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ABSTRACT

In ihis paper we present a theory for a broad class of nonlin-
ear systems obeying a supremum/infimum-of-sums superpo-
sition and a collection of related analytic tools, which paral-
lel the functionality of and have many conceptual similarities
with ideas and tools used in linear systems. In the time do-
main, the equivalence of these systems with morphological
dilation or erosion by their impulse response is established,
and a class of nonlinear (max-min} difference equations is
introduced to describe their dynamics. Finding that the
affine signals ot 4+ b are eigenfunctions of such morpholog-
ical systems leads to developing a slope response for them,
as a function of the slope o, and related slope transforms for
arbitrary signals, These ideas provide a transform {slape)
domain for morphological systems, where dilation and ero-
sion in time corresponds to addition of slope transforms, time
lines transform inio slope impulses, and time cones transform
into bandpass slope-selective filters.

i. MORPHOLOGICAL SYSTEMS

Morphological systems have found many applications in im-
age analysis and nonlinear filtering. All are based on (simple
or complex) parallel or serial interconnections of morpholog-
ical dilations @ or morphological erosions & [7, 6]

(z@9)(1) = \/ o) +g(t=7) , (00)1) = [\ x(r)=g(r=1)

T T

where \/ denotes supremum and A\ denotes infimum. So far
their analysis has been done only in the time domain by using
their algebraic properties and lacked a transform domain.

In this paper we first endow morphological systems with
various concepts and analytic methods that enable us to de-
termine their output and several properties of these nonlinear
systems in the time dormain based on their impulse response.
Specifically, we call a signal operator D:x oy = Dz}
a dilation translation-invariant (DTI} system if it is time-
invariant and obeys the morphological supremum superposi-
tion principle {¢; € R)

D {\/c; -}-a:;(t)} = \/ e + Dzi(1)] (1)
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For DTI systems we assume input and output signals 5 : £ —
R with a continuous {(E=R) or discrete domair (E= Z) and
whose range is any subset of R = R U {00, c0}. The useful
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information in a signal z analyzed by a DTT system exists
only at times ¢ in its support Spt(x) = {t: x(t) > —oo}. The
morphological zero irmpulse p and zero step A

a [0, t=0 s {0, t>o0
a2, 120 et 2

are two clementary signals useful for analyzing morphological
systemns. For example, the impulse response g(i} = Pu(t)]
uniquely characterizes a DT system in the time domain and
determines its causality and stability. Specifically [4]

Dis DTI ¢= D(z) =2y, ¢ 2 Plp)

Thus any DTI system is equivalent to a morphalogical dila-
tion of the input with its impulse respomse. Further, D is
causal iff g(1) = —oo ¥t < 0 and stable iff sup{g(t)]: 1 €
Spt{g)} < .

Operators £ : 7 ++ y = £(x) that are time-invariant and
obey an infimum superposition, i.e. asin (1) but with \
replaced by A\, are called erosion translation-invariant {(ETI}
systems. These are equivaleat to a morphological erosion,
because & is ETIIff £[z(t)] = z(t)©f (—t), where f = £(~p)
is defined as their impulse response.

To describe the time dynamics of DT systems we also de-
velop nonlinear difference equations. Inspiration here comes
from the linear difference equations which cap describe a
very large class of discrete linear time-invariant {LTI) sys-
tems. Replacing sum with maximum and multiplication with
addition gives us the foliowing max difference equation

N M
o] = (\/ awyinwk]) v (\/ bm+ztnm~m3) 2)

k=1 ()

All coefficients ax,bm are from R U {~oc}. N is the or-
der of the equation, assuming ay > —oco. The vast ma-
jority of discrete-time morphological dilations used in appl-
cations employs a finite structuring element, and they can
be modeled by (2) by ignoring the recursive part (i.e., if all
ax = —c0). The only exception is the lst-order recursive di-
lation y[n] = max{y[n — 1} -1, z{n]}, which can generate the
distance transform of binary images, useful for image anal-
ysis. Whenever the max equation has a recursive part, we
show that this corresponds to dilating the input signal with
an infinite-support structuring function.

