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Abstract

In this work we propose an audio-visual model for pre-
dicting temporal saliency in videos, that we validate and
evaluate in an alternative way by employing fMRI data.
We intend to bridge the gap between the large improve-
ments achieved during the last years in computational mod-
eling, especially in deep learning, and the neurobiological
and behavioral research regarding human vision. The pro-
posed audio-visual model incorporates both state-of-the-art
deep architectures for visual saliency, which were trained
on eye-tracking data, and behavioral findings concerning
audio-visual integration in multimedia stimuli. A new fMRI
database has been collected for evaluation purposes, that
includes various videos and subjects. This dataset may
prove useful not only for saliency but for other computer
vision problems as well. The evaluation of our model us-
ing the new fMRI database under a mixed-effect analysis
shows that the proposed saliency model has strong cor-
relation with both the visual and audio brain areas, that
confirms its effectiveness and appropriateness in predicting
audio-visual saliency for dynamic stimuli.

1. Introduction
Nowadays, the breakthrough in the area of deep learn-

ing is revolutionizing many fields in the area of computer
vision. The extensive usage of Convolutional Neural Net-
works (CNNs) has boosted the performance throughout the
majority of tasks in computer vision, such as object detec-
tion or semantic segmentation [60, 34, 23]. One of the ma-
jor downsides of deep network approaches is their need for
large-scale training datasets. In image domain, many ap-
proaches employ pre-trained network architectures trained
on ImageNet [32] for object classification, or SALICON
[31] for static saliency estimation. However, the progress
of CNN architectures, design, and representation learning
in the video domain is much slower, and the performance of
deep learning methods remains comparable with non-deep
ones. The main difficulties arise both from the lack of large-
scale video datasets, and the way of integrating temporal

information in a deep architecture, i.e., the best method of
temporal aggregation in video (recurrent vs convolutional).

Among the video domain related problems, dynamic
saliency estimation is most closely related to brain neural
responses, since various stages of biological vision systems
involve spatio-temporal processing, and nature has a ten-
dency to represent information in optimal ways. Visual
saliency is a bottom-up process and is based on the sensory
cues of a stimulus that make certain image or video regions
more conspicuous. During the last years, various computa-
tional approaches have been developed for visual saliency
estimation in the spatial domain. Several among them have
already incorporated advances from the deep learning re-
search. In parallel, spatio-temporal models for saliency esti-
mation in video stimuli have also appeared, but their perfor-
mance remains slightly better or only competitive compared
to the best static saliency approaches [6, 68].

Generally, the modeling of video saliency can be ap-
proached by two different representations: The first con-
sists of spatio-temporal saliency maps employed for the
task of dynamic fixation prediction in videos. In the sec-
ond representation, the produced spatio-temporal maps are
mapped to a 1D map yielding time-varying saliency curves.
These curves can be used in a video summarization task,
since they can be viewed as an indicator function that de-
scribes the interestingness of each frame in a video se-
quence [14, 13]. In our work, we take advantage of the ex-
isting approaches for eye-fixation prediction, especially the
deep models trained on big eye-tracking databases, and pro-
pose a method that transforms the produced saliency maps
to 1D temporal saliency curves.

Multisensory interaction and integration in the human
brain manifest themselves in multiple ways and in multi-
ple contexts [66, 42]. There is considerable evidence that
human attention is influenced by multimodal and specially
audio-visual information [44, 45]. In addition, video data
are in general multimodal, containing visual, audio and
semantic streams, and of particular interest is the estima-
tion of a multimodal temporal saliency curve that models
human attention during a video viewing. The works of
[14, 36] proposed a multimodal framewise saliency model
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based on visual, audio and text cues which has been inte-
grated in a multimodal system for movie summarization.
Moreover, [63] proposed a behaviorally validated 2D audio-
visual saliency model that is able to explain behavioral ex-
periments in video stimuli. In our study we propose fusion
strategies in order to integrate the audio information in a
temporal audio-visual model, where visual saliency is mod-
ulated by audio saliency. We are interested not only in de-
veloping such a model, but also in validating its plausibility
with human data.

