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Abstract— The precise analysis of a patient’s or an elderly
person’s walking pattern is very important for an effective
intelligent active mobility assistance robot. This walking pattern
can be described by a cyclic motion, which can be modeled using
the consecutive gait phases. In this paper, we present a com-
pletely non-invasive framework for analyzing and recognizing
a pathological human walking gait pattern. Our framework
utilizes a laser range finder sensor to detect and track the
human legs, and an appropriately synthesized Hidden Markov
Model (HMM) for state estimation, and recognition of the
gait patterns. We demonstrate the applicability of this setup
using real data, collected from an ensemble of different elderly
persons with a number of pathologies. The results presented
in this paper demonstrate that the proposed human data
analysis scheme has the potential to provide the necessary
methodological (modeling, inference, and learning) framework
for a cognitive behavior-based robot control system. More
specifically, the proposed framework has the potential to be
used for the classification of specific walking pathologies, which
is needed for the development of a context-aware robot mobility
assistant.

I. INTRODUCTION

Mobility problems, particularly concerning the elderly
population, constitute a major and ever growing issue in our
society. Walking disabilities are common and impede many
activities of daily living and have strong impact on productive
life, independence, physical exercise, and self-esteem, [1],
[2]. Current demographics show that the elderly population
(aged over 65) in industrialized countries is increasing con-
stantly, [3]. Having these issues addressed will have great
socioeconomic effects. Robotics seem to fit naturally to the
role of assistance, since it can incorporate features such as
posture support and stability, walking assistance, navigation
in indoor and outdoor environments, health monitoring etc.

The motivation in this work is to use intelligent mobile
robotic mechanisms (e.g. a rollator, Fig. 1) which can
monitor and understand specific forms of human walking
activity in their workspace [4], in order to deduce their needs
regarding mobility and ambulation, and to provide context-
based support, [5] and intuitive assistance in domestic envi-
ronments.

In this paper we address the challenge of developing a
reliable pathological walking recognition system utilizing a
laser sensor that detects and tracks the user (which does not
interfere with human motion), based on a Hidden Markov
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Fig. 1: Right: Typical passive assistive device for elderly.
Left: A robotic platform based on the first rollator prototype
equipped with a Hokuyo Laser Sensor aiming to record the
gait cycle data of the user (below knee level).

Model (HMM) for gait modeling and classification.
The automatic classification and modeling of specific

physical activities of human beings is very useful for many
technical and biomechanical applications. A number of re-
search groups worldwide, are actively pursuing research,
currently investigating problems related to the development
of smart walking support devices, aiming to assist motor-
impaired persons and elderly in standing, walking and other
mobility activities, as well as to detect abnormalities and to
assess rehabilitation procedures [6]–[10].

For the extraction of gait motions, different types of
sensors have been used, from gyroscopes and accelometers
to cameras, etc., [11]–[15]. Other approaches refer to human
detection and tracking, or recognition of human activity
utilizing laser sensors, and in some cases complementary
with cameras, or force sensors (e.g. [16]). Towards this
direction, modeling human locomotion by estimating the
legs’ kinematic parameters with respect to the mobility aid
is essential. The detection and tracking of humans is a
common problem. Most research work focuses on detecting
and tracking human legs from static sensors, as in pedestrian
tracking (e.g. [17]), or from laser scanners mounted on
mobile robotic platforms for person following [18], [19].
Approaches for tracking users of robotic walkers can be
found in [20]–[22], while [23] refers to a walker that detects
and tracks Parkinson’s patients.

Time series data can be modelled by Hidden Markov
Models (HMMs). In HMMs only the output of the model
is visible to the observer and the states of the model
(corresponding to a physical event) are not observable, in
other words are hidden, [24]. The versatility of HMMs makes
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them useful in extracting human patterns. Apart from their
prominent application in speech recognition, [25], HMMs are
also used in a number of pattern recognition applications,
gesture recognition, [26], human activity analysis, [27] and
biometric gait recognition, [28]–[30].

