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Abstract. Neural networks have traditionally relied on mostly linear
models, such as the multiply-accumulate architecture of a linear percep-
tron that remains the dominant paradigm of neuronal computation. How-
ever, from a biological standpoint, neuron activity may as well involve
inherently nonlinear and competitive operations. Mathematical morphol-
ogy and minimax algebra provide the necessary background in the study
of neural networks made up from these kinds of nonlinear units. This
paper deals with such a model, called the morphological perceptron. We
study some of its geometrical properties and introduce a training algo-
rithm for binary classification. We point out the relationship between
morphological classifiers and the recent field of tropical geometry, which
enables us to obtain a precise bound on the number of linear regions of
the maxout unit, a popular choice for deep neural networks introduced
recently. Finally, we present some relevant numerical results.

Keywords: Mathematical morphology · Neural networks · Machine
learning · Tropical geometry · Optimization

1 Introduction

In traditional literature on pattern recognition and machine learning, the so-
called perceptron, introduced by Rosenblatt [21], has been the dominant model
of neuronal computation. A neuron is a computational unit whose activation is
a “multiply-accumulate” product of the input and a set of associated synaptic
weights, optionally fed through a non-linearity. This model has been challenged
in terms of both biological and mathematical plausibility by the morphologi-
cal paradigm, widely used in computer vision and related disciplines. This has
lately attracted a stronger interest from researchers in computational intelli-
gence motivating further theoretical and practical advances in morphological
neural networks, despite the fact that learning methods based on lattice alge-
bra and mathematical morphology can be traced back to at least as far as the
90s (e.g. [6,19]).

In this paper, we re-visit the model of the morphological perceptron [24] in
Sect. 3 and relate it with the framework of (max,+) and (min,+) algebras. In
Sect. 3.1, we investigate its potential as a classifier, providing some fundamen-
tal geometric insight. We present a training algorithm for binary classification
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that uses the Convex-Concave Procedure and a more robust variant utilizing
a simple form of outlier ablation. We also consider more general models such
as maxout activations [11], relating the number of linear regions of a maxout
unit with the Newton Polytope of its activation function, in Sect. 4. Finally, in
Sect. 5, we present some experimental results pertinent to the efficiency of our
proposed algorithm and provide some insight on the use of morphological layers
in multilayer architectures.

We briefly describe the notation that we use. Denoting by IR the line of real
numbers, (−∞,∞), let IRmax = IR ∪ {−∞} and IRmin = IR ∪ {∞}. We use
lowercase symbols for scalars (like x), lowercase symbols in boldface for vectors
(like w) and uppercase symbols in boldface for matrices (like A). Vectors are
assumed to be column vectors, unless explicitly stated otherwise.

We will focus on the (max,+) semiring, which is the semiring with under-
lying set IRmax, using max as its binary “addition” and + as its binary “multi-
plication”. We may also refer to the (min,+) semiring which has an analogous
definition, while the two semirings are actually isomorphic by the trivial map-
ping φ(x) = −x. Both fall under the category of idempotent semirings [10], and
are considered examples of so-called tropical semirings.1

Finally, we will use the symbol � to refer to matrix and vector “multiplica-
tion” in (max,+) algebra and �′ for its dual in (min,+) algebra, following the
convention established in [15]. Formally, we can define matrix multiplication as:

(A � B)ij =
k∨

q=1

Aiq + Bqj (A �′ B)ij =
k∧

q=1

Aiq + Bqj (1)

for matrices of compatible dimensions.

2 Related Work

In [20], the authors argued about the biological plausibility of nonlinear
responses, such as those introduced in Sect. 3. They proposed neurons comput-
ing max-sums and min-sums in an effort to mimic the response of a dendrite
in a biological system, and showed that networks built from such neurons can
approximate any compact region in Euclidean space within any desired degree of
accuracy. They also presented a constructive algorithm for binary classification.
Sussner and Esmi [24] introduced an algorithm based on competitive learning,
combining morphological neurons to enclose training patterns in bounding boxes,
achieving low response times and independence from the order by which training
patterns are presented to the training procedure.