To create » transform domain for morphelogical sys-
tems, after finding tkat the line signals at+b aze their esgen-
functions, we introduce a ‘slope response’, a function of the
slope variable o, which enables us to nnderstand the sys-
tems behavior in a tzansform domain—-the slope domain. The




affine signals = (1) = at-+b are eigenfunctions of any DTT sys-
tem D or ETI system & because

Diet+ b = ot + b+ Gla) , Gla) = \/g(t} — ol

fot+ B =at+b+Fley |, Flo)2 /\ J(t) - at

We call the corresponding eigenvalues G{o} and F(w) the
slope response of the DTT and ETT system. It measures the
amount, of shift in the intercept of the input lines with slope
@. It is also conceptually similar 1o the frequency response of
LTI systems which is their multiplicative eigenvalue for input
exponentials, whereas G (or F)is the additive cigenvalue of
DTI {or ETI) systems for input lines, This nonlinear analysis
leads to developing signal translorms called slope transforms
whose properties and application to morphological systems
has some striking conceptual similarities with Fourier trans-
forms and thelr application to LTI systems.

This paper is 2 summary of our results in 3, 4, 5].

2. SLOPE TRANSFORMS

The following two (sup/inf-based) slope transforms, orgi-
nally introduced by Maragos [3, 4, 5} in the context of mor-
pholegical systems, were motivated by the algebraic expres-
sion of their eigenvalues corresponding to their eigenfunc-
tions ot + b (Recall that the Fourier transform can be
similarly inspired by the form of the eigevalues (frequency
response)] of L'TT systems corresponding to their exponen-
tial eigenfunctions.) Thus, viewing the slope response as
a signal transform with variable-the siope o, we define for
any sigral «{t) its upper slope transform as the function
Xv 'R — R and as lower slope transform’® the function
Xa: R — R defined, for each e € R, as

Xo(e) &\ s ~at , Xa@) & A st)-at
teR te R

A geometrical intuition behind the slope transforms can be
obtained by realizing that a line that has slope ¢ and passes
from a point {2, z(f)) on the graph of a signal #{¢} has an
intercept equal to X = z(t) — of. Thus the upper and lower
slope transforms are the max and min intercepts of lines with
varying slopes intersecting the signal’s graph. These extreme
intercepts occur when the Jine becomes tangent or intersects
the graph at only one point. In general, z(t) is covered from
above by all the lines Xv{a}+ at whose infimum creates an
upper envelope 2(t) and is covered from below by all the lines
X n(e) 4ot whose supremum creates the lower envelope &(t):

$) & N\ Xu(@+ar , 3() &\ Xa(a)+at
aec R a &R

We view the signals £(t) and #(f) as the ‘inverse’ upper and
lower slope transform of x(t), respectively.

Theorem 1 [5]. For any signalz: R — R,
(a) Xv(a} and £(1) are conven, whereas Xa(w) and &(1) are

Mo couvex analysis [8], given a convex function k there
uniquely corresponds another convex function A*(a) = \/t ot —
h{1) called the conjugeie of k. The lower slope transform of A and
its conjugate function are closely related since h™{a} = —Ha(a).

concave. {b) For all ¢, () < 2(¢} < 2(¢).
fc) At any time instani ¢

p(t =) + qz(t + p)

B(t) = 2(t) = o() 2 P4

¥p, g > 0.

(3
At any ¢, w(t) = £{1) iff the > sign in {3) is replaced by ;g.}
(d) £(1} = z(1) for all ¢ if © is concave, and & = z f © 45
convex. (e} £ is the smallest concave upper envelope of =,
and & is the greatest convex lower envelope of 2.

Thus, there is one-to-one correspondence between Xv (o)
and the signal envelope £(t). However, all signals between
z(t) and £{t) will have the same upper slope transform.

Tables T and IT list scveral properties and examples of
the upper slepe transform. Their proofs are in {3]. The
most striking is Property 8, i.e., that dilation in the time
domain corresponds to additior in the slope domain. Note
the analogy with LTI systems where convolving two signals
in time corresponds io multiplying their Fourier transforms.