Towards this goal, in parallel with research in computa-
tional modeling and machine learning, brain imaging tech-
niques such as functional Magnetic Resonance Imaging
(fMRI), can serve as a noninvasive tool to monitor neural
activity during external stimulation, thus illuminating the
structural and functional architecture of the human brain.
Recently, there has been a shift towards more complex and
naturalistic stimuli, such as real-life images, video and au-
dio excerpts. The attempt to study such real-life stimuli
aims at understanding their representation in the human
brain, and ultimately at linking low-level features with the
high-level semantic information they convey, in order to
propose and improve computational models for many com-
puter vision tasks [39]. The presentation of videos with
simultaneous acquisition of fMRI data provides a semi-
natural setup to infer the complex mechanisms employed by
the human brain to represent and comprehend such stimuli,
while at the same time posing a challenge to develop effi-
cient as well as cognitively plausible computational designs
to model the underlying neural processes.

In this work we try to bridge the gap between the huge
progress in the computational approaches for computer vi-
sion, and the neurobiological and psychophysical evidences
about human vision obtained by analyzing fMRI data. Our
goal is to build an audio-visual temporal saliency model
and validate its plausibility through fMRI data. This val-
idation aims at confirming that our model indeed captures
the behavior of human audio-visual attention when exposed
to audio-visual stimuli. The validation process essentially
corresponds to investigating whether fMRI data exhibit ac-
tivation in the areas that care expected to get activated when
humans are exposed to specific stimuli.

One interesting question is to what extent human individ-
uals have the same perception of identical stimuli presented
to them and whether the neural representations they create
are fundamentally different or share the same structure. If
the latter proves to be the case, brain imaging data could
be used to augment computational models and further the
deep learning representation of multimedia in accordance
to human perception. For this purpose we have collected
a large amount of fMRI data using video stimuli viewed
by multiple persons. This dataset could be useful for many
computer vision problems related to the video domain such

as dynamic saliency, object and action recognition or movie
summarization. In addition, due to the fact that the pro-
posed dataset contains both multiple videos and subjects,
with a proper statistical analysis we could generalize our
observations from the specific samples to the entire under-
lying population.

The contributions of the paper can be summarized as fol-
lows:

• First, we propose an audio-visual temporal saliency
model, in the form of a temporal saliency curve in-
stead of the most commonly used saliency map, for
predicting saliency in videos. This approach is based
on the modification of state-of-the-art methods for vi-
sual saliency, and additionally it incorporates audio in-
formation using different fusion schemes (Section 3).

• Second, a new fMRI database has been collected, that
contains both multiple video stimuli and multiple sub-
jects. This dataset can be useful for evaluating and im-
proving many computational methods for video-based
computer vision tasks, and also for understanding how
these methods are related to processes in human brain
(Section 4).

• Third, the proposed audio-visual temporal saliency
model is evaluated using the collected fMRI dataset,
and the results indicate that this model has strong cor-
relation with both the visual and audio brain areas. In
addition, unlike previous studies [4, 51] where only
one movie was employed, we apply a mixed effect
analysis, which gives stronger confidence and allows
the generalization of our results to the general popula-
tion. (Sections 5 and 6).

2. Related Work
2.1. Visual Saliency Models

Visual saliency constitutes one of the most important
problems in both cognitive and computer vision, and many
methods have been developed for saliency prediction, espe-
cially for still images, i.e. spatial-only methods [62, 6, 5].
Regarding spatio-temporal saliency, less work has been
done compared to spatial-only, and in most cases the ex-
isting spatio-temporal models are an extension of spatial
ones, by incorporating additional dynamic visual features.
For example, in [28, 27, 21] differences between the spa-
tial orientation maps are employed as temporal features for
saliency detection in videos, while [7, 71, 24, 41] take ad-
vantage of features statistics computed on dynamic stimuli.
In [35] a perceptually based spatio-temporal computational
framework for visual saliency estimation is presented, based
on quadrature Gabor filters in three dimensions. In [57] the
authors extend their self-resemblance method by employing
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3D local steering kernels for action and saliency detection
in videos. In another class of approaches, saliency is es-
timated in the frequency domain by employing the quater-
nion Fourier transform for color, intensity and motion fea-
tures [19, 20].

