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ABSTRACT

In this paper we introduce a theory for re-
cursive systems modeled via max/min difference
equations. Their applications include fast algo-
rithms for distance transforms and signal envelope
estimation. Such systems correspond to dilations
or erosions by infinite-support structuring func-
tions. For their understanding we introduce the
class of dilation (or erosion) translation invariant
systems along with several concepts and tools for
their analysis: causality, stability, eigen-functions,
a transform that quantifies the slope content of
signals, and a transfer function.

1. INTRODUCTION

All morphological systems processing signals are
based on parallel or serial interconnections of mor-
phological dilations @ or erosions & [6, 7, 3]

e(m)@g(n) = \/a(k)+g(n—F)
k
z(m)og(n) = (k) —g(k —n)

where \/=supremum (or maximum if the set of in-
dexes k is finite) and A= infimum (or minimum).
The vast majority of theory and applications of
morphological signal processing assumes that, for
discrete-variable input signals z(n), the structur-
ing function g(n) has a finite support and hence
the above moving max/min of additions takes place
only over a finite window of input samples. There
is, however, an important application that requires
max/min operations by recursing on output sam-
ples. This occurs during the computation of the
distance transform of binary images[5, 1], which is
useful in its own right e.g. for image segmentation
via watersheds, but it can also provide much addi-
tional information such as the skeleton, multiscale
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erosions, and granulometries [2]. In addition, in
the context of recursive rank-order filtering which
has been studied to a limited extent [4], recursive
max and min operations are special cases of recur-
sive rank filters but also the most important since
any rank-order operation is a minimum of maxima
or maximum of minima [3].

In this paper we introduce a theory for re-
cursive dilations and erosions (acting on discrete-
variable signals) by modeling them via nonlinear
difference equations of the max type

K M
y(n) = (\/ ak+y(n—k)) \Y \/ b + z(n —m)

k=1

(1)
or the min type. Whenever such an equation has
a recursive part, we show that this corresponds to
dilating the input signal with an infinite-support
structuring function. Further, we derive many in-
teresting results concerning the impulse response,
causality, stability, and eigen-functions of such sys-
tems by drawing analogies with similar proper-
ties of linear systems described by linear differ-
ence equations To aid the analysis we introduce
a transform of signals that quantifies their ‘slope
content’ and derive a transfer function for dilation
or erosion systems related to their eigen-functions.
Finally, we present numerical examples and appli-
cations to estimation of signal envelopes.

2. MAX DIFFERENCE EQUATIONS

Eq. (1) describes a nonlinear system ¥ with input
the discrete-time signal z and output y = ¥(z).
All signals in this section are defined on Z and
their range is R U {—c0}, where R and Z are the
sets of reals and integers. The support of any
signal z(n) is defined by Spt(z) 2 {neZ:z(n)>
—oo}. In (1) assume that all a; and by, are in
R U {—o0}; if a, = —co the term with y(n — k)
is not used in the difference equation. K is the
order of the equation, assuming ag > —oo. To



solve (1) in forward time n > ng we need K initial
conditions IC(ng), where

IC(n) & {y(n—1),...,y(n— K)}

If all the values in IC'(ng) are —oco, the initial state
of the system does not affect its response.

To analyze (1) and other similar morphologi-
cal systems ¥ we introduce the following concepts.
First, two useful basic signals are the zero im-
pulse 6 and zero step s:

a [0, n=0 a [0, n>0
6(n)_{—oo, n#0 ’S(n)_{—oo, n<0

Now we define the impulse response g = ¥(6)
as the system’s response when the input is the im-
pulse and IC(0) = —oo. A system ¥ is causal if
its defining rule at each time instant depends only
on present and/or past input values and possibly
on past output values, but not on future input or
output values. A system is stable if a bounded
(within its support) input signal yields a bounded
output signal (within its support).

