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Abstract

The 1-D nonlinear differential operator (f) = (11)2 If" has been recently introduced to signal processing
and has been found very useful for estimating the parameters of sinusoids and the modulating signals of
AM—FM signals. It is called an energy operator because it can track the energy of an oscillator source
generating a sinusoidal signal. In this paper we introduce the multidimensional extension (f) = 11V1112—

fV2f of the 1-D energy operator and briefly outline some of its applications to image processing. We
discuss some interesting properties of the multidimensional operator and develop demodulation algorithms
to estimate the amplitude envelope and instantaneous frequencies of 2-D spatially-varying AM—FM signals,
which can model image textures. The attractive features of the multidimensional operator operator and
the related amplitude/frequency demodulation algorithms are their simplicity, efficiency, and ability to
track instantaneously-varying spatial modulation patterns.

1 Introduction
In his work on nonlinear modeling of speech production [15, 16}, Teager developed a nonlinear differential
operator for 1-D continuous-time signals 1(t), defined as

(f)(t) [f'(t)]2 - f(t)f"(t) (1)

where f'Q = df/dt and f"() = d2f/dt2. The discrete-time counterpart of J' is the operator

d(I)(fl) f2(n)- f(n - 1)f(n + 1) (2)

for discrete-time signals 1(n). Both operators were first introduced systematically by Kaiser [4, 5]. 'J' is
an 'energy-tracking' operator because it can track the energy of simple harmonic oscillators that produce
sinusoidal oscillatory signals; this energy is proportional to both the amplitude squared and the frequency
squared of the oscillation. Hence we shall refer to J/ and J!d as the 1-D energy operators. Kaiser [5] found
the following properties of 1l: for any constants A, r, and wo and for any signals ,f and g

4c[ATt cos(wot + 0)] = A2r2tw (3)
P(fg) = f2W(g) + g2(f) (4)

The discrete operator also has similar properties [4]:

''d[Ar" cos(on + 9)] = A2r2' sin2(1o) (5)
Wd(fg) = f2Wd(g) + g2Pd(I) — Id(I)d(g) (6)

The energy operators are very efficient in instantaneously estimating the modulating signals of 1-D
AM—FM signals. Specifically, Maragos, Kaiser, and Quatieri [8, 10] have shown that the energy operators
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can approximately estimate the envelope of signals with amplitude modulation (AM) and the instantaneous
frequency of signals with frequency modulation (FM). For 1-D AM—FM signals

1(t) = a(t) cos{çi5(t)] (7)

that have a combined AM and FM structure, they have also found that the energy operator tracks the
energy product

I'[a(t) cos((t))} a2(t)',(t) (8)

where (t) = d(t)/dt is the instantaneous (angular) frequency. This approximate result is valid (i.e., the
approximation error is negligible) if the time-varying amplitude a(t) and frequency w(t) do not vary too
fast in time or too greatly compared with the carrier. Sufficient conditions for this are a small amount of
modulation and the amplitude and frequency modulating signals to be bandlimited with bandwidths much
smaller than the carrier frequency [8]. Further, by applying to the derivative f'(t) and combining the
energy output with (7) they also developed an energy separation algorithm (ESA) [9, 10] that separates
the energy product (7) into amplitude and frequency components. Thus the ESA fully demodulates the
AM—FM signal by estimating its amplitude envelope Ia(t)I and instantaneous frequency w2(t). Similar
results and algorithms have been derived for discrete-time AM—FM signals [8, 10].

In addition to the great promise of the energy operator and the ESA for communications applications
due to their efficiency for AM—FM demodulation, their major application so far has been the instantaneous
tracking of modulations in speech resonances. Motivated by several nonlinear fluid dynamic phenomena
during speech production, Maragos, Quatieri, and Kaiser [6, 7] have modeled speech resonances with AM—
FM signals. Another application of the energy operator is as an 'event detector'. For example, Quatieri,
Kaiser, and Maragos [13] applied the energy operator to detect transient signal signatures in the presence
of an AM—FM noise background. The effects of noise on the performance of the energy operator and the
ESA have been studied in detail by Bovik, Maragos, and Quatieri [2].

In this paper we introduce a multidimensional extension of W. First we derive many useful properties
of 1c and show how it can be used to estimate the parameters of multidimensional sinusoids. Then we
extend the analysis to multidimensional AM—FM signals, i.e., multidimensional sinusoids with spatially-
varying1 amplitude envelope and instantaneous frequencies. Specifically, we derive an algorithm (extension
of the 1-D ESA) that can demodulate a multidimensional AM—FM signal and estimate its envelope and
instantaneous frequencies. Bovik et al. [1] have demonstrated that such 2-D AM—FM signals can model
well image textures. Therefore, our AM—FM demodulation algorithms based on the multidimensional
energy operator are very promising for image texture modeling since they provide a simple and effective
way to estimate the model parameters.