This paper proposes a flexible and readily extensible
approach for gait representation and characterisation based
on early results presented in [31]. In this work, an HMM
is employed to model the pathological gait and to analyse
transitions between specific gait phases. As opposed to most
of the literature available on the topic, the gait analysis
approach presented in this paper is completely noninvasive
based on the use of a typical non-wearable device. Instead of
using complex models and motion tracking approaches that
require expensive or bulky sensors and recording devices that
interrupt human motion, the observation data used in this
work are provided by a standard laser rangefinder sensor
mounted on a robotic rollator platform. There were many
challenges in designing a robust system for the detection
and tracking of patients, that have not been confronted in
literature, like the difficulty of the collected data from real
patients, the deformability of the detected legs shape due
to clothing and the difficulty of constructing a reliable linear
motion model to describe the variability of pathological gait.
The objective of this work is to design a framework so that
it can be possible to actively incorporate many different gait
patterns as a subsystem within a larger cognitive behaviour-
based context-aware robot control framework (that embodies
several walking morphologies, including turning and ma-
neuvering motions). Furthermore, this framework has the
potential to be used for the classification of various walking
pathologies and related impairments, and for actively and
cognitively being augmented with new patients with mobility
difficulties.

II. HUMAN GAIT CYCLE ANALYSIS

The human gait motion analysis and modeling is based
on the basic requisite of the act of walking which is the
periodic movement of each foot from one position of support
to the next. This element is necessary for any form of
bipedal walking to occur, no matter how distorted the pattern
may be by an underlying pathology, [32]. This periodic leg
movement is the essence of the cyclic nature of human gait.

Traditionally the gait cycle has been divided into eight
events or periods, but these are sufficiently general to be
applied to any type of gait, five during stance phase (the
foot is on the ground) and three during swing (the same foot
is no longer in contact with the ground), [33]. The stance
phase events (1-5) and the swing phase events (5-8) are
as follows, Fig. 2, [33], [34] (as a percentage of the total
duration of the gait cycle): 1. Initial contact (0%) - [IC] -
Heel strike initiates the gait cycle and represents the point at
which the bodys centre of gravity is at its lowest position.
2. Loading response (0-10%) - [LR] - Foot-flat is the time
when the plantar surface of the foot touches the ground. 3.
Midstance (10-30%) - [MS] - Midstance occurs when the
swinging (contralateral) foot passes the stance foot and the

Fig. 2: Internal phases of human normal gait cycle.

Fig. 3: Overview of the system of detection and tracking of
the user’s legs.

body’s centre of gravity is at its highest position. 4. Terminal
stance (30-50%) - [TS] - Heel-off occurs as the heel loses
contact with the ground and push off is initiated via the
triceps muscles, which plantar flex the ankle. 5. Preswing
(50-60%) - [PW] - Toe-off terminates the stance phase as
the foot leaves the ground. 6. Initial Swing (60-70%) -
[IW] - Acceleration begins as soon as the foot leaves the
ground and the subject activates the hip flexor muscles to
accelerate the leg forward. 7. Midswing (70-85%) - [MW]
-Midswing occurs when the foot passes directly beneath
the body, coincidental with midstance for the other foot. 8.
Terminal swing (85-100%) - [TW] - Deceleration describes
the action of the muscles as they slow the leg and stabilize
the foot in preparation for the next heel gait cycle.

In this paper we have used the seven gait phases of walking
cycle in order to analyze the gait cycle, since the TW phase
is characterized by heel strike that is an equivalent trigger
to the IC phase, and therefore those phases are treated as
identical.

III. RECOGNITION OF GAIT CYCLE PHASES
BASED ON HIDDEN MARKOV MODEL

Hidden Markov Models are well suited for gait recognition
because of their statistical properties and their ability to
reflect the temporal state-transition nature of gait. They
can provide temporal segmentation of time sequence of
observations by estimating an optimal state sequence. This
optimal state sequence is found using the Viterbi decoding
algorithm.

The seven gait phases can define the hidden states of the
HMM, Fig. 2. As observables, we utilize several quantities
that represent the motion of the subjects’ legs,(relative po-
sition w.r.t. the laser, velocities, etc.), which are estimated
using sequential signals from a laser sensor installed on
a robotic rollator that follows the subject’s motion. The
state and observations at time t are denoted as st and Ot ,
respectively. The seven states at time t = 1,2, ...,T , where
T is the total time, are expressed by the value of the
(hidden) variable st = i, for i = 1, . . . ,7, where 1 ≡ IC/TW ,
2 ≡ LR, 3 ≡ MS, 4 ≡ T S, 5 ≡ PW , 6 ≡ IW , and 7 ≡ MW .