Consider the 1st-order max difference equa-
tion, with a,b € R,

y(n) =ly(n - +aVie(n)+b]  (2)

Assuming causality and z(n) = —oo for all n < 0,
by induction on n > 0 we find its solution

y(n) = (b+ \/ z(k) + (n - k)a) V]an+a+y(—1)]

k=0

= z®g(n)
where g(n) is the impulse response

an+b, n>0
g(n)_an+b+s(n)_{_oo, n <0
Namely, g(n) is the solution y(n) of (2) when z(n) =
8(n) and y(—1) = —oco. Thus the general solution
y(n) of (2) is the maximum of the (—oo)-state re-
sponse (i.e., the dilation 2®g) and the (—oo)-input
response due only to the initial condition y(—1).
The system is stable only if @ = 0. Similar results
are also true for the general K'*-order max differ-
ence equation. Initial conditions # —oo could be
useful in some applications; e.g., if y(—1) > —oo,
the solution of (2) is constrained to be > an+a+
y(—1). However, in the rest of the paper we shall
assume —oo initial conditions.

DTI Systems

A system ¥ is called dilation translation in-
variant (DTI) iff it distributes over any supre-
mum of input signals, i.e., ¥(\/; z;) = V,; ¥(z),
and is translation-invariant, i.e., U[z(n—k)+c] =
¢+ [¥(z)](n — k). Since each input signal can be
represented as

(o) (o)

z(n) = \/ z(k)+6(n—k) = /\ z(k)—6(n—Fk)

k=—o0 k=—o0

a system W is DTT iff it is a morphological di-
lation by its impulse response g. The following
shows that the impulse response uniquely charac-
terizes a DTI system and determines many of its
properties.

Theorem A:! A system ¥ with g = ¥(§) is

(i) DTI iff W(z) = zg.

(ii) Causal iff g(n) = —oco ¥n < 0.

(iii) Anti-Causal iff g(n) = —oco Vn > 0.

(iv) Stable iff sup{|g(n)|: n € Spt(g)} < co0. O

The affine signals z(n) = an + b are eigen
functions of DTI systems because the correspond-
ing outputs are y(n) = an+b+G(a) where G(a) =
V,, 9(n)—an is the corresponding eigen-value. View-
ing G(a) as a transform for the signal g(n) with
variable the slope a, we define the following trans-
form? A : z(n) — X(a) for any signal z(n):

X(a) 2 \/a:(n)—an , aeR

n

Some properties of the transform A include
y(n) = x(n)dg(n) = Y (a) = X(a) + G(a)

and others summarized in Table 1. Thus G(a)
plays the role of a ‘transfer function’ (actually a
slope response) of the DTI system. We have also
found an ‘inverse’ transform A~' : X(a) — #(n)
which yields a signal

z(n) 2 /\ X(a)+an > z(n)
aeR

that is sometimes equal to z(n) and never smaller.
Specifically, at any time instant n, the reconstructed

1Due to the workshop’s limitation in the number of
pages, we do not include the proofs of our results; they
will be available in a forthcoming longer version.

2The definition of A for continuous-time signals z(t)
is identical: X(a) = \/t z(t) — at; likewise for A71. All
the properties in Table 1 also apply to the continuous-time
transform.



signal Z(n) is equal to the original signal z(n) iff

)+Qa7(n+p)
p+q

2(n) > px(n —

p,g>0 (3)

[Given a function f : D — R, where DCR or
DCZ, fis concave iff f satisfies (3) for all n €
D; f is convex if the > in (3) is replaced by <
Vn.] Now note that the transform X (a) is always
a convex function, and the reconstructed signal
#(n) is always concave. Thus, the ‘inverse’ trans-
form A~! yields a concave signal #(n) > (n) Vn.
Actually, the signal Z(n) is the smallest concave
upper envelope of z(n); hence it can be con-
structed as the piecewise linear interpolation of
the points where z(n) = #(n), i.e., points where
(3) is true.

Examples (see also Table 1 and Fig. 1): If
z(n) = 0 for |n| < N and —oo else, then X(a) =
Nla| and z = &. Now if y(n) = 0 for n = N and
—oo else, then Y(a) = X(a) and g(n) = y(n) for
[n| > N, but g(n) > y(n) for |n| < N.

A TRANSFORMS
=

SLOPE

Figure 1: A transforms X (a), G(a), and Y(a) =
X(a) + G(a) of the signals z(n) = 0,2,1 for
n = 0,1,2, g(n) = 0 for n = —1,0,1, and
y(n) = z®g(n). Note: AT'[Y] yields g(n) =
y(n) = 0,2,2,2,1 for n = —1,0,1,2,3 and —oco
else.