1 The term “tropical” was playfully introduced by French mathematicians in honor
of the Brazilian theoretical computer scientist, Imre Simon. Another example of
a tropical semiring is the (max,×) semiring, also referred to as the subtropical
semiring.
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Yang and Maragos [29] introduced the class of min-max classifiers, boolean-
valued functions appearing as thresholded minima of maximum terms or maxima
of minimum terms:

fmax-min(x1, x2, . . . xd) =
∧

j

∨

i∈Ij

li, li ∈ {xi, 1 − xi} (2)

and vice-versa for fmin-max. In the above, Ij is the set of indices corresponding
to term j. These classifiers produce decision regions similar to those formed by
a (max,+) or (min,+) perceptron.

Barrera et al. [3] tried to tackle the problem of statistically optimal design
for set operators on binary images, consisting of morphological operators on
sets. They introduced an interval splitting procedure for learning boolean con-
cepts and applied it to binary image analysis, such as edge detection or texture
recognition.

With the exception of [29], the above introduce constructive training algo-
rithms which may produce complex decision regions, as they fit models precisely
to the training set. They may create superfluous decision areas to include out-
liers that might be disregarded when using gradient based training methods, a
fact that motivates the work in Sect. 3.2.

Ina recent technical report,GärtnerandJaggi [8]proposedtheconceptofa trop-
ical support vector machine. Its response and j-th decision region are given by:

y(x ) =
n∧

i=1

wi + xi , Rj(x ) = {x : wj + xj ≤ wi + xi,∀i} (3)

instead of a “classical” decision region (e.g. definedby somediscriminant function).
Cuninghame-Green’s work on minimax algebra [5] provides much of the

matrix-vector framework for the finite-dimensional morphological paradigm.
A fundamental result behind Sussner and Valle’s article [25] on morphological
analogues of classical associative memories such as the Hopfield network, states
that the “closest” under-approximation of a target vector b by a max-product in
the form A � x can be found by the so-called principal solution of a max-linear
equation.

Theorem 1. [5] If A ∈ IRm×n
max , b ∈ IRm

max, then

x = A� �′ b (A� � −AT ) (4)

is the greatest solution to A � x ≤ b, and furthermore A � x = b has a solution
if and only if x is a solution.2

2 The matrix −AT , often denoted by A� in the tropical geometry community, is some-
times called the Cuninghame-Green inverse of A.



6 V. Charisopoulos and P. Maragos

3 The Morphological Perceptron

Classical literature defines the perceptron as a computational unit with a linear
activation possibly fed into a non-linearity. Its output is the result of the appli-
cation of an activation function, that is usually nonlinear, to its activation φ(x ).
Popular examples are the logistic sigmoid function or the rectifier linear unit,
which has grown in popularity among deep learning practitioners [17]. For the
morphological neuron, in [20], its response to an input x ∈ IRn is given by

τ(x ) = p ·
n∨

i=1

ri(xi + wi) , τ ′(x ) = p ·
n∧

i=1

ri(xi + mi) (5)

for the cases of the (max,+) and (min,+) semirings respectively. Parameters
ri and p take values in {+1,−1} depending on whether the synapses and the
output are excitatory or inhibitory. We adopt a much simpler version:

Definition 1. (Morphological Perceptron). Given an input vector x ∈
IRn

max, the morphological perceptron associated with weight vector w ∈ IRn
max

and activation bias w0 ∈ IRmax computes the activation

τ(x) = w0 ∨ (w1 + x1) ∨ · · · ∨ (wn + xn) = w0 ∨
(

n∨

i=1

wi + xi

)
(6)

We may define a “dual” model on the (min,+) semiring, as the perceptron with
parameters m ∈ IRn

min,m0 ∈ IRmin that computes the activation

τ ′(x) = m0 ∧ (m1 + x1) ∧ · · · ∧ (mn + xn) = m0 ∧
(

n∧

i=1

mi + xi

)
(7)

The models defined by (6, 7) may also be referred to as (max,+) and (min,+)
perceptron, respectively. They can be treated as instances of morphological fil-
ters [14,22], as they define a (grayscale) dilation and erosion over a finite win-
dow, computed at a certain point in space or time. Note that τ(x ) is a nonlinear,
convex (as piecewise maximum of affine functions) function of x ,w that is con-
tinuous everywhere, but not differentiable everywhere (points where multiple
terms maximize τ(x ) are singular).

