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ABSTRACT

In this paper, we investigate the use of articulatory informa-
tion, and more specifically real time Magnetic Resonance
Imaging (rtMRI) data of the vocal tract, to improve speech
recognition performance. For the purpose of our experiments,
we use data from the rtMRI-TIMIT database. Firstly, Scale
Invariant Feature Transform (SIFT) features are extracted for
each video frame. Afterwards, the SIFT descriptors of each
frame are transformed to a single histogram per picture, by
using the Bag of Visual Words methodology. Since this kind
of articulatory information is difficult to acquire in typical
speech recognition setups we only consider it to be available
in the training phase. Thus, we use a multi-view setup ap-
proach by applying Canonical Correlation Analysis (CCA) to
visual and audio data. By using the transformation matrix,
acquired during the training stage, we transform both train
and test audio data to produce MFCC-articulatory features,
which form the input for the recognition system. Experimen-
tal results demonstrate improvements in phone recognition in
comparison with the audio-based baseline.

Index Terms— SIFT features, Canonical Correlation
Analysis, Bag of Visual Words, multi-view, rtMRI-TIMIT

1. INTRODUCTION
Speech recognition systems, by harnessing the power of deep
neural networks, have achieved significant performance gains
in recent years. However, there is still room for improvement,
especially when the acoustic conditions are not ideal, as for
example, when there is background noise or reverberation.
To overcome these problems, various approaches have been
proposed, quite a few of which are based on the successful
exploitation of another modality, e.g., facial information, that
may be available in parallel with audio during speech produc-
tion. For example, visual features from the face, like Dis-
crete Cosine Transform (DCT), Discrete Wavelet Transform
(DWT), and Active Appearance Model coefficients combined
with audio features have been used in audiovisual recognition
setups to lower recognition error [1, 2]. There is also great
interest around articulatory information, in the form of, e.g.,
Electromagnetic Articulography (EMA), X-ray Microbeam

(XRMB), and real-time MRI data of the vocal tract, and how
it could benefit speech technologies [3]. In this direction, we
particularly focus on rt-MRI data of speech production and
use them to improve speech recognition performance.

Our proposed scheme is based on the multi-view ap-
proach. The main idea is about employing different kinds of
measurements (views) gathered at the same time and for the
same task, with the goal to use one of the views to train ef-
fective transformations of the other view. Usually, two views
are used but this is not mandatory. For speech recognition,
popular views are audio with visual or articulatory features.
Another option is to use the labels themselves but in practice
this is not very common. In contrast to multi-modal setups,
multi-view can handle data with two views, one of which is
possibly available only at the training phase. Usually, CCA
is used for the transformation to be learned. Such a setup
was firstly used in [4] for speaker recognition. Similar setups
have been used with success for speech recognition like in [5]
which uses the XRMB database. In this paper we adapt this
technique to the rtMRI-TIMIT [6] dataset. Although the MRI
image quality is not very good, we expect to improve audio-
based speech recognition results as the view of the entire
vocal tract which is available in this dataset is expected to
provide (to some degree) complementary information to the
audio stream. The rtMRI-TIMIT database has also been used
for phone classification in [7] but the classification in that
case is only broad and requires human interaction for placing
a masks on each speaker’s midsagittal view by manually lo-
cating the nose of the speaker at the start of each utterance.
To the best of our knowledge, we are unaware of any previous
work on the MRI-TIMIT database for phone recognition that
requires no human involvement.

In our study, the SIFT features are used for describing
each video frame. By applying the Bag of Visual Words
technique we transform those descriptors into one histogram
per image. We extract MFCCs which are, together with the
visual-articulatory histograms, the two views of our experi-
ment. Finally we employ the multi-view setup using CCA.
Experimental results demonstrate improvements in phone
recognition in comparison with the audio-based baseline.



2. METHODS
The proposed feature extraction scheme essentially comprises
two main components: a) the visual feature extraction mod-
ule, generating a Bag-of-Words representation of SIFT fea-
tures, and b) the fusion module to properly combine audio
and articulatory/visual features. The acoustic features for a
single frame are enhanced with their CCA-transformed vari-
ant and together they form the speech recognition input at the
frame-level, see Fig. 1.

