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1. Introduction

Motivation & Goal: designing a generative framework for symbolic multi-track music
generation that is structurally flexible and adaptable to different musical configurations:

e Unconditional Generation: Generation of multi-track symbolic music from scratch.

e Conditional Generation: Generate the multi-track accompaniment, given a single track.

Contributions:

Proposition of structural improvements upon the unconditional MuseGAN architecture [1].
Extension of this framework to a cooperative human-Al setup for the generation of
polyphonic accompaniments to user-defined tracks:

o Exploration of multiple structural variants and training schemes
o Two different candidate conditional instruments: piano and guitar.
Evaluation of the produced samples for both cases
o objectively, using a set of widely used musical metrics, and
o subjectively, by conducting a listening test across 40 participants.
The proposed modifications and experiments:
o in the unconditional case lead to auditory improvements over MuseGAN, and
o in the conditional case provide useful insights about the properties of the generated music.

2. Methodology

Data format: Multi-track pianorolls (binary matrices, rows «—— notes, columns «—— timesteps)
e Five tracks: Bass (B), Drums (D), Guitar (G), Piano (P), Strings (S)
Unconditional model: a GAN model that generates musical phrases of variable length
e shared-private design for both Generator and Discriminator [3].
e convolutional layers developed with respect to tonal/rhythmic parameters (i.e. bar lengths)

Discriminator

Generator

% Generator: consists of a shared
network G, followed by M private
subnetworks G, each one
corresponding to one track.

* Discriminator: mirrors the structure of
the Generator: M private subnetworks
D,, one shared network D;.
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Architecture of the unconditional model

Conditional model: extension of the unconditional model to a co-operative setup.
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Structural components of the conditional model

Structural modifications:
« Conditional Generator: Generates 4 pianoroll tracks, which accompany the conditional one
o comprises only 4 private subnetworks instead of 5.
« Conditional Discriminator
o Global: incorporates 5 private subnetworks and evaluates all 5 tracks collectively.
o Local: incorporates only 4 private subnetworks and evaluates only the accompaniment tracks
as an independent musical composition.

. , produces embeddings of the conditional tracks
m Decoder used only during training, to facilitate a reconstruction objective.

3. Experimental Setup

Dataset:

Lakh Pianoroll Dataset (174,154 multi-track pianorolls derived from the Lakh MIDI Dataset).

- We employ the LPD-5-cleansed version, containing only the 5-track pianorolls with the higher
matching confidence score to MSD entries [2], a “Rock” tag and 4/4 time signature.

Preprocessing:

 Temporal downsampling.

 Removal of notes outside the desired pitch range.

 Randomized selection of samples that contain an adequate amount of notes.
* Final dataset size: 15,600 phrases from 7,323 songs.

Training Protocol:
e \Wasserstein-GAN loss function with gradient penalty: min maxEx.p, [D(x)] = Ez~p, [D(G(2))]
Unconditional setup: + B [([VD &)z — 1)?]
* The training strategy is established on consecutive interchanges between k optimization steps
of the Discriminator and one optimization of the Generator.
Conditional setup:
« Updating both Global and Local Discriminators during the same training steps.
« Aggregating their feedback for the optimization of the Generator.
. (2 training modes):
o 1-phase training: the Encoder is trained jointly with the GAN.
o 2-phase training: the Encoder is pre-trained along with the Decoder (with a pianoroll
reconstruction MSE loss and an embedding KL divergence loss).

Musical metrics: Empty Bars (EB), Used Pitch Classes (UPC), Qualified Notes (QN), Drum
Pattern (DP), Tonal Distance (TD), Used Pitches (UP), Scale Ratio (SR), Polyphonic Rate (PR).

Configurations:
e C1: Pitch range: 84 notes, 24 timesteps/beat, 4 beats/bar (MuseGAN'’s generative setup)

e C2: Pitch range: 72 notes, 4 timesteps/beat, 4 beats/bar (lower resolution).
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4. Objective Evaluation

Unconditional Generation (comparison to baseline/MuseGAN)

EB UPC QN DP ™D (])
Instruments B D G P S B G P S B G P S D B-G B-S B-P G-S G-P S-P
training data baseline | 806 8.06 194 248 10.1 | 1.71 3.08 328 338|900 819 884 89.6 | 88.6
ours 1.6 1.1 41 5.1 32 | 248 4.16 42 457 | 91.7 853 89.7 89.7 | 83.1 . - . - - .
jamming | 6.59 233 183 226 6.10 | 153 3.69 413 409 | 715 566 622 63.1 932|156 160 154 105 099 1.05
Baseline composer | 0.01 289 134 0.02 001 | 251 420 489 5.19 495 474 499 525|753 | 1.37 136 130 095 098 091
hybrid 214 297 11.7 178 6.04 | 235 476 545 524|446 432 455 520 713 | 1.34 135 132 085 085 083
ablated 924 100 125 068 000 1.00 288 232 472|000 228 31.1 262 | 0.0 - - - - - -
Ours o 00 07 04 13 12 |363 467 464 529 556 758 741 759 |595| 02 022 02 021 02 021
‘ Cy 03 00 09 19 21 289 44 488 514|590 582 572 608 796 08 091 09 098 0.99 097

« Both models approximate adequately the statistics of the real distribution.
QN and DP: our framework outperforms almost all baseline variations (colored cells).
« TD: C, surpasses all baseline architectures (generating harmonic samples)
o Shared-private design helps in creating harmonically coherent tracks.
» C, is weaker than C; — fine-grained resolution assists in the generative process.