3.1 Geometry of a (max, +) Perceptron for Binary Classification

Let us now put the morphological perceptron into the context of binary classi-
fication. We will first try to investigate the perceptron’s geometrical properties
drawing some background from tropical geometry.

Let X ∈ IRk×n
max be a matrix containing the patterns to be classified as its

rows, let x (k) denote the k-th pattern (row) and let C1, C0 be the two classes
of the relevant decision problem. Without loss of generality, we may choose
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yk = 1 if x (k) ∈ C1 and yk = −1 if x (k) ∈ C0. Using the notation in (1), the
(max,+) perceptron with parameter vector w computes the output

τ(x ) = wT � x (8)

Note that the variant we study here has no activation bias (w0 = −∞). If we
assign class labels to patterns based on the sign function, we have τ(x ) > 0 ⇒
x ∈ C1, τ(x ) < 0 ⇒ x ∈ C0. Therefore, the decision regions formed by that
perceptron have the form

R1 := {x ∈ IRn
max : wT � x ≥ 0}, R0 := {x ∈ IRn

max : wT � x ≤ 0} (9)

As it turns out, these inequalities are collections of so called affine tropical half-
spaces and define tropical polyhedra [9,13], which we will now introduce.

Definition 2 (Affine tropical halfspace). Let a, b ∈ IRn+1
max. An affine trop-

ical halfspace is a subset of IRn
max defined by

T (a, b) :=

{
x ∈ IRn

max :

(
n∨

i=1

ai + xi

)
∨ an+1 ≥

(
n∨

i=1

bi + xi

)
∨ bn+1

}
(10)

We can further assume that min(ai, bi) = −∞ ∀i ∈ {1, 2, . . . , n + 1}, as per [9,
Lemma 1].

A tropical polyhedron is the intersection of finitely many tropical halfspaces (and
comes in signed and unsigned variants, as in [1]). In our context, we will deal
with tropical polyhedra like the following: assume A ∈ IRm×n

max ,B ∈ IRk×n
max , c ∈

IRm
max and d ∈ IRk

max. The inequalities

A � x ≥ c , B � x ≤ d (11)

define a subset P ⊆ IRn
max that is a tropical polyhedron, which can be empty if

some of the inequalities cannot be satisfied, leading us to our first remark.

Proposition 1 (Feasible Regions are Tropical Polyhedra). Let X ∈
IRk×n

max be a matrix containing input patterns of dimension n as its rows, par-
titioned into two distinct matrices Xpos and Xneg, which contain all patterns of
classes C1, C0 respectively. Let T be the tropical polyhedron defined by

T (Xpos,Xneg) = {w ∈ IRn
max : Xpos � w ≥ 0, Xneg � w ≤ 0} (12)

Patterns Xpos,Xneg can be completely separated by a (max,+) perceptron if and
only if T is nonempty.

Remark 1. In [9], it has been shown that the question of a tropical polyhedron
being nonempty is polynomially equivalent to an associated mean payoff game
having a winning initial state.

Using the notion of the Cuninghame-Green inverse from Theorem 1, we can
restate the separability condition in Proposition 1. As we know that w = X �

neg�′

0 is the greatest solution to X neg � w ≤ 0 , that condition is equivalent to

X pos � (X �
neg �′ 0 ) ≥ 0 (13)
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3.2 A Training Algorithm Based on the Convex-Concave Procedure

In this section, we present a training algorithm that uses the Convex-Concave
Procedure [30] in a manner similar to how traditional Support Vector Machines
use convex optimization to determine the optimal weight assignment for a binary
classification problem. It is possible to state an optimization problem with a
convex cost function and constraints that consist of inequalities of difference-
of-convex (DC) functions. Such optimization problems can be solved (at least
approximately) by the Convex-Concave Procedure.