Concluding, the transform A quantifies the ‘slope
content’ in signals in a similar way as the Fourier
transform quantifies the ‘frequency content’ of sig-
nals. If g(n) is the impulse response of a DTI
system, then its transform G(a) acts as a ‘slope
response’ because it is the (additive) eigen-value
for affine input eigen-signals z(n) = an + b. Thus
G(a) is conceptually similar to the frequency re-
sponse of a linear time-invariant system which is
the (multiplicative) eigen-value for exponential in-
put eigen-signals. In addition, the dilation of two
concave signals can be done by adding their A
transforms (see Fig. 1).

TABLE 1: Properties & Examples of A

Signal z(n) Transform X (a)
[b+z(n)]VIc+y(n)] | [b+ X(a)] Vet Y(a)]
z(n—k) X(a)—
z(n) + agn X(a — ag)
(n)®y(n) X(a) +Y(a)
re(n) ,r>0 rX(a/r)
(—n) X(=a)

z(n) < y(n) Vn X(a) <Y(a) Va

V,, a(n) = X(0) M X(@) > 2(0)
z(n) Ay(n) < X(a)AY(a)
z(n) + y(n), < Ny X(b)+Y(a—b)

concave z or y
8(n) 0
agn —é(a — ag)
agn + s(n) —s(a — ayp)
agn + s(—n) —s(ag — a)

Recursive DTI Systems

Theorem B: The max difference equation (1)
corresponds to a causal DTI system iff (i) when-

over m»im) — far all m « m- than af ) _
CVET w\w} = SO 10T a1 < N vien ) = [0.¢)

for all n < ng, where ng is an arbitrary but other-
wise fixed time instant, and (ii) the required initial
conditions IC(ng) are —co. O

Henceforth we make the above two assump-
tions for systems described by (1). There are two
major subclasses of such systems:

Finite Impulse Response (FIR) DTI sys-
tems, when ap = —oo for all k. Then (1) has no
recursive part, and the impulse response

g(n) = { Ifoo

has finite support. This class is identical with
the class of all morphological dilations with finite-
support structuring elements.

Infinite Impulse Response (IIR) DTI sys-
tems, when ap # —oo for at least one k. The
example of the Ist-order system (2) demonstrates
that such systems have an impulse response g of
infinite support.

We can also bring (1) to the standard form

y(n)

by pre-dilating the input signal # with the finite-
support signal b defined as b(n) = b, for n =
0, ..., M and —oo else. We also assume that by = 0,
because a nonzero by only adds a constant by to
the output y.

1st-order system y(n) = max[y(n — 1) +
ay, z(n)]: Tts impulse response is g(n) = ain +

if n=01,.,M
if n<0,n>M

=max[y(n—1)+ay,...y(n— K)+ag,z(n)]
(4)



s(n), and its slope response is

+o0, a<a
Gla)=—s(a—a) = { 0, a > ai

It acts as a ‘slope highpass’ filter since it passes
from the input signal only those segments whose
slopes are > a;.

K'"-order system: Applying A to (4) and
assuming X (a) is finite yields

G(a) = max[G(a) —a+ay,...,G(a)— Ka+ ak, 0]

If m = argmaxg{ay/k}, the slope response is
A
G(a) = —s (a - ?)

and the (reconstructed via A~') envelope of the
impulse response is §(n) = nay, /m+ s(n) > g(n).
Thus, although over short time periods g(n) has
the shape induced by the sequence {ay}, over large
time scales it behaves like its concave upper en-
velope g(n). Actually, if ay < 0 for all ¥ < K
and ag = 0, the infinite impulse response g(n)
becomes periodic! Examples are shown in Fig. 2.