For 2-D signals, if we replace the partial derivatives in with one-sample differences we obtain
a discrete-domain 2-D energy operator d, which is identical to the one developed in Yu, Mitra, and
Kaiser [17] for digital image edge detection, and also used in [11] for image enhancement. We repeat
the theoretical analysis for the discrete operator and derive a related discrete AM—FM demodulation
algorithm. The energy operators are then generalized to vector-valued signals using a similar framework
as in the multidimensional case. Finally, we briefly outline some of the applications of multidimensional
energy operators to image processing.

1Although we refer to a multidimensional signal argument as 'spatial', our discussion applies not only to images but
arbitrary signals.
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2 Continuous-domain Multidimensional Energy Operator
Let f(i5) be a v-D real-valued signal with a continuous argument £ = (x1 , . . . , x) RL , , 2, 3, .. . Then
we define the v-D energy operator by

(f)(a) IIVf(ã)II2 - f(ã)V2f(a) (9)

where
vf_(af of 10J —

is the gradient of f,

11vf112 = (f)2 + ... + (f)2 (11)

is the Eudidean norm squared of the gradient, and

v2f=_ (12)

is the Laplacian of f. From its definition it follows directly that we can express (f) as

(f) = tl()2 () = tl c,k(f) (13)

where
L (af\2 2fck(f) — ( I — I — (14)\UXkJ OXk

Thus the output of the is a sum of 'energy components '. Each energy component is the output of the
1-D energy operator applied along each one of the ii directions Xk. Hence, in analogy with the 1-D case,
we shall refer to 4' as the 'multidimensional energy operator'. Next we derive a few of its properties.

Let f(ã) and g() be two zi-D signals. Applying to their product yields a similar result as in the
1-D case. Specifically, since in general

V(fg) = gVf+fVg (15)
V2(fg) = gV2f + fV2g + 2(Vf). (Vg) (16)

where '.' denotes inner product, it follows that

4(fg) = f2(g)+ g2(f) (17)

For a multidimensional exponential signal, the output of the energy operator is identically zero:

c[exp (ckxk) I = (18)

where ck are arbitary constants. Combining this with (17) implies that we can extend all the results in this
paper to signals that contain an arbitrary constant scaling factor A and/or an exponential multiplicative
component because

[Aexp (ckxk) f()] = A2exp (2CkXk) [f(T)] (19)
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2.1 Cosines with Constant Amplitude/Frequencies

Applying to a v-D cosine
f(ãi) = Acos( • + 0) (20)

with constant phase offset 9, constant amplitude A, and constant frequency vector

(.c = (w,i, (21)

yields

[Acos( + 0)] = A2 (Wk) = A2IIII2 (22)

Thus, when is applied to a multidimensional cosine, it yields the product of the amplitude squared and
the frequency vector norm squared.

Now to estimate the individual ii + i parameters IAI,w,i, we also apply to the ii partial
derivatives

-. O[Acos(+O)] . -. -.fk(X) = f: = —Aw,k sin(w . x + 9) (23)
UXk

of the cosine f. Then, by (22),
1c(fk)@) = (Awc,k)2IIcJI2 (24)

for all k = 1, ..., v. By combining (22) and (24) we obtain the following v+ 1 equations for exact estimation
of the absolute amplitude and v frequencies:

- __ 25- N (f)
___________ (26)

r4c(-) 27— (f)
Al = ______________ (28)J()

We call the above equations the multidimensional continuous energy separation algorithm (CESA). They
are an extension of the 1-D CESA developed in [9, 10].

2.2 AM—FM Signals
Consider the real-valued v-D AM—FM signal

f(x) = a() cos[c5()] (29)

where a(s) is a spatially-varying amplitude, q) is the phase signal,

V()=(w1(),...,w,,(ã)) (30)

180 / SPIE Vol. 1818 Visual Communications and Image Processing '92

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/21/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



is the spatially-varying v-D instantaneous frequency vector, and wk(x) is the k-th instantaneous angular
frequency signal (in radians/cycle). Assuming for each k that wk is non-negative, we can always express it
as

'k(X) = Wc,k + Wm,kq(X) (31)

where '-c,k 5 a constant center frequency, 'i() [—1, 1J is the k-th frequency modulating signal, and Wm,k
is the maximum deviation of k from its center value. Henceforth we assume that 0 <Wm,k � Wc,k.