Minimize J(X ,w) =
K∑

k=1

max(ξk, 0)

s. t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n∨

i=1

wi + x
(k)
i ≤ ξk if x (k) ∈ C0

n∨

i=1

wi + x
(k)
i ≥ −ξk if x (k) ∈ C1

(14)

The slack variables ξk in the constraints are used to ensure that only misclassi-
fied patterns will contribute to J . In our implementation, we use [23, Algorithm
1.1], utilizing the authors’ DCCP library that extends CvxPy [7], a modelling lan-
guage for convex optimization in Python. An application on separable patterns
generated from a Gaussian distribution can be seen in Fig. 1.
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Fig. 1. Decision surface
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So far, we have not addressed the case where patterns are not separable or
contain “abnormal” entries and outliers. Although many ways have been pro-
posed to deal with the presence of outliers [28], the method we used to overcome
this was to “penalize” patterns with greater chances of being outliers. We intro-
duce a simple weighting scheme that assigns, to each pattern, a factor that is
inversely proportional to its distance (measured by some �p-norm) from its class’s
centroid.
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μi :=
1

|Ci|
∑

x (k)∈Ci

x (k), λk :=
1

||x (k) − μi||p
(15)

νk :=
λk

maxk λk
(16)

Equation (16) above serves as a normalization step that scales all λk in the (0, 1]
range. We arrive at a reformulated optimization problem which can be stated as

Minimize J(X ,w ,ν) =
K∑

k=1

νk · max(ξk, 0)

s. t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n∨

i=1

wi + x
(k)
i ≤ ξk if x (k) ∈ C0

n∨

i=1

wi + x
(k)
i ≥ −ξk if x (k) ∈ C1

(17)

To illustrate the practical benefits of this method (which we will refer to as
WDccp), we use both versions of the optimization problem on a set of randomly
generated data which is initially separable but then a percentage r of its class labels
is flipped. Comparative results for a series of percentages r are found in Fig. 2. The
results for r = 20% can be seen in Fig. 3, with the dashed line representing the
weights found by WDccp. This weighting method can be extended to complex or
heterogeneous data; for example, one could try and fit a set of patterns to a mixture
of Gaussians or perform clustering to obtain the coefficients ν.

It is possible to generalize the morphological perceptron to combinations of
dilations (max-terms) and erosions (min-terms). In [2], the authors introduce
the Dilation-Erosion Linear Perceptron, which contains a convex combination of
a dilation and an erosion, as:

M(x ) = λτ(x ) + (1 − λ)τ ′(x ), λ ∈ [0, 1] (18)

plus a linear term, employing gradient descent for training. The formulation
in (17) can be used here too, as constraints in difference-of-convex programming
can be (assuming fi convex):
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Fig. 3. Optimal weights found
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Fig. 4. Newt(p) of Eq. (23)
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fi(x ) − gi(x ) ≤ 0, gi convex, or fi(x ) + g′
i(x ) ≤ 0, g′

i concave (19)

This observation is exploited in the first experiment of Sect. 5.

4 Geometric Interpretation of Maxout Units

Maxout units were introduced by Goodfellow et al. [11]. A maxout unit is asso-
ciated with a weight matrix W ∈ IRk×n

max as well as an activation bias vector
b ∈ IRk

max. Given an input pattern x ∈ IRn
max and denoting by W j,: the j-th

row vector of W , a maxout unit computes the following activation:

h(x ) =
k∨

j=1

W j,:x + bj =
k∨

j=1

[(
n∑

i=1

Wjixi

)
+ bj

]
(20)

Essentially, a maxout unit generalizes the morphological perceptron using k
terms (referred to as the unit’s rank) that involve affine expressions. In tropical
algebra, such expressions are called tropical polynomials [13] or maxpolynomi-
als [4] when specifically referring to the (max,+) semiring. In [16], maxout units
are investigated geometrically in an effort to obtain bounds for the number of
linear regions of a deep neural network with maxout layers:

Proposition 2 ([16], Proposition 7). The maximal number of linear regions
of a single layer maxout network with n inputs and m outputs of rank k is lower
bounded by kmin(n,m) and upper bounded by min

{∑n
j=0

(
k2m

j

)
, km

}
.