The observations at time t, are represented by the vector
Ot = [o1

t . . .o
k
t ]

T , for k = 1, . . . ,9, where o1
t ≡ xR, o2

t ≡ yR,
o3

t ≡ xL, o4
t ≡ yL, o5

t ≡ υR
x , o6

t ≡ υR
y , o7

t ≡ υL
x , o8

t ≡ υL
y ,

and o9
t ≡ Dlegs. These signals are the coordinates and the

velocities along the axis for right and left leg, and Dlegs
is the distance between legs. The observation data (derived
from the raw laser sensor data) are modeled using a mixture
of Gaussian distributions.

In normal gait cycle the gait phases follow each other
sequentially, while in pathological walking some of the gait
phases may disappear. Thus, we have assumed that the
proposed HMM is a left-to-right model.

IV. GAIT FEATURE EXTRACTION: DETECTION
AND TRACKING

The gait features (composed of dynamic parameters, such
as the positions of the legs with respect to the rollator,
their velocities and their interdistance), which are essential
to characterize gait cycle properties as analysed in [31], and
to signal transitions between gait phases (as the observation
features fed in the HMM), are extracted from the laser sensor
data at each time instant. The necessary walking parameters
for the HMM analysis are estimated by the detection and
tracking of the user’s lower limbs. Our approach is a recur-
sive system with a substantial forward-backward interaction
between the detection and tracking of the user.

A. Data Preprocessing and legs extraction

Data Preprocessing is triggered in each time frame (Fig.
3), during which we define a rectangle area in the scanning
plane, a search window, where we expect the user to be
with respect to the rollator. The initial search window is
predetermined and wide enough, while in the subsequent
frames it is adjusted. We use a simple background extraction
method based on thresholding criteria. The laser points that
are not detected inside the search window are discarded,
while the remaining are separated into groups, corresponding
to detected objects according to the Euclidean distance
between consecutive laser points. In cases of discontinuities
of laser points, due to fluctuations of the device, or due to
the object’s deformable surface (common in creasing pants),
instead of having one laser group describing an object, we
end up with more. In such cases the adjacent laser groups are
merged according to an euclidean distance threshold. Finally,
any laser group that contains less than a specific number of
points is deleted. The remaining laser groups formulate the
candidate legs. The candidate legs extraction is successful,
if we end up with two candidates, corresponding to the
legs. The treatment of cases of less or more laser groups
is described bellow.

B. Clustering and Circle Fitting

Clustering and Circle Fitting are fed with the candidate
legs, Fig. 3. Those enter a K-means++ clustering algorithm,
[35], to classify the left and right leg. Instead of using
the highly noisy centroid-mean of each cluster given by K-
means, we take as consensus that the human limbs can be

represented as cylinders, and therefore can be seen as circles
in the scanning plane. We use nonlinear least squares circle
fitting on the leg clusters, with a constant pre-computed
radius, in order to approach the actual planar leg centers.
In that way we have a compact representation of the legs,
which is reducing the influence of the shape deformations
of the laser groups. The detected legs’ centers compose the
observation vector, zk, for the tracking process.

C. Kalman Filter Tracking

The tracking of the user’s legs is performed by
a Kalman Filter (KF) algorithm, in which the ob-
servation vector consists of the detected leg centers,
Fig. 3. The state vector we used has eight parame-
ters: xk =

[
xL yL xR yR vL

x vL
y vR

x vR
y

]T , where
(xL,yL) and (xR,yR) are the cartesian coordinates of the
centroid legs’ positions w.r.t laser, and (vL

x ,v
L
y ), (v

R
x ,v

R
y ) are

their velocities along the axes. We model the dynamic of
the legs as dynamic points, with the acceleration being the
control. Since we have no direct influence on the acceleration
(it is “user” generated) nor any measurements, we treat the
acceleration as a process noise. In the current implementation
we model the acceleration as having the same statistics
throughout the gait. We are already working on a more
elaborate model, where the estimated gait phase is fed back
to alter the statistics of the acceleration.