Applying to I yields

{a cos()} = a2IIIl2 — a2 sin(2)V2 + cos2()c(a) (32)

For demodulation the desired term in (32) is a2IIII2. We view the rest of the terms as approximation
error and show next that they are negligible under realistic assumptions.

Assume that a(s) is bandlimited in a circular frequency sphere of radius Wa . Namely, if A('iZ) is its v-D
Fourier transform, then A(iZ) = 0 for i7f > Wa. Then if we define the mean spectral absolute value of a as

a (2La L IA()Idui...du (33)

it can be shown that for each k

Ia@')I � amax /a (34)

:c Wa/la (35)

� Wa1a (36)

Ic@1)@)I � 2w (37)

where amax = sup Ia@)I. Assume also that each frequency signal wk(x) is bandlimited with bandwidth
Wf,k < Wc,k. Then we can consider the approximation

{acos(4)} a2IIJI2 (38)

with an approximation error
E(i) = [acos(4)] — a2IIII2 (39)

that is bounded by

IE()I � (2w + + 1wm,kwf,k1Lqk) i (40)

since
(Jy

2 =Wmk
ôXk ax?,

Assuming that amax i-La (which is true with equality if a is a cosine or has linear Fourier phase), the
realistic conditions

Wa <<mm W,/ç and Wm,kWf,k << (Wc,ic) Vk (42)

make the maximum absolute value of the error E much smaller than the maximum absolute value of the
desired term. Thus, under such conditions, the approximation (38) is valid in the sense that the relative
error is << 1. Note that conditions (42) imply that the amplitude and frequency signals do not vary too
fast in space or too greatly compared with the carriers.
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Now let us apply c to the partial derivatives

9f Oa
-s——

—
-i;---— cos(4)

— aw sin(çi) (43)
UXk UXk

Due to (42) the second term in aa/axk has a much larger order of magnitude of its maximum absolute
value compared with the first term. Thus we approximate ôf/LIxk —awj sin(çb) and apply (38) to obtain

c() {awksin(q5)] a2wIIIl2 (44)

for each k. Combining this equation and (38) yields the following CESA

T(L)
\J 4C1;)1

Wi(s) (45)

__________ (46)

I Ox1, (47\ cI(f)(f)
a(x)I (48)

\ftic ()
This algorithm can estimate at each location the amplitude envelope and instantaneous frequencies of
the spatially-varying AM—FM signal.

3 Discretespace Energy Operator for Image Signals
In general, if we replace derivatives in 4 with one-sample differences we obtain a discrete-space energy
operator. For notational simplicity, we restrict our discussion to 2-D signals, e.g., still images.

The alternative interpretation (13) of as a sum of energy components along different directions allows
us to extend it to discrete-space signals f(m, n). Specifically, replacing each of these energy components
with outputs from 1-D discrete-time energy operators I1d yields the 2-D discrete-space energy operator

d(f)(m,n) = d,1(f)(m,fl)+ Wd,2(f)(m,fl) (49)

2f2(m, n) — f(m —
1, n)f(m + 1, n) — f(m, n — 1)f(m, n + 1) (50)

where

d,1(fXm, n) f2(m, n) - f(m -1, n)f(m +1, n) (51)
applies horizontally the 1-D energy operator on all rows of f, whereas d,2 operates on the columns. The
expression (50) is identical to the discrete operator developed in [17] for digital image edge detection.

Applying d to a 2-D sinusoid with constant amplitude/frequencies yields

d[Acos(1lm + 12n + 0)] = A2[sin2(1) + sin2(2)] (52)

Consider now a discrete AM—FM signal

f(m, ii) = a(m, n) cos[çb(m, n)] (53)
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It S horizont al inst ant aneous frequency (in radians/sample)

11(m,n) + m,iq1(m,fl) (54)

has center frequency c,1 and maximum frequency deviation m,1 � c,1 . The frequency modulating
signal q1(m, n) is assumed to be a mathematical function with a known computable integral. Likewise for
the vertical frequency signal 12. All discrete-space frquencies are assumed to be in [0, yr]. We henceforth
assume that a is bandlimited with bandwidth 1a and that both frequency signals are finite weighted sums
of sinusoids2 and bandlimited with bandwidth Then under the realistic assumptions

a << mm c,k, << 1, m,k << c,k (55)

it follows from (49) and by working as in the 1-D case in [8, 9] that

d[a(m, n) cos((m, n)] a2(m, n)(sin2[1Z1(m, n)} + sin2[12(m, n)]) (56)

Now replacing the partial derivatives of the previous section with symmetric 3-sample differences in each
direction yields the 2-d signals

gi(m, n) = [f(m + 1, n) — f(m — 1, n)}/2 (57)
g2(m,n) = [f(m,n+1)—f(in,n—1)]/2 (58)