This result readily applies to layers consisting of (max,+) perceptrons, as a
(max,+) perceptron has rank k = n.

For a maxout unit of rank k, the authors argued that the number of its
linear regions is exactly k if every term is maximal at some point. We provide
an exact result using tools from tropical geometry; namely, the Newton Polytope
of a maxpolynomial. For definitions and fundamental results on polytopes the
reader is referred to [31]; we kick off our investigation omitting the presence of
the bias term bj as seen in (20).

Definition 3 (Newton Polytope). Let p : IRn
max → IRmax be a maxpolynomial

with k terms, given by

p(x) = max
i∈1,2,...,k

{ci1x1 + ci2x2 + · · · + cinxn} =
k∨

i=1

cT
i x (21)

The Newton Polytope of p is the convex hull of the coefficient vectors ci:

Newt(p) = conv{ci : i ∈ 1, . . . , k} = conv{(ci1, ci2, . . . cin) : i ∈ 1, . . . , k} (22)
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For an illustrative example, see Fig. 4. The maxpolynomial in question is

p(x ) = 0 ∨ (x + y) ∨ 3x ∨ (2x + 2y) ∨ 3y (23)

and its terms can be matched to the coefficient vectors (0, 0), (1, 1), (3, 0), (2, 2)
and (0, 3) respectively. The Newton Polytope’s vertices give us information about
the number of linear regions of the associated maxpolynomial:

Proposition 3. Let p(x) be a maxout unit with activation given by (21). The
number of p’s linear regions is equal to the number of vertices of its Newton
Polytope, Newt(p).

Proof. A proof can be given using the fundamental theorem of Linear Program-
ming [26, Theorem 3.4]. Consider the linear program:

Maximize xTc

s.t. c ∈ Newt(p) (24)

Note that, for our purposes, c is the variable to be optimized. Letting c run
over assignments of coefficient vectors, we know that for every x , Problem (24)
is a linear program for which the maximum is attained at one of the vertices
of Newt(p). Therefore, points ci ∈ int(Newt(p)) map to coefficient vectors of
non-maximal terms of p. 
�

By Proposition 3, we conclude that the term x + y can be omitted from p(x )
in (23) without altering it as a function of x . Proposition 3 can be extended to
maxpolynomials with constant terms, such as maxout units with bias terms bj .
Let the extended Newton Polytope be

p(x ) =
k∨

j=1

bj + cT
j x ⇒ Newt(p) = conv {(bj , cj) : j ∈ 1, . . . , k} (25)

Let c′ = (b, c) and x ′ = (1,x ). Note that the relevant linear program is now

Maximize (x ′)Tc′

s.t. c′ ∈ Newt(p) (26)

The optimal solutions of this program lie in the upper hull of Newt(p), Newtmax(p),
with respect to b. For a convex polytope P , its upper hull is

Pmax := {(λ,x ) ∈ P : (t,x ) ∈ P ⇒ t ≤ λ} (27)

Therefore, the number of linear regions of a maxout unit given by (20) is equal to
the number of vertices on the upper hull of its Newton Polytope. Those results
are easily extended for the following models:
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Proposition 4. Let h1, . . . hm be a collection of maxpolynomials. Let

g∨(x) =
m∨

i=1

hi(x), g+(x) =
m∑

i=1

hi(x) (28)

The Newton Polytopes of the functions defined above are

Newt(g∨) = conv(Newt(h1), . . . Newt(hm)) (29)
Newt(g+) = Newt(h1) ⊕ Newt(h2) · · · ⊕ Newt(hm) (30)

where ⊕ denotes the Minkowski sum of the Newton Polytopes.

5 Experiments

In this section, we present results from a few numerical experiments conducted
to examine the efficiency of our proposed algorithm and the behavior of mor-
phological units as parts of a multilayer neural network.