Consider the rectangular time pulse w(f}, equal to 0 for
t < [T and —co else, added to a signal x(2). The upper slope
transform of the time-limited signal (1) w{t) is the erosion
of the origiral signal’s siope transform X {a} by the negative
of the window’s slope transform W{x) = Tlef. See Fig. 1.
This is a kind of nonlinear blurring. Consider the analogy
with the blurring that occurs when we multiply a signal z by
a2 time window in which case the original Fourier transform
of z is convelved with the window’s Fourier transform.

There is a duality between the time and slope domain,
similar to the duality between time and frequency domnains
of Fourier transform pairs. For example, Table II implies
that time lnes, halt-lines, and cones transform respectively
into slope impulses, steps, and pulses, and vice-versa,

Whatever we discussed for upper slope transforms alse
applies to the lower slope transform, the only differences be-
ing the interchange of suprema with infuna, concave with
convex, and difation with erosion.

For differentiable signals, the maximization or mini-
mization of the intercept z{t) — ! involved in both slope
transforms can also be done, for a fixed o, by finding its
value at the stationary point +* such that z'(¢"} = o where
z' e dg/dt. At the point (%, «(2*}) the line becomes tan-
gent to the graph. This exireme value of the intercept {as
a function of the slope &) is the Legendre transform of the
signal o

Xp(e) 2o (@) (@) = al(z") 7 a)]

FIGHA, SLGRE TRANSFORM
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Figure 1. (s} Original parabola signal u{t) = ~1%/2 (in
dashed line) and a time-limited version (in solid Hne) re-
sulting from adding to the signal a rectangular pulse with
support {~35,5]. (b) Upper slope transform of the parabola
{in dashed line} and of its time-limited version (in solid line).




where 7} denotes the inverse of a function f. It is exten-
sively used in mathematical physics {1]. If the signal #(2) is
concave or convex and has an Invertible derivative, its Legen-
dre transform is single-valued and egual {over the slope inter-
vals it is defined) Lo the upper or Jower transform. Examples
712 deal with such signals v with Invertible derivatives.

H a differentiable signal is neither convex nor concave
or if it does net have an invertible derivative, the Legendre
transform is multi-valued; i.e., {") 7 (@) and hence Xp{o)
is a set of real numbers for each o. For example, consider
the cosine z(t) = cos(wot) over ali time, which is an infinite
sequence of convex and concave cosine pulses, Then

X1 (o) = {Y{e)+akT, =Y (@)+aT(k~0.5) : k= 0,%1,32, ..}

where Y is the slope transform of a single concave cosine
pulse (Example 12, Table II}. In genersl, the namber of
different functions in the multivalued Legendre transform
is equal to the number of comsecufive convex and concave
pieces making up the signal. This could be finite or infinite.
This multivalued Legendre transform is defined in [2] as a
‘slope transform’ and is expressed via stationary points; ie.,
Xi(a) = {a(t")~at* 1 2(1") = a}. Iis properties in (2] seem
similar {o the properties of the upper/lower slope transform,
but there are some important differences (see [4, 5]) stem-
ming from the fact that operations among maultivalued Leg-
endre transforms are actually set operalions.

An arbitrary signal can be analyzed using slope trans-
forms toward at least two diffetent goals: signal reconsirue-
tion, or envelope reconstruction. For exact signal reconstruc-
tion, we shonld segment thie signal into coasecutive convex
and concave pieces and find the slope transform of each piece.
The set collectior of slope transforms of the signal pleces can
reconstruct the signal exactly. The disadvantage here is the
multivaiuedness of the transform.” Alternatively, for extract-
ing information about the long-time behavior of the signal,
as manifested by its upper and lower envelope, we could
compute its upper and lower slope transforms and take theix
tnverses, which give us the two envelopes. Examples of this
Jatter case include the impulse responses of recursive DTE
systems (discussed later) and amplitude-modulated signals
where we seek to estimate their envelope.

Consider sampling a continwous-time signal (1) at
time instants ¢ = nT" and obtaining the sampled signal (4] =
\/, zln] + p(t — nT), where zfn] = zc(nT) is the discrete-
time signal. Let X (o), X¢(a) be the continuous-time up-
per slope transforms of the signals z.(1),%:(t). We define
the upper slope transform of the discrete signal z{n] by

o0

\/ z[r] —an , a€R

TR XD

Then Xale) = X (a/T) £ X(a/T).