(59)

which are 2-D AM—FM signals with amplitude and instantaneous frequencies that do not vary too fast or
too much compared with the carriers 1c,k' Hence (see also [9, 10] for the 1-D case)

4)[g1(m, n)] a2(m, n) sin2[1(m, n)](sin2{i(m, n)J + sin2[12(m, n)]) (60)
4)d[g2(m, n)] a2(m, n) sin2[12(m, n)J(sin2[i(m, n)] + sin2[12(m, n)]) (61)

Combining (56),(60),(61) yields a discrete energy separation algorithm (DESA)

. I Id[f(m+1,n)-f(m-1,n)]\arcsin
4d[f(m,n)] ) Zi(m,n) (62)

. I Id[f(m,n + 1) - f(m,n - 1)]\arcsin
4d[f(m,n)} ) 1Z2(m,n) (63)

2d[f(m, n)]________________________________________________ Ia(m,n)I (64)\/d{f(m + 1, n) — f(m — 1, n)] + d[f(m, n + 1) — f(m, n — 1)]

We call this algorithm DESA -2 because it approximates derivatives with differences that are two samples
apart. (It is also possible to derive an alternative DESA by using asymmetric one-sample differences as
in [9, 10].) The DESA—2 can estimate at each location the amplitude enevelope and two instantaneous
ferquency signals of a spatial AM—FM signal.

If the AM—FM signal has constant amplitude A and constant frequencies ci,1and 1c,2, then the DESA—
2 equations provide an exact estimate of the amplitude Ia(m, n) = IAI and frequencies 1i(m, n) =
and 12(m,n) =

2Our discussion and results also apply to the case where the frequency signals are linear ramps.
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4 Energy Operators for Vector-Valued Signals
The framework of multidimensional energy operators is useful in extending the 1-D energy operators to
vector-valued signals.

Consider a 1-D vector-valued signal

J(t) = (f1(t),f2(t),...,f(t)) (65)

where all n components are real-valued. Define its vector derivative

(66)

and its second derivative 1" = (1')'. Then we define an energy operator for vector-values signals:

O[f(t)] = IIf'(t)112 — 1(t) . f"(t) (67)

It is simple to show that

0(1) = f (68)

Hence, the energy of the vector-valued signal is the sum of the energies of its scalar component signals.
There are several applications of energy operators for vector-valued signals outlined next:
Complex signals: Let 1(t) a complex-valued signal. Bovik et al. [3] defined an energy operator for

complex-valued signals f as
C(f)(t) If'(t)12 - Real[f*(t)f(t)] (69)

where Q* denotes complex conjugate. This complex operator has many interesting properties. Now by
forming a vector-valued signals with n = 2, Ii = Real(f), and 12 = Iinag(f), it follows that

C(f) = lLjReal(f)J + W{Imag(f)} (70)

Thus the analysis of applying energy operators to complex-valued signals can be reduced to simply analyzing
separately their real and imaginary parts.

Array of uncoupled oscillators:. Let 1(t) be the position vector tracing a continuous smooth curve in
n-D space. Then f'(t) is the velocity vector tangent to the curve and f"(t) is the acceleration vector. Then
111/112 is kinetic energy (per unit mass) whereas —f .f" is potential energy.

The energy operator 0 can be directly extended to 2-D vector-valued signals f(x, y) by replacing the
vector derivative f' with the matrix derivative {ôf2/8x3}, the Eucidean vector with Frobenious matrix
norm, and the vector 2nd derivative f" with the vector Laplacian (V2f1, ...,V2f).

5 Discussion
Several types of image textures can be modeled by spatial modulation models of the AM—FM type with
narrow-band (i.e., slowly-varying) amplitude and frequency signals, as demonstrated by Bovik et al. {1].
The amplitude signal a(m, n) models intensity contrast variations, whereas the frequency signals Iii,2
convey information about the 'locally emergent frequencies'. In this paper we have shown that, if the
amplitude and instantaneous frequency signals do not vary too fast in space or too much in value compared
to their mean values, then we can use the 2-D energy operator and the 2-D DESA to estimate the parameters
of these models. Given the importance and applicability of these AM—FM models the 2-D energy operator
and 2-D DESA become important tools for their analysis. The advantages of the DESA is simplicity,
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efficiency, low computational complexity, instantaneous adaptation due to the differential nature of the
energy operators, and ability to track spatial modulation patterns. in addition, the 2-D energy operator
can be used as a spatial event detector. Finally, the 2-D energy operator for vector—valued signals has
potential applications to vector-valued images, e.g., multispectral images.
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