During the very last years, a large amount of works ap-
proach the problem of visual saliency by employing deep
neural networks. Some approaches are based on the adapta-
tion of pretrained CNN models for visual recognition tasks
[37], while in [50] both shallow and deep CNN are trained
end-to-end for saliency prediction. In [26], multiscale infor-
mation is employed for training CNN networks by optimiz-
ing common saliency evaluation metrics while the work of
[30] showed that losses based on probability distance mea-
sures may be more suitable for saliency rather than standard
loss functions for regression. In [3] the authors proposed a
two-stream CNN network based on RGB images and opti-
cal flow maps for dynamic saliency prediction. In [38], gaze
transitions are learned from RGB, optical flow and depth in-
formation in order to improve saliency estimation in videos.

2.2. Audio-Visual Integration in Saliency

However, our daily experience as well as systematic be-
havioral experiments indicate the strong audio-visual in-
teractions that draw our audio-visual attention. Well-
known examples of strong audio-visual interactions are the
McGurk effect [43], or the bouncing ball illusion [59]. Sev-
eral attempts to model audio-visual attention exist in the lit-
erature, but most of them are application-specific or use spa-
tial audio in order to fuse it with visual information, e.g., in
robotic applications. A computational audio-visual saliency
model that predicts attention in an audiovisual scene, i.e.,
where the eye are be fixated, has for the first time been
presented in [54] and has been developed to guide a hu-
manoid robot. In this model, estimation of visual saliency is
based on the Itti et al. approach [29], while for audio, only
the spatial properties of the sources are integrated. Simi-
larly, in [52], the auditory saliency map is also estimated
via source localization and then fused with visual saliency
via a product operation. The model proposed in [55] is also
based on source localization, but also on Bayesian surprise
for auditory saliency map generation, and on a phase-based
approach for visual saliency. For a slightly different appli-
cation, the audiovisual model introduced in [15, 14] aims
primarily to summarize movies or videos. This work has
been further improved in [36]. Both models aim at predict-
ing when, and not where, attention would be drawn in a dy-
namic scene. All the above mentioned models are primarily
application-oriented and despite having possibly been in-
spired by cognitive science, no effort has been made to val-
idate their behavior in comparison to behavioral findings.

Coutrot and Guyader [10, 11] as well as Song [61] have
tried to more directly validate their models with humans

with their findings indicating that, in movies, eye gaze is at-
tracted by talking faces and music players. The model pre-
sented in [63] focuses on predicting audio-visual saliency in
videos, by appropriately combining existing auditory and
visual saliency models in order to form an audio-visual
saliency model that is also behaviorally validated. Subse-
quently, the audio-visual model is compared against find-
ings from behavioral experiments.

2.3. FMRI analysis on Multimedia Data
The most reliable validation strategy for all computa-

tional saliency methods is through comparison with actual
human data. Several contributions have so far been made to-
wards linking computational frameworks to brain activation
data. Such efforts aim at establishing new methods of com-
bining and interpreting the two types of data [8, 46, 12], at
assessing the biological plausibility of widespread percep-
tual models [4, 72] or at augmenting the latter by integrat-
ing high-level information encoded inside the human brain
[25, 40]. Another study proposes that whenever different
individuals are exposed to the same audiovisual stimulus,
the internal brain representations they form should be simi-
lar, since they encode information (features) of the stimulus
itself. Thus, brain regions involved in audiovisual process-
ing should have similar time responses across individuals,
in contrast to others [22].

3. Audio-Visual Model for Temporal Saliency
As briefly described in the introduction, our goal is

to create an audio-visual saliency model, able to predict
temporal saliency. For this purpose, we employ existing
saliency models that have been proposed for the fixation
prediction problem, and have been trained with large-scale
eye-tracking databases. In our approach we modify and ex-
tend these methods in order to deal with the problem of
audio-visual temporal saliency prediction in videos, with-
out any additional training. We essentially intend to transfer
the knowledge from the eye-tracking databases to a closely
related problem. The main important parts and parameters
of our model that have to be defined and designed are the
following: 1) the decision of where the static and the tem-
poral components of the visual saliency model will be fused
(using 2D saliency maps or 1D saliency curves), 2) the type
of the fusion scheme and, 3) how audio information will
be integrated in the audiovisual model. The employed ap-
proach is depicted in Fig. 1, and is analyzed further in the
following sections.