Another effect of sampling is to replace parts of the
slope transform of the continuous-time signal with support-
ing lines. Further, if z.{t) is a concave piecewise-linear signal
and the sampling time instants ¢ = n7 include all the times
at which its corner points occur, then X (a) = X:{o) for all
o and the original signal z.(t) can be exacily reconstructed
from its samples by applying an upper stope transform on
75t} followed by its inverse transform.

The definitions and (almost alt) properties of discrete up-
per and Jower slope transforms and their inverses are identi-
cal to the continuous-time case, except thai the time variable
is discrete. Bxamples 1-6 of slope transform pairs in Table 11
also hold in discrete time.

Xalo) &

i

3. MAX DIFFERENCE EQUATIONS

Tn this section we consider discreie-time signals and view (2)
as & nonlinear system ¥ ;1 — g = W¥(z). To solve (2) in
forward time n > no we need N initial conditions ICno],
where [CTn] = {yfn —~ 1), yln 2], .., yln — N]}. I all the
values in 1C[ng] are —oo, the inttial staie of the system does
not affect its output. We define the impulse vesponse g of ¥
as its output when the iaput is the impulse and TC{0} = —ce.
The sclution of the Ist-order (N = 1, & = 0) max equation
(2} is found by induction on n > 0 to be

yln] = (e[p]@g[n]) V (e (n + 1) + y[-1])

where g{rn] = ain + b + Aln} is the impulse response. Thus
the general solution of (2) for N = 1 is the maximum of the
{~c0)-state response (i.e., the dilation z@g) and the (—o0)-
input response due only to the initial condition y{~1}. The
system is stable only if @3 = 0. Similar results are also true
for the general N*-order max difference eguation.

Theorem 2 [4]. The maz difference equation (2) corre-
sponds to o causal DT system if (i) whenever z[n] = —oo
for all n < ng then y{n] = ~co for all n < np, where no
is an arbitrary but otherwise fized time instant, and (i} the
required tnitial condifions IC[ng] are —oo,

Henceforth we shall make the two assumptions of The-
orem 2 for systems described by (2). There are two major
subclasses of such DT systems:

Finite Impulse Response (FIR) DT1 systems, when a =
—co for all k. Then (2) has no recursive part, and the
impulse response has finite support because gln] = by, i
n=0,1,..,M and gin] = —co else. All these systems are
stable. This class is identical with the class of all merpho-
logical dilations with finite-supporl structuring elements,

Infinite Impulse Response (IIR) DTL systems, when ay #
-0 for at least one k. The example of the 1st-order system
demonstrates that such systemps have an impulse response
of infinite suppoxt. Their stability is controiled by the max
absolute value of g.

Henceforth, we focus only on the recursive part of (2)
by setting bo = 0 and b, = —o0 Tor m > 0. A lst-order
system y[n] = max(y[n — 1] + a1, z{n]} has impulse response
gln} = a1n 4+ A[n] and slope response Gla) = —Alor—ay). It
acts as a ‘slope kighpass’ filter since it passes from the input
signal only those segments whose upper slopes are > ay. For
a system order N > 1, finding a closed-formula expression
for the impulse response is generally not possible. However,
we can first find the slope response & and then, via inverse
slope transform, find the impulse response g or its envelope
§. Thus, applying spper slope transform to (2) and using
the fact that Y{a) = G(a) + Xv(a) yields

Gle) = max{G(e} ~ a + a1, .., Gla) = No+ap, 0}
A nontrivial (i.e., different than oo} solution G is

Gla) =

123
“Ma—ay) , ap= max ==
The inverse slope transform on G yields the upper envelope
i of the impulse response

§in) = oen + Aln] 2 gln].