2.1. SIFT features
In our approach, we employ the SIFT features [8] which are
robust, scale invariant, and are optimal for matching under
different types of invariances [9]. Hence, we expect that head
movements or blurring due to poor image quality will not in-
fluence recognition results. It has also been discovered that
SIFT-like features give the best results on image classifica-
tion [10]. Moreover, SIFT will catch the movement of dif-
ferent parts of the vocal tract like the tongue. Another inter-
esting choice of features to use, which are also robust and
scale invariant, are the Speed Up Robust Features (SURF)
features [11]. However good the SURF features may be at
object tracking, taking into account the time it takes to be
computed, SIFT appear to be a better choice [12]. Even if
SIFT are computationally costly in general, this is not really a
problem for the rtMRI-TIMIT database which has relatively
low resolution.

Generally, to compute the detectors, SIFT algorithm cre-
ates different versions of a given image by applying Gaussian
filtering with various values of σ. The Difference of Gaus-
sians (DoG) is computed, by subtracting each image from the
one with the closest higher value of σ. Every point of the
images produced this way, is compared with its neighboring
points in a 3× 3 grid and with the corresponding ones of the
grid on the new images for one values of σ up and down,
meaning that each point is compared with 8 + 9 + 9 = 26
points and labeled as extrema keypoint if its value is mini-
mum or maximum among its neighborhood. Some of them
are discarded for better matching results. For the remaining
keypoints, orientation θ and gradient magnitude m are com-
puted in the neighboring region and combined to form the
final orientation of the keypoint. In Figure 2, the center of
each circle correspond to the final keypoints, while the size of
the circle and the radius printed represent the value of σ for
which the keypoint detected and its orientation respectively
(multiple orientations may be assigned to each keypoint).

2.2. Bag of visual words
After the extraction of SIFT we compute the final representa-
tion of the visual information which is based on visual bags of
words. This method was originally invented and applied for
text classification [13, 14]. The main idea is that a document
is represented as a histogram of frequencies of the words in-
cluded in the text. A number of variations have been invented,
like term frequencyinverse document frequency (tf-idf) [15]

Fig. 1: The multi-view setup for the rt-MRI-TIMIT dataset:
Visual feature extraction from the MRI videos and CCA-
based combination with the corresponding acoustic features.

which are based on the same idea and may produce better re-
sults. The main difference is that tf-idfs produce weighted
histograms [16, 17], while in the classic Bag of Words ap-
proach the histograms are binary [18], depending on the pres-
ence or the absence of a vocabulary word in the text. Al-
though some studies suggest that using such methods for im-
age classification will improve the results [19], others propose
that it does not make much of a difference, as in most cases bi-
nary histograms have better results [20]. We choose to follow
the original approach and use binary weights for each feature.

2.3. Canonical Correlation Analysis
To combine the visual with the acoustic information, one can
use various methods, such as [21,22]. However, there is a ma-
jor disadvantage in these methods since they require the avail-
ability of articulatory information both at the training and at
the testing phase. This is not the case for the data we study
since it is practically impossible to collect MRI data in a typ-
ical speech recognition setup. Our intention is to use the ar-
ticulatory information only during the training phase and find
a relevant transformation for the acoustic features that would
also be available in a testing phase. A relatively new approach
to achieve this is the multi-view [5], which is a method based
on CCA [23].

According to the multi-view approach, CCA is applied to
audio and articulatory features at train time in order to find
maximum correlated pairs of linear projections of the data in
two spaces (views). The idea behind this is that noise in the
articulatory domain and noise in the audio domain are highly
uncorrelated, therefore by doing such a projection we mostly
keep the informative part of the signal without noise. The au-
dio transformation matrix acquired via the CCA procedure is
used to transform the audio part of both training and testing
sets. To get improved results, we also combine the audio pro-
jection with the original audio features which, in our case, are
Mel Frequency Cepstral Coefficients (MFCCs) to produce the
MFCC-articulatory features called MFCCA [24], for optimal
results, since not all uncorrelated information is noise [5].