We use the standard KF state equations: xk = Akxk−1 +
Bkuk−1 +wk, where k refers to time, xk is the state vector,
uk is the input vector, Ak is the state transition matrix, Bk
is the input matrix and wk is the process noise with normal
probability distribution p(wk) ∼ N(0,Qk), where Qk is the
process noise covariance matrix. The observation vector zk of
the true state is updated according to the standard equation:
zk = Hkxk + vk, where Hk is the observation matrix which
maps the true state space into the observed space, and vk
is the observation noise. The state transition matrix Ak, the
input matrix Bk, as well as the observation matrix Hk, have
the following form, respectively:

Ak =

[
I4 A1
/04 I4

]
, Bk =

[
B1
B2

]
, Hk =

[
I4 /04

]
,

where A1 = ∆t · I4, B1 = (∆t2/2) · I4, B2 = ∆t · I4, I4 is the 4x4
identity matrix, /04 is the 4x4 zero matrix and ∆t is the time
interval between the consecutive scanning frames of the laser.
The state transition matrix A encodes the kinematics of the
legs, the input matrix the acceleration effects in the position
and the velocity of the legs, while the observation matrix
encodes the fact that the only observables are the position of
the legs. As noted before, we have no knowledge of the input
(of the acceleration). Hence, we model the acceleration as a
random variable, following a zero mean normal distribution.
The normal distribution of acceleration p(ak) ∼ N(0,Ck)
was experimentally defined, and describes the acceleration
uncertainty throughout the gait. Its covariance matrix Ck
is a 4x4 diagonal matrix with diagonal elements σ2

aL
x
,σ2

aL
y

σ2
aR

x
,σ2

aR
y
, which are the variances of the legs’ accelerations



along the axes. The acceleration influences the model as
noise. Since we are using the information for the variability
of the system’s input Ck to define the process noise, the
matrix Qk is computed by the relation: Qk = Bk ·Ck ·Bk

T .
The standard deviations of the measurement noise vk along
the axes are v2

xk
and v2

yk
for both legs, which are the diagonal

elements of the 4x4 diagonal matrix Rk.
The predictions from the KF are used as seed for the K-

means++ algorithm, [35]. Around the predicted positions of
the legs, leg-windows are set, having initial constant dimen-
sions proportional to the leg-circle’s dimensions. However,
the leg-windows dimensions are also adaptively adjusted, by
enlarging or shortening them according to the variability of
the KF estimates. From the two leg-windows, a wider search
window is defined in the plane, and the detected raw data
inside it, are ready to be preprocessed. Thus, the described
process results in an iterative interaction between detection
and tracking processes.

D. False Detection Treatment

False detections are the cases in which either one leg is
occluded by the other or there is interference of another
person’s legs inside the search window that have not been
successfully discarded, Fig. 3. Those cases can interrupt or
contaminate the detection and can result in losing track of
the legs. To address such false detections, certain hypotheses
are checked. If the detected leg centers violate a Euclidean
distance constraint that we have set, relevant to the mean
pelvic width, or when there are detected less or more than
two laser groups, the corresponding detection is regarded
false. In order to continue with the tracking phase, an only-
prediction Kalman filter is applied. In that particular case,
we perform only the prediction step and, following the usual
literature method, we use the prediction state vector x̂k|k−1
and the a priori estimate covariance Pk|k−1 as the estimates
fed to the next step, disregarding the observations for time
frame k.

V. EXPERIMENTAL ANALYSIS & EVALUATION

A. Experiment and data description

The experimental data used in this paper were collected
using a HOKUYO rapid laser sensor (UBG-04LX-F01, with
mean sampling period of about 28ms) mounted on the robotic
rollator of Fig. 1. For the evaluation of our algorithmic
procedure, we have used the recorded data of six patients
(over 65 years old) performing a scenario during which the
user, with physical support of the rollator, walks straight
with maximum and constant velocity over a walkway. All
participants are persons with mild motion impairment, that
they were wearing their normal clothes (no need of specific
clothing). The experimental procedure has been performed in
a Geriatric Hospital, under appropriate carer’s supervision.
The length of the path differs depending on the subjects
ability to walk. The subjects were instructed to walk as
normally as possible. This results in a different walking speed
for each subject, and in a different step length. A sequence
of video snapshots of the experimental recordings procedure

during a full stride1 execution from subjects are presented in
Fig. 4. The motion caption markers in those snapshots are
not used in the current framework for simplicity.