3.1. Visual Model for Temporal Saliency
For the visual saliency modeling, we follow a hybrid ap-

proach that incorporates a state-of-the-art CNN network for
static saliency, and an optical flow estimation as the tempo-
ral saliency component. We did not employ a fully deep-
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Figure 1: Overview of the audio-visual temporal saliency model: a) fusion in the level of saliency maps, b) fusion in the level
of saliency curves.

based spatio-temporal network, such as [68], because we
needed to maintain the two components separately, in order
to investigate the different fusion approaches and incorpo-
rate the audio information as well.

3.1.1 Static Component

For the static component we used the publicly available
deep model from [50]. The architecture of this network is
identical to a VGG-M network. However, the authors have
replaced the three fully connected layers with convolutional
layers in order to make the network structure suitable for
the task of saliency estimation. In addition, a deconvolu-
tion layer is employed as the final layer in order to resize
the output to the image size. The network was trained on
9000 images from SALICON dataset using an Euclidean
loss function. The output of the network constitutes the
static saliency map M S , with values in [0, 1].

3.1.2 Temporal Component

For temporal saliency, we extract warped optical flow maps
using the implementation of [67], which is based on the
TVL1 optical flow algorithm [70]. Then, a temporal mov-
ing averaging filter over ten successive frames is applied to
smooth and remove the noise from optical flow estimation
in x and y directions independently. Afterwards, we apply
Difference-of-Gaussians (DoG) filtering to the optical flow
magnitude as in [53]. Since the resulting saliency map has
small values with a few noisy spikes, we use logarithm in
order to suppress these sharp peaks. Finally, we normal-
ize the temporal saliency map M T with its maximum value
across all video frames.

3.1.3 From 2D Visual Saliency Map to 1D Saliency
Curves

In our task we need to transform the 2D saliency map to an
1D saliency curve. The simple spatial averaging across each

frame is not suitable, since saliency maps contain many zero
values in non-salient areas that affect the saliency curve. For
this reason, we apply spatial averaging only on the salient
regions of the saliency map. First, we define the operator
B : RE ! {0, 1}E that transforms the saliency map into a
binary image by applying the Otsu’s threshold [49], where
E denotes the image domain, i.e., a video frame of size m ⇥
n. Then we take the 1D saliency curve C(t) by applying
the mapping G : RE ! R on the saliency map M (x, y, t ):

C(t) = G(M (x, y, t )) =

!
x,y B (M (x, y, t )) · M (x, y, t )

!
x,y B (M (x, y, t ))

(1)
Finally, we apply a median filter of length 151 frames to

the saliency curve C(t) and normalize its values in [0, 1].

3.1.4 Fusion Schemes

For the fusion of the visual saliency components, we have
experimented with two widely used functions: average and
max, which correspond to different approaches in feature
integration. Using the max, we search for regions or seg-
ments that are salient in at least one component, while by
using the mean we need large saliency values in both com-
ponents. Also, fusion can be applied at 2 different levels:
a) the saliency map level or b) the saliency curve level after
applying the transformation (1).
In the first case, the result remains a 2D saliency map
M ST (x, y, t ) from which the visual saliency curve CST (t)
is computed:

Aver . : M ST (x, y, t ) = ( M S (x, y, t ) + M T (x, y, t )) / 2 (2)
Max : M ST (x, y, t ) = max( M S (x, y, t ), M T (x, y, t )) (3)

CST (t) = G(M ST (x, y, t )) (4)

In the second case, fusion is performed between the
obtained 1D saliency curves CS(t) = G(M S(x, y, t )) ,
CT (t) = G(M T (x, y, t )) :

Aver . : ÷CST (t) = ( CS (t) + CT (t)) / 2 (5)
Max : ÷CST (t) = max( CS (t), CT (t)) (6)
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In Fig. 1a we see that the audio-visual saliency map is
more correlated with the temporal visual component due to
the enhancement from the audio saliency values. On the
other case (Fig. 1b) the audio saliency curve modulates the
temporal visual curve, which afterwards is fused with the
static curve.

3.2. Auditory Saliency Model
Auditory saliency refers to the subset of the attention

mechanisms that are responsible for the perception of sound
information. The aim of the study of auditory saliency is to
build a time-varying curve that resonates with the brain ac-
tivation invoked to the listener of an the audio stream.