5.1 Evaluation of the WDCCP Method

Our first experiment uses a dilation-erosion or max-min morphological percep-
tron, whose response is given by

y(x ) = λ

(
n∨

i=1

wi + xi

)
+ (1 − λ)

(
n∧

i=1

mi + xi

)
(31)

We set λ = 0.5 and trained it using both stochastic gradient descent with MSE
cost and learning rate η (Sgd) as well as the WDccp method on Ripley’s Syn-
thetic Dataset [18] and the Wisconsin Breast Cancer Dataset [27]. Both are
2-class, non-separable datasets. For simplicity, we fixed the number of epochs
for the gradient method at 100 and set τmax = 0.01 and stopping criterion
ε ≤ 10−3 for the WDccp method. We repeated each experiment 50 times to
obtain mean and standard deviation for its classification accuracy, shown in
Table 1. On all cases, the WDccp method required less than 10 iterations to
converge and exhibited far better results than gradient descent. The negligible
standard deviation of its accuracy hints towards robustness in comparison to
other methods.

5.2 Layers Using Morphological Perceptrons

We experimented on the MNIST dataset of handwritten digits [12] to investigate
how morphological units behave when incorporated in layers of neural networks.
After some unsuccessful attempts using a single-layer network, we settled on the
following architecture: a layer of n1 linear units followed by a (max,+) output
layer of 10 units with softmax activations. The case for n1 = 64 is illuminating,
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Table 1. Ripleys/WDBC test set results

η Ripleys WDBC

Sgd WDccp Sgd WDccp

0.01 0.838± 0.011 0.902
±0.001

0.726± 0.002 0.908
±0.001

0.02 0.739± 0.012 0.763± 0.006
0.03 0.827± 0.008 0.726± 0.004
0.04 0.834± 0.008 0.751± 0.007
0.05 0.800± 0.009 0.783± 0.012
0.06 0.785± 0.008 0.768± 0.01
0.07 0.776± 0.009 0.729± 0.009
0.08 0.769± 0.01 0.732± 0.01
0.09 0.799± 0.009 0.730± 0.015
0.1 0.749± 0.011 0.729± 0.009
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Fig. 5. Dilation layer
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Fig. 6. Active filters

as we decided to plot the morphological filters as grayscale images shown in
Fig. 5. Plotting the linear units resulted in noisy images except for those shown
in Fig. 6, corresponding to maximal weights in the dilation layer. The dilation
layer takes into account just one or two linear activation units per digit (pictured
as bright dots), so we re-evaluated the accuracy after “deactivating” the rest of
them, obtaining the same accuracy, as shown in Table 2.

Table 2. MNIST results

Layer n1 Accuracy Accuracy without “dead” units # Active filters

24 84.29% 84.28% 17

32 84.84% 84.85% 15

48 84.63% 84.61% 18

64 92.1% 92.07% 10

6 Conclusions and Future Work

In this paper, we examined some properties and the behavior of morphological
classifiers and introduced a training algorithm based on a well-studied optimiza-
tion problem. We aim to further investigate the potential of both ours and other
models, such as that proposed in [8]. A natural next step would be to examine
their performance as parts of deeper architectures, possibly taking advantage of
their tendency towards sparse activations to simplify the resulting networks.

The subtle connections with tropical geometry that we were able to identify
make us believe that it could also aid others in the effort to study fundamental
properties of deep, nonlinear architectures. We hope that the results of this paper
will further motivate researchers active in those areas towards that end.
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4. Butkovič, P.: Max-linear Systems: Theory and Algorithms. Springer Science &
Business Media, Heidelberg (2010)

5. Cuninghame-Green, R.A.: Minimax Algebra. Lecture Notes in Economics and
Mathematical Systems, vol. 166. Springer, Heidelberg (1979)

6. Davidson, J.L., Hummer, F.: Morphology neural networks: an introduction with
applications. Circ. Syst. Sig. Process. 12(2), 177–210 (1993)

7. Diamond, S., Boyd, S.: CVXPY: a Python-embedded modeling language for convex
optimization. J. Mach. Learn. Res. 17(83), 1–5 (2016)
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