3. EXPERIMENTS
For the purpose of our experiments we use the data of the
MRI-TIMIT database [6]. The database consists of simulta-
neous audio and MRI recordings of ten speakers, five male
and five female, uttering 460 sentences from the TIMIT cor-
pus. For each of them, it includes audio, visual and audio-
visual files of the 460 sentences in 92 sets of five. A vari-
ety of tools are used to implement the final system including
SailAlign, Sox, libsvm, Matlab, vlfeat and Kaldi [25]. The
recipe we created is based on the Kaldi s5 recipe for TIMIT.

First, we preprocess the audio files to manually remove
any files where the speaker mispronounces a word, which re-
duces the total number of utterance sets from 920 (92 files ×
10 speakers) to 771. Then we employ SailAlign [26], a tool
for robust speech-text alignment, to acquire word as well as
phonetic alignments for our dataset. The frequency of the au-
dio files is 20 KHz and their duration is twenty-five seconds
approximately. There is also a “beep” sound just before the
speaker starts to talk. We used sox to create three additional
audio sets: The first one where we remove the beep from the
beginning of the files, the second where we downsample the
audio files to 16 KHz and the last one where we apply down-
sampling as well as removing the “beep”. We trained two
HMM-based and a Deep Neural Network (DNN) system us-
ing Kaldi and each of the four audio sets (the original one and
the three we created) using 13 MFCCs, their derivatives and
accelerations. The best results were derived from the audio
with 20 KHz frequency without the “beep” sound. Therefore
we continue our experimentation only with this dataset. We
stick to the same systems used above throughout our experi-
ment We will provide more details on them in the following.
The phone error rate results are summarized in Table 1.

We also cut from each video a small part at the beginning
so that each video file has the same length with the corre-
sponding audio file. We use sox again to split the video into
frames. The video frequency is about 23.31Hz and the pro-
duced frames per utterance are around five hundred fifty. At
this point we label each frame with its corresponding phone.

To obtain visual information from the frames we use
vlfeat to acquire SIFT descriptors. Each frame has about fifty
to seventy such descriptors. One may expect more descrip-
tors to be found, however the dimensions of the frames are
68 × 68 pixels, which explains the low number. Some of the
keypoints for different phones are shown in Figure 2.

Table 1: Phone Error Rate (PER) of audio-based speech
recognition results.

mono tri DNN
original 73% 65% 64.1%
no beep 72% 65% 63.0%
downsample 74% 67% 64.5%
combine 72% 65% 63.4%

f3: phone /ah/ f3: phone /ey/

m3: phone /ah/ m3: phone /ey/

Fig. 2: SIFT detectors. The center of the circles gives the
location of each keypoint, the size shows the corresponding
value of σ and the printed radius shows the orientation

We then use Bag of Visual Words with the SIFT descrip-
tors as input. The main problem that this method solves is the
variability in the total number of SIFT descriptors in every im-
age. Selecting the optimal number k of classes for k−means
can be done in a number of ways, e.g., [27]. We estimate the
sum of squared errors (SSE) and we pick the optimal k using
the elbow method. The SSE shows how concrete a cluster is,
meaning how close each descriptor is to the centroid it was
assigned. If k equals the number of training point, the SSE
will be zero as only one point will be assigned to each cen-
troid and the centroid will have the same value as the training
point. Hence we are not looking for the value of k that gives
the minimum SSE, but for the value of k above which no sig-
nificant decrease in SSE value is observed.

To tackle the computational challenges arising due to the
large size of all generated SIFT descriptors we proceed with
a two-step histogram estimation process. In the first step, we
run the k−means algorithm for each speaker separately. We
examined the values of k from 30 to 120 with step 15. A good
value of k seemed to be between seventy-five and ninety so
we chose k = 85 for all speakers ( Figure 3).