Conditional Generation

AutoEncoder | Local Discriminator
Piano models: ]fjg(l) : .
« 2-phase training (P, and P,;) mostly benefits the note density | 7@ p, 7 :
(EB) of the generated samples. g“ < <
» Bass more sparse than the original (EB equal to 17.4%) for Pyo | gﬁf s 7
 Local Discriminator (P, and P4) G v v
beneﬁts tonality (SR’ UP)’ Instruments B D Eg P S B GUPCP S B G o P S B G o P S

Piano train 16 10 50 56 37247 409 419 45 |91.6 856 900 89.7 |271 568 585 6.71
Guitar train 1.8 09 43 52 36| 247 421 414 449 | 918 875 91.6 905 | 27 585 584 6.75

fragmentation (QN) and

polyphonicity (PR) of each oo 0.6 00 22 - 24271 393 - 433|514 565 - 589294 579 - 628
P 02 00 18 - 15[257 409 - 476|582 561 - 617|294 577 - 717
track. Pio 174 02 30 - 44168 39 - 43 [507 492 - 551|174 505 - 607
Pi 1.6 00 07 - 0925 419 - 516|548 566 - 510|284 543 - 713
Goo 0.8 00 - 21 18251 - 504 459625 - 493 603|277 - 731 6091
. . Gor 0.0 00 - 31 00305 - 431 528|576 - 524 596|336 - 618 7.69
Guitar models: Gro 1.6 00 - 18 35[235 - 428 401|502 - 595 586|259 - 613 588
- G 04 02 - 33 06232 - 462 466|556 - 478 579|246 - 64 6.68
« 2-phase training (G5 and G4,)

: i TD (]) SR PR DP
benefits note denSIty (EB) and Instruments || B-G B-S B-P G-S G-P S-P | B G P s | B D G P s D
: Piano train || - i i - i = [ 759 744 741 728 | 1.1 152 557 618 623 ] 829
tonallty (UP, SR)’ Guitar train || - - i - i - | 754 735 734 73108 155 597 610 626 | 850
e |_ocal Discriminator: Stronger Poo 0.82 083 088 087 095 094 817 758 - 77.1 | 12 133 406 - 442 86.1
) ] Py, 079 081 085 085 094 094 | 771 763 - 756 | 15 152 487 - 599 | 863
harmonic relations between Puo 0.74 073 0.81 094 102 1.01 |82 8.6 - 790|022 101 222 - 302 | 870
, , Pi 083 092 097 099 112 1.17 |80.7 776 - 723|19 97 382 - 563|862
the tracks (TD), Improving also Goo 0.83 085 09 096 10l 098|847 - 809 770 | LI 109 - 539 534|871
Got 0.87 087 0.83 093 092 0.86 | 867 - 836 839 |28 149 - 553 60.8 | 86.0
rhythm (DP) and texture Gio 0.84 084 084 093 095 089 | 820 - 798 854 |07 60 - 375 440|917
G 089 087 088 106 109 097 | 780 - 769 805 |09 97 - 421 544|837

elements such as PR. L

5. Subjective Evaluation: Listening Test

Age Gender Music Knowledge

e 40 participants, recruited via social circles

Selftaught
* Unconditional Generation: Comparison to the 2030 ale £ .
original MuseGAN configuration, in pairs. bsomus k'me
« Conditional Generation: Comparison between our | orwieioh
developed configurations, as well as real samples, otcens g

in triplets (conditional track + two accompaniments) -
* Criteria: Music Naturalness, Harmonic h
Novice f

Consistency, Musical Coherence
Unconditional Generation
* The proposed framework outperforms MuseGAN with respect to all the
examined musical aspects.
>|mprovement in Naturalness & Coherence is attributed to our
parameterized architecture that emphasizes on rhythmical attributes.
>Stronger harmonic relations among the tracks and enhanced
tonality as a result of the shared/private design.

Comparisons regarding:
training procedure real (R) samples

Years of Music Study
7-10

Competent

17.5% 57

Advanced
Beginner
3-5

Proposed MuseGAN

Naturalness 89

Harmony 85

Coherence 82

discriminator

Conditional Generation

] Naturalness 59 72 28 65 —
Piano models: b
. . . . . Harmony 65 70 30 79 p
* Fake accompaniments are easily distinguishable .
0 Coherence 57 80 20 84
* Py, best compared to real on Naturalness (35%). , 1] ‘ ,
* Py1 outperforms P, with respect to all the examined wawrness R @ 53 7 —
musical aspects, especially Coherence. I 5 - .
Coherence JEL 42 51 73 R
Guitar models: - | | - ' ,
* Fake versions are easily distinguishable under all Matralness 4 ol = —_
musical criteria (preference ranging from 13 to 20%).  #amony s o | o5 o
* G0 outperforms Gyy and G4 regarding all musical  conerence 62 64 78 R
aspects (2-phase mode with Global Discriminator). ' ' . ' L |
» Gy, surpasses G4, indicating that the most suitable ™" - - o = G
training practice for the architecture of both rarmony = = . G
. . . . R
Discriminators is the 1-phase mode. Coherence S| SO | [EERENNNGINN | ST

6.Conclusions

* Proposed a configurable generative framework capable of:
o creating multi-track polyphonic musical phrases from scratch,
o generating multi-instrumental accompaniments for human-composed tracks.
e Hierarchical shared/private design for both Generator and Discriminator modules.
* Objective and subjective evaluation:
o Outperform MuseGAN in the unconditional setup under 3 musical criteria.
o Provide useful insights on training and structural schemes for conditional setups.
« Future work: validate our findings on transformer-based architectures and use other feature
representations.
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