B. Evaluation Results: Detection and Tracking

In this section we have evaluated the successful per-
formance of our system for the detection and tracking of
patients’ legs, which is a perquisite for modelling the gait
cycle phases. All the noise parameters for Kalman Filter
tuning and the other constants and thresholds of the detection
and tracking system have been experimentally computed for
the particular patient-dataset. In Fig. 5, six snapshots from
one stride along with the detected user’s legs are depicted.
The subfigures correspond to the gait phases: (a) LR, (b) MS,
(c) TS, (d) PW, (e) IW, (f) MW, accordingly. Each figure
shows a wide planar area in front of the laser scanner. The
raw laser data are depicted with blue stars, presenting both
the leg clusters and outliers, while the magenta circles are
the fitted circles of the legs clusters. The black rectangle
enclosing the legs circles represents the search window for
each scanning frame. Finally, the detected leg centers are
depicted with black x’s and their estimated positions with
green x’s.

For the detection process, our algorithmic approach, for
the six patients that performed the described scenario, re-
sulted in 100% successful detection for four patients, while
the other two patients had 94.2% and 96.9% success. In those
two cases we noticed false detection of the user’s legs, due
to occlusion while turning or due to the proximal position
of the carer’s legs which are included in the search window.
While we lose detection, the tracking of the patient’s legs
is not lost since we are using the False detection treatment
routine, which was described previously.

For the evaluation of how much KF estimated positions
improve the detected leg centers, we computed the Root
Mean Square Errors (RMSE). The average RMSE for each
leg, computed by comparing the detected and estimated
positions were 1.96mm for the x coordinate (lateral motion)
and 1.4mm for the y coordinate (forward motion). In the
lateral plane, there is greater uncertainty due to the leg
clusters shape deformability and length variability. In the
absence of ground truth, we cannot evaluate accurately
these errors. However, the smoothing effect of KF can be
ascertained by Fig. 6, which presents an example of the
detected and estimated leg positions for the lateral and
forward motion with respect to the scanning frame for one
patient. The green and magenta lines represent the detected
leg centers’ displacement, while the red and blue stars their
estimated displacement along the axes for the right and left
leg accordingly. The depicted results confirm the filtering
efficiency of the KF on the detected leg centers, by removing
noisy peaks, especially in the lateral displacement caused by
the laser cluster’s shape and length variability, while walking
with respect to the laser scanner.

1Stride is the equivalent of gait cycle, i.e. two sequential steps define one
stride, [33].



Fig. 4: A sequence of snapshots during a full stride execution
from a female subject. From left to right images: Loading
Response, Terminal Stance, Pre-swing, and Terminal Swing.

C. Evaluation Results: Gait recognition

HMM training procedure comprises only a part of sub-
jects’ data, excluding the recorded data of one subject.
The testing procedure aims to test the performance of the
proposed approach, validating its generalisation capacity over
unseen data obtained by new subjects. The evaluation is
based on an assessment of the estimated states provided
by the constructed HMM, which represents the human gait
cycle. The experimental results were done by using only one
Gaussian mixture (for simplicity).

For testing and evaluation purposes of the constructed
HMM, we have demonstrated an example of the real ex-
perimental data set which is depicted in Fig. 7a. The goal
of this evaluation phase is to unveil the hidden parts of the
constructed models, i.e. to estimate the correct sequence of
phase transitions that occur in the test data. This test dataset
reflects the gait session of one elderly subject, and comprises
about eleven walking sections (about eleven strides1). In this
figure the displacement of each leg in the sagittal plane
with respect to time is depicted on the top graph, while the
bottom graph shows the evolution of the distance between
legs within the same time frame. This figure is very useful to
understand the exact subject’s motion. The walking session is
starting with the left leg, and it is obvious from the increasing
of the distance between the legs that the early gait phases
are occurred, Fig. 7a. While this distance is going to zero
(crossing point) the right leg is moving forward until the
next crossing point. It can be observed that the first stride is
completed close to 2sec. This is observable to the results of
the constructed HMM in Fig. 7b, since at the time instant
just before 2sec, a gait cycle is completed by the recognized
MW phase.

