.
- Conditional Discriminator
- **Global:** incorporates 5 *private* subnetworks and evaluates all 5 tracks collectively.
- Local: incorporates only 4 private subnetworks and evaluates only the accompaniment tracks as an independent musical composition.
- Encoder/Decoder module, produces embeddings of the conditional tracks
 - Decoder used only during training, to facilitate a reconstruction objective.

3. Experimental Setup

Dataset:

Lakh Pianoroll Dataset (174,154 multi-track pianorolls derived from the Lakh MIDI Dataset).

→ We employ the LPD-5-cleansed version, containing only the 5-track pianorolls with the higher matching confidence score to MSD entries [2], a "Rock" tag and 4/4 time signature.

Preprocessing:

- Temporal downsampling.
- Removal of notes outside the desired pitch range.
- Randomized selection of samples that contain an adequate amount of notes.
- Final dataset size: 15,600 phrases from 7,323 songs.

developed configurations, as well as real samples, in **triplets** (conditional track + two accompaniments)

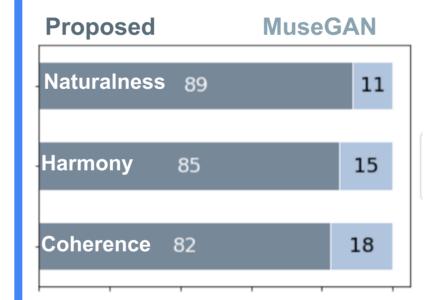
Conditional Generation: Comparison between our

• Unconditional Generation: Comparison to the

original MuseGAN configuration, in pairs.

Criteria: Music Naturalness, Harmonic Consistency, Musical Coherence

Unconditional Generation



 The proposed framework outperforms MuseGAN with respect to all the examined musical aspects.

Expert 5.0%

20-30 87.5%

>Improvement in Naturalness & Coherence is attributed to our parameterized architecture that emphasizes on rhythmical attributes. Stronger harmonic relations among the tracks and enhanced tonality as a result of the shared/private design.

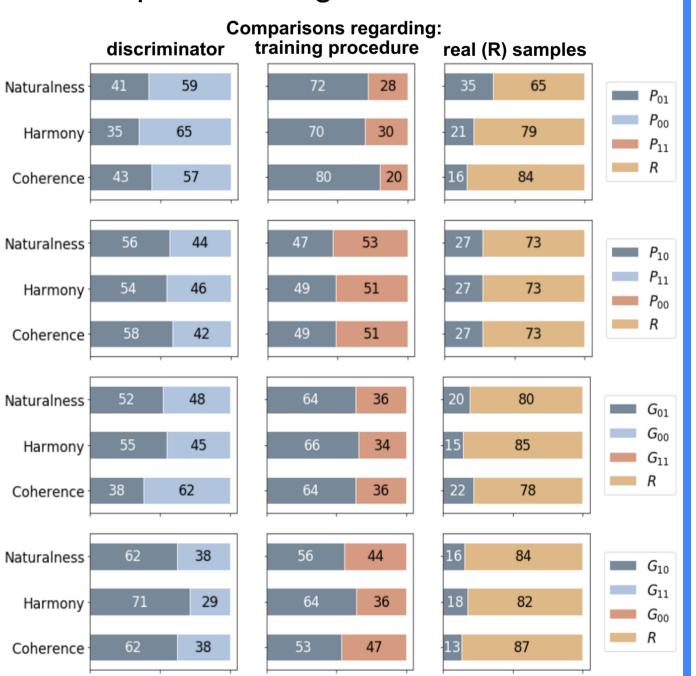
Conditional Generation

Piano models:

- Fake accompaniments are easily distinguishable
- P_{01} best compared to real on Naturalness (35%).
- P_{01} outperforms P_{11} with respect to all the examined musical aspects, especially **Coherence**.

Guitar models:

• Fake versions are easily distinguishable under all musical criteria (preference ranging from 13 to 20%). • G₁₀ outperforms G₀₀ and G₁₁ regarding all musical aspects (2-phase mode with Global Discriminator). • G_{01} surpasses G_{11} , indicating that the most suitable training practice for the architecture of both Discriminators is the 1-phase mode.



Training Protocol:

- Wasserstein-GAN loss function with gradient penalty: $\min_{G} \max_{D} \mathbb{E}_{\mathbf{x} \sim p_d}[D(\mathbf{x})] \mathbb{E}_{\mathbf{z} \sim p_z}[D(G(\mathbf{z}))]$ **Unconditional setup:** + $\mathbb{E}_{\mathbf{\hat{x}} \sim p_{\mathbf{\hat{x}}}} [(\|\nabla_{\mathbf{\hat{x}}} D(\mathbf{\hat{x}})\|_2 - 1)^2]$
- The training strategy is established on consecutive interchanges between k optimization steps of the Discriminator and one optimization of the Generator.

Conditional setup:

- Updating both Global and Local Discriminators during the same training steps.
- Aggregating their feedback for the optimization of the Generator.
- Encoder/Decoder (2 training modes):
 - o <u>1-phase training</u>: the Encoder is trained jointly with the GAN.
- <u>2-phase training</u>: the Encoder is pre-trained along with the Decoder (with a pianoroll reconstruction MSE loss and an embedding KL divergence loss).

Musical metrics: Empty Bars (EB), Used Pitch Classes (UPC), Qualified Notes (QN), Drum Pattern (**DP**), Tonal Distance (**TD**), Used Pitches (**UP**), Scale Ratio (**SR**), Polyphonic Rate (**PR**).

Configurations:

- **C1:** Pitch range: 84 notes, 24 timesteps/beat, 4 beats/bar (MuseGAN's generative setup)
- **C2**: Pitch range: 72 notes, 4 timesteps/beat, 4 beats/bar (lower resolution).

6.Conclusions

- Proposed a configurable generative framework capable of:
 - creating multi-track polyphonic musical phrases from scratch,
 - generating multi-instrumental accompaniments for human-composed tracks.
- Hierarchical shared/private design for both Generator and Discriminator modules.
- Objective and subjective evaluation:
- Outperform MuseGAN in the unconditional setup under 3 musical criteria.
- Provide useful insights on training and structural schemes for conditional setups.
- Future work: validate our findings on transformer-based architectures and use other feature representations.

References

[1] H.-W.Dong et al., "MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment", in Proc. AAAI 2018.

[2] T. Bertin-Mahieux et al., "The Million Song Dataset", in Proc. ICWWW 2012.

[3] H.-W. Dong and Y.-H. Yang, "Convolutional Generative Adversarial Networks with Binary Neurons for Polyphonic Music Generation", arXiv preprint arXiv:1804.09399, 2018.

Acknowledgements

This research was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "3rd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers" (Project Number: 7773).