Moreover, we create two additional sets of histograms for
every speaker. In the first we used soft normalization across
each dimension per utterance by subtracting the mean value
and then dividing by two times the standard deviation (plus a
small number e in case standard deviation was zero). In the
second, apart from the previous normalization we also nor-



Fig. 3: k − SSE graph for choosing the k for Bag of Vi-
sual Words k−means clustering of speaker f3. For k > 85,
increasing the value of k does not result in a significant de-
crease in SSE

malized per sample so that the sum of the squared values of
each row equals one. Only for this step we removed phones
sil and sp and we trained three SVMs classifiers to determine
which type of histogram worked better. To tackle the prob-
lem of unbalanced data set, we applied the Synthetic Minor-
ity Over-sampling Technique (SMOTE) method [28] in order
to create extra samples for minority classes. We used RBF
kernel with γ = 0.02, cost parameter C = 1 for every class.
90% of data was used for training and 10% for testing. For
the implementation of multi-label SVM training we used the
One-Against-All approach using libsvm in Matlab. As ex-
pected the best results were achieved by double normalized
histograms therefore we continued our experiments only with
this type of histograms. The results are shown in Table 2.

In the second step of the histogram estimation phase, we
used the centers of the classes of each speaker from the first
step and we run again the k − means algorithm only with
the centers (10 speakers × 85 classes = 850 points) this time.
Again, we used the elbow method to determine which k to
choose. This time k was chosen to be 90.

The idea behind the two-steps histogram creation is that
the same phones in the articulatory domain, will correspond
approximatively to the same visual words and that the same
visual words will be represented in the same region in the
128−dimensional space of the SIFT descriptors. Therefore
we represent every visual word with the center of the class it
was assigned to and then we apply k − means only to the
centers of every speaker. This idea can be further supported
by the fact that the SSE in the second step is significantly

Table 2: Choosing the best histogram normalization. Average
result of 10 speakers.

original normalize1 normalize2
Accuracy 5.8% 14.1% 17.3%

lower than the SSE in the first step.
At this point, we compute 13 MFCCs using 25ms win-

dow with 10ms sift. CCA is applied only to the training data
between 13-dimensional MFCCs and 85 dimensional double
normalized histograms. We acquire the audio transformation
matrix with 13 × 13 dimensions and we transform the audio
features of both the training and test sets. We append MFCCs
with the CCA projections to create MFCCA features.

The data is divided as follows: 60% for the training set,
20% for the dev set and 20% for the test set. Kaldi toolkit
is now used to train the DNN [29]. We briefly remark that
out of the three systems trained, the first one is a monophone
trained system, the next one is a triphone system which uses
MFCCA plus the first and second derivatives as input feature
vector, and the last one is a 6-layer DNN system. The results
of the phone error rate (PER) can be found in Table 3. We use
5−fold cross-validation to validate the results.

4. CONCLUSIONS
Our results show that even with the low quality of MRI im-
ages the recognition result can be improved if we use artic-
ulatory data. This result comes as an additional confirma-
tion that articulatory information can indeed lead to improved
speech recognition as it has been shown in other studies in the
past [30, 31]. However, our PER is significantly higher com-
pared to the TIMIT corpus due to the fact that the audio and
the MRI recordings were made simultaneously therefore they
are noisy, as authors in [7] have also argued.

In our case, as we increase the complexity of the sys-
tem used we notice an improvement with both MFCC and
MFCCA features. The best results in every case are com-
ing from the DNN system. The improvement between
monophone and DNN system is 11.16% using MFCC and
16.33% using MFCCA. The improvement in the DNN sys-
tem between MFCC and MFCCA is 5.96% We can see that
of the three systems only the DNN system has improved
performance comparing to the standard MFCC approach (the
improvement of the monophone system is insignificant). A
possible reason may be that since we used a complex ar-
chitecture in order to create speaker independent features, a
complex system is required to handle the various correlations.

However more work needs to be done towards the di-
rection of generalizing these results to the entire rt-MRI-
database. For example, an interesting idea for future work is
the study of other techniques to acquire speaker independent
histograms in the Bag of Visual Words step. Finally, one can
try to use different kinds of feature descriptors to describe the
articulatory information.

Table 3: Cross-validated speech recognition results (PER)

mono tri DNN
MFCC 72.22% 65.18% 64.16%
MFCCA 72.12% 69.38% 60.34%
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