For audio saliency estimation, we employ Kayser et
al. model [33], which is a behaviorally-inspired model
and structurally identical to Itti et al. visual saliency
model [29, 28], but has a different interpretation, as it in-
tegrates the concept of time. This model’s input is a time-
frequency representation of the signal, i.e., a spectrogram.
The output is a saliency map, which depicts the evolution
of auditory saliency over time and across frequencies. The
extracted features are the intensity, temporal contrast, and
frequency contrast, in various scales. Analogously to Itti et
al. model, auditory saliency is estimated on the spectrogram
image based on three low-level features: intensity, tempo-
ral contrast, and frequency contrast. As mentioned before,
Kayser et al. model is behaviorally-inspired and thus, each
feature is extracted with filters modeling findings from au-
ditory physiology: intensity filter corresponds to receptive
fields with only an excitatory phase, frequency contrast fil-
ters to receptive fields with an excitatory phase and simul-
taneous side band inhibition and temporal contrast ones to
such with an excitatory phase and a subsequent inhibitory
one. These filters are modeled as Gabor filters with suit-
able orientations. A similar procedure of filtering and nor-
malizing follows feature extraction and leads to a final 2-D
saliency map.

3.3. Audio-Visual Fusion
In order to fuse the two modalities, which are inher-

ently two non-comparable modalities with different dy-
namic ranges, we employ the following approach. First,
regarding auditory saliency processing, as it was mentioned
earlier, Kayser et al. model output is a 2D saliency map
depicting saliency over time and frequencies. Since we are
only interested in the time evolution of auditory saliency,
we take the maximum saliency value on the map for each
time instance, and thus obtain a 1D auditory saliency curve,
denoted by SCA . Subsequently, we exploit findings from
neuroscience and relative behavioral experiments [64, 65, 9]
that indicate that audiovisual integration is tolerant to an
amount of asynchrony of maximum 200ms between audio

and visual information. We integrate this finding by appro-
priately filtering auditory saliency via a Hanning window H
of 200ms length centered at the current time instance [63].
Thus, we obtain a 1D curve that has incorporated this au-
diovisual temporal window of integration effect. The final
auditory saliency curve is modeled as:

CA (t) =
1

2N + 1

N!

! = ! N

SCA (t + ! )H (! ),

where t is the video time index, ! is the audio sample index,
and 2N + 1 the length of the window H .

The most important part of this model is the fusion be-
tween the auditory saliency curve and the visual saliency
map. First, our fusion approach relies on the hypothesis
that since audio features are dynamic/temporal, they influ-
ence only the dynamic/temporal visual saliency features.
This hypothesis has also been verified through many ex-
periments [18, 69, 56, 58, 47], such as the bouncing ball
illusion [59]. Inspired by these findings, we fuse auditory
saliency with temporal visual saliency. Specifically, fusion
is applied between auditory saliency and each individual
temporal feature of visual saliency separately. We combine
these saliencies in a simple multiplicative manner, inspired
by [52], where a similar approach has been followed. In
their case, they deal with spatial audio, thus they have an
auditory and a visual map with the same dimensions that
combine by point-wise multiplication. In our case, audio is
non-spatial, thus the resulting audio-temporal components
for the 2D map and 1D curve representations are given by:

M T A (x, y, t ) = (1 + CA (t)) · M T (x, y, t ) (7)
CT A (t) = (1 + CA (t)) · CT (t), (8)

where CT (t) = G(M T (x, y, t )) . After temporal-audio fu-
sion, the spatial visual component is also integrated appro-
priately, according to the visual methods fusion strategy
(Eqn. 2-6) in order obtain the audio-visual saliency map
M ST A (x, y, t ) and curves CST A (t), ÷CST A (t).

4. FMRI Movie Database
4.1. Experimental Design and Data Collection

For the fMRI data collection we decided to employ
movie videos from COGNIMUSE database [73, 1]. The
“COGNIMUSE database” is a new multimodal video
dataset annotated with sensory and semantic saliency,
events, cross-media semantics, and emotion. It can be used
for training and evaluation of salient event detection and
summarization algorithms, for classification and recogni-
tion of audio-visual and cross-media events, as well as for
emotion tracking. Thus, the extension