Over short time periods g has the shape induced by the se-
quence {ax} and dominates the ouiput of the recursive DTT
system during time poriods when the slope of the input sig-
nels is smaller than oo, Bul over time scales much longer



than the length of the coeflicient sequence {ax} it behaves
Yike is upper envelope §. Togeiher & and § can describe the
long-time dynamics of the system where they predict a be-
havior approximately eguivalont to a Ist-order system whose
cutoff slope is oo, In addition, if ¢ is a line, then the above
analysis iy also exact for the short-time behavior. Note also
that by appropriately choosing the coefficients {ax} we can
give the short-time variations of g many different patterns,
even periodic {3, 4},

3.1. SLOPE FILTERS

Consider the causal recarsive DTI system w1 [n] = max(yn[n—
1] + a1, z[r]} with a3 < 0, which is a morphological dilation
of the input by the causal line g1 {n} = azn+A[n}. The output
y1in] provides a type of npper envelope of z[r]. As Fig. 2
shows, when computing v in forward time, during periods
where the signals peaks keep decreasing y: falls linearly with
slope a; in between these consecutive peaks. Wher the en-
velope peaks start increasing, ¥ continues to fall between
peaks, whereas it should rise. The slope response of this
system is G1(e) = —A{e — 0;) and hence rejects all neg-
ative slopes < a1. To be able to also reject some positive
slopes we must pass the input through an anti-causal system
va[n] = max(yz[n + 1] + ez, z{n}) with az > 0, run backwards
in time {see Fig. 2). It corresponds to a morphological dila-
tion of the input by the anti-cansal line gan] = azn+ Af—n}.
its slope response is Ga{a) == ~A(az — ) and hence it 1ejects
all positive slopes > az. To symmetrize this process we can
take the maximum y = 1 V ye of the two envelopes as the
final estimated upper envelope of the input. The mapping
& v g, Le., the maximum of two DTI systems, is another
DTT system with overall impulse- response g = g1 V g2 and
overal slope response G = Gy V Ga:

- |

This is an ideal-cutoll bandpass slope-selective filter. To de-
sign a symmetric slope filter we select a2 = —a; = @0 > 0
which passes upper slopes with magnjtuede < oo unchanged
and rejects all other stopes. This is the case in Fig. 2. Such
bandpass slope filters, implemented via Ist-order recursive
max/min equations, have been applied to envelope detection
from AM signals in [3, 4],

n>0
n<0 7’

c,
o0,

ay Lo Lo
else

a3 n,
4z,

G(o)

HPUT & (UTRUT OF MAX €0,

o 100 A0 500

200 300
TIME SAMPLE

Figure 2. Dotted line shows input signal =[] [1 4
0.5 cos(21n/500)] cos(2rn/100). The solid (resp. dashed)
line is the output of the recursive equation y[n} = max{y{n —
1]+ 0.01, z{n]) run in forwazd (resp. backward) time. Final
upper envelope is the max of the solid and dashed curves.
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TABLE I: Properties of Upper Slope Transform

[ No. |I Signal: z(t) [ Transform: Xv(e) |

1. Ve + zilt) V. ci + Xi(a)

2. z(t 1o} X(a) — aty

3. z{1) + oot X — ay)

4., wiri) X{afr)

5, o ~1) XN{—a)

g, z{t) = (1) X{ay = X{—a)

7. ro{t) , r >0 r X (af7)

5 OO (o) 1 V(@)

7. VA GET (D) K<) T ¥ (o)
18, (1) < y(t) Vi X{o) < Y(a} Y
11. z{t) < X{0} Vi X{a) 2 z{0) Ve
12. || y(t) = { i(jg: %i} ST | vie) = X(@)e(-Tla)

TABLE II: Examples of Upper Slope Transforms

[No. | Signal: z(1} | Transform: Xv(a) |
1. agt —pla — o)
2. mﬂ»kl(t) —)\(0! - Q’())
3. ,!L(tv—to) —eip
4, A{t -~ to) —aty — Ma)
0, [H<T

5. { Zoo, |]>T Tlel

, 6, jo|<eo
8. —ao§t|, g > 0 00, fCYI S o
7. V1 —12, Ji] <1 V14 a?
2. —t/2 o’ f2
8. | e . p>1 ll®/q , Up+ifg=1
16. exp(t) ail ~ log{e}]
11. tanh(t), ¢ >0 VT o —alog (-1—’3’-3\;/—;-—"——5)
2, | coslwot), WIS 55 | 2 S () ()