The estimated sequence of gait phases obtained using the
trained model is depicted in Fig. 7b. This figure shows the
time instant at which each gait phase (hidden state of HMM)
is activated. A first remark that can be made by observing
these experimental results is that the evolution of the gait
phases provided by the models matches the general evolution
of the human gait model that is to be represented by the
HMMs; i.e. the gait phases appear sequentially with the
correct order, and the time frame of each phase is within the
general bounds as have been mentioned previously in Section
II. It is obvious that some of the gait phases are omitted,
since these experimental data corresponds to a subject with
walking difficulties related to an underlying pathology. Some
of the gait phases seem to be difficult to be recognized for
the specific experimental data set (patient). Also, it is known,

(a) LR (b) MS (c) TS

(d) PW (e) IW (f) MW

Fig. 5: Snapshots from a stride with respect to the laser,
showing the results of the detection and tracking process

(a) Detected and estimated legs
lateral displacement

(b) Detected and estimated legs
forward displacement

Fig. 6: Example of detected and estimated lateral and forward
legs’ displacement w.r.t. the laser scanning frame

(a) (b)

Fig. 7: (a) Real experimental data from one subject’s gait
that have been used in the testing and evaluation phase of
constructed HMM. Top: Left (blue data) and Right (red data)
legs displacement. Bottom: legs distance in the sagittal plane.
(b) Estimated sequence of gait states based on the constructed
model with respect to time by testing the data depicted in
left figure which represent an unknown walking section.

that specific pathologies may affect the walking activity in an
indistinct way, that reflects accidental the gait performance
and the appearance of gait phases.

There is an assumption, without loss of generality, that
at the beginning of each gait cycle the initial contact refers
to the left leg, while a complete stride is concluded when
the right leg is again in front of the left leg, ready for
a new initial contact and therefore for the next stride. By
observing the results depicted in Fig. 7b, it can be seen that
the model manages to successfully recognize that (for the
recorded experimental data of Fig. 7a, used in this case study
for model testing) the subject starts the motion with the left
leg. Thus, the first estimated gait phase in Fig. 7b is Initial
Contact (IC).

Another remark concerns the terminal instant of the
motion. At the end of the recorded test data of Fig. 7a



(after 16sec), it can be seen that the motion is terminated
approximately at the beginning of a stride (start a new stride
with the left leg). Indeed, as shown in Fig. 7b, the model
correctly recognizes that the motion corresponding to the
test data of Fig. 7a is terminated (after 16sec) in a phase
at the beginning of a gait cycle (IC in Fig. 7b). The results
show that the constructed model recognizes the pathological
gait.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, a framework to represent and analyse human

pathological gait using a Hidden Markov Model (HMM)
is presented. The HMM employed in this work analyses
gait phases by using the features estimated by a forward
backward system of detection and tracking of the patients’
legs from raw data provided by a typical laser rangefinder
sensor, thus constituting a completely noninvasive approach
using a non-wearable device. The proposed pathological gait
modeling method has been applied to actual patient gait
data. The successful estimation of the gait parameters fed
the gait analysis system. The experimental results clearly
show that this method is capable of correctly recognizing
human pathological gait cycle patterns. Furthermore, this
approach, based on its statistical learning properties, is quite
flexible and readily extensible to different gait models, thus
presenting a strong potential to support a behaviour-based
cognitive robot control framework.

For further research, we will investigate the potential to
apply this methodology to the classification problem between
normal and pathological walking pattern. Therefore, a variety
of abnormal gaits (corresponding to specific motor impair-
ments) can be characterized by different models. Further-
more, within our future plans is to model more gait patterns
based on HMM, regarding turning motions during indoor
ambulation, as well as more complicated and maneuvering
motions that appear in daily activities. Towards this end we
are working on a new detection and tracking system based
on particle filtering. The aim is to create a system that can
detect in real time specific gait pathologies and automatically
classify the patient status or the rehabilitation progress, thus
providing the necessary information for effective cognitive
(context-aware) active mobility assistance robots.
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