3. MIN DIFFERENCE EQUATIONS

In this section we deal with signals z : Z — R U

{+o0} whose support is defined as Spt(z) 2 {n:
z(n) < oco}. A system U : z(n) — y(n) is called
erosion translation-invariant (ETI) if it dis-
tributes over any infimum of inputs, i.e., ¥(A; z;) =
N\; ¥(z;) and is translation invariant. We focus on
systems ¥ described by the following min differ-
ence equation

K M
y(n) = (/\ ay +y(n—k)) A /\ by + 2(n—m)
k=1 m=0
(®)

for which we henceforth assume that (i) whenever
z(n) = oo for all n < ng then y(n) = oo for all
n < ng, where ng 1s an arbitrary but otherwise
fixed time instant, and (ii) the required initial con-
ditions IC(ng) are co. This guarantees that (5)
describes a causal ETI system.

If we use the signal —é(n) as the zero impulse,
then the impulse response of an ETI system ¥ is
defined as the signal h = ¥(-4).

Theorem C: A system ¥ with h = ¥(-4§) is

(i) ETT iff

U(z)(n) = z(n)o(=h(-n)) = A\, (k) + h(n — k).
(ii) Causal iff h(n) = 400 ¥n < 0.

(iii) Stable iff sup{|h(n)| : n € Spt(h)} < co. O

Let us define the signal transform A, : z(n) —
Xe(a) with

Xe(a) 2 /\a:(n)—an , aeR

n

Then the affine signals z(n) = an + b are eigen
functions of any ETI system ¥ because the corre-
sponding outputs are y(n) = an+b+ H.(a), where
H.(a) is the corresponding eigen-value and equal
to the A, transform of h = ¥(—6). Thus H.(a) is
the slope response of the ETI system because

y(n) = 2(n)o(—h(—n)) = Y.(a) = Xc(a)+He(a)

The A, transform has very similar properties with
its counterpart A4 used in DTI systems. The for-
ward transform .4, always yields a concave func-
tion X, (a). The ‘inverse’ transform A ' : X, (a) —
#(n) with

i(n) £ \/ X.(a) +a(n) <a(n)

yields a convex signal that is equal to z(n) if z is
convex; otherwise Z(n) is the largest convex lower
envelope of z(n).

Let us return to (5) describing an ETI system
and assume that bp = 0 and b,, = oo for m > 0.
1st-order system: If K = 1, then the impulse
and slope response are

h(n) = ain — s(n) A, H.(a) = s(a; —a)

Thus this system acts as a ‘slope lowpass’ filter
since it eliminates all linear trends in the input
whose slope is > a;.

For a K*"-order system with K > 1, applying
A, to (5) yields

H.(a) = min[H.(a)—a+ai, ..., H(a)— Ka+ag, 0]

Thus H.(a) = s(ag — a) where ag = ming{ay/k},
and the convex lower envelope of h(n) is h(n) =
aon — s(n). Thus a recursive K'*-order ETI sys-
tem behaves, over long time scales, effectively as
a lst-order system.

4. ENVELOPE ESTIMATION

Here we develop an application of recursive DTI
(ETT) systems where they can find upper (lower)
envelopes of signals; e.g., see Figs. 2(d,e,f) and
Fig. 3. Consider the problem of envelope detection
in AM signals

zapm(t) = [1 4 Acos(wgt)] cos(wet) , we <K we



Fig. 3a shows one period of a sampled AM signal
z(n) = zapm(nT), where T is sampling period,
with w,T = 7/50, carrier w,T = /5, and mod-
ulation index A = 0.5. Consider the DTI system
described by y(n) = max[y(n — 1) 4+ a1, #(n)] with
a; < 0. The output y(n) is constrained to be
> z(n) and hence provides a type of upper en-
velope of z(n). Computing y(n) in forward time
(see Fig. 3b), we see that downhill in between the
consecutive peaks of the carrier cos(w.t) y(n) falls
linearly with slope a;. Uphill y(n) continues to
fall between peaks, whereas it should rise. Hence,
we also pass z(n) through the anti-causal system
z(n) = max[z(n 4+ 1) + a1, #(n)] run backwards in
time (see Fig. 3¢). Then the final estimated up-
per envelope in Fig. 3d is the max y(n) V z(n)
of the two outputs. Similarly, the ETI system
y(n) = max[y(n)—ay, z(n)] can yield a lower enve-
lope of z(n) by computing the recursive equation
forward and backward in time and taking the min
of the two outputs (see Figs. 3b,c,d). To maximize
the smoothness of the resulting envelope we se-
lected the slope parameter a; to match the average
slope of the true envelope f(t) = [1 + A cos(wgt)]
within time intervals equal to the carrier period
27 /w.. To avoid dependency on the location of
such time intervals we also averaged over one half
the period of f(t) where df /dt < 0. This yielded

B 20w Tsin[2m(wq/w,)]

2

a; =

which has the value a; = —0.0374 for the example
of Fig. 3. For envelope signals more general than
a cosine, the same formula could be applicable if
w, 18 the bandwidth of the envelope. It remains to
be seen whether the above choice of a; is optimal
according to some criterion.

The efficiency of lst-order recursive DTI or
ETI systems to estimate signal envelopes and their
extremely small complexity (2 additions and 3 com-
parisons per output sample) makes them promis-
ing for AM detection and other applications of en-
velope detection.

5. EXTENSIONS TO 2-D SYSTEMS

2-D DTI systems ¥ : z(n, m) — y(n,m) have as
eigen-functions the signals z(n, m) = an+bm+¢
because the corresponding outputs are y(n,m) =
an +bm + ¢ + G(a, b) where the slope response

G(a,b) 2 \/\/g(n,m)—an—bm , (a,b)€R2

is the 2-D A transform of the impulse response
g(n,m) = ¥[8(n, m)], and é6(n, m) = 6(n) + 6(m)

is the 2-D zero impulse. Note that G has two
slope variables: horizontal and vertical. The 2-D
version of the transform A~! yields the signal

g(n,m) 2 /\/\G(a,b)+an+bm > g(n,m)
a b

which 1s the smallest concave upper envelope of g.
Causal DTI systems described by the equation

K

y(n,m) = z(n,m)V \/
k, =0
kl #0

y(n—k,m—~0)+ag,

have an infinite 2-D impulse response g(n, m) which
is —oo if n < 0 or m < 0. As a lst-order example

consider the case K = 1 with a1o = a1, agy = by,

and a;; = —oo. Then the impulse response is

g(n,m) = ain+bym+ s(n,m)
and the slope response 1s
G(a,b) = —s(a —ay,b—bl)

The min version of this lst-order recursive equa-
tion (i.e., the ETT system) was used to compute
the distance transform of binary images with re-
spect to the city-block metric [5].

6. REFERENCES

[1] G. Borgefors, “Distance Transformations in
Arbitrary Dimensions”, Comp. Vision Graph.
Image Process., 27, pp.321-345, 1984.

[2] B. Lay, “Recursive Algorithms in Mathemati-
cal Morphology”, Acta Stereol., 6 /TII, pp.691—
696, 1987.

[3] P. Maragos and R. W. Schafer, “Morphological
Filters - Parts I & I1I”, IEEE Trans. ASSP.,
35:1153-1184, Aug. 1987.

[4] T.A. Nodes & N.C. Gallagher, “Median Fil-
ters: Some Modifications and Their Proper-
ties”, IEEE Trans. ASSP., 30:739-746, Oct.
1982.

[5] A. Rosenfeld and J. L. Pfaltz, “Sequential
Operations in Digital Picture Processing”, J.
ACM, 13, pp. 471-494, Oct. 1966.

[6] J. Serra, Image Analysis and Mathematical
Morphology, NY: Acad. Press, 1982.

[7] S. R. Sternberg, “Grayscale Morphology,”
CVGIP, 35:333-355, 1986.



IMPULSE RESPONSES
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Figure 2: Impulse responses of recursive DTT (solid upper line) and ETT (dot lower line) systems. (a)
ar = |5 —k| =5,k =1,..,10. (b) ax as in (b) except a;g = 2. (¢) ap are negatives of the ones in (b).
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Figure 2: (d) 1-D image signal z (solid line) and its output (dot line) from recursive DTI system of
Fig. 2(b). (e) Image # and its output from system y(n) = max[y(n — 1), z(n)] in forward time. (f) Min
of outputs of system in (e¢) computed in forward and backward time.
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Figure 3: Envelope estimation in AM signals via Ist-order recursive DTI and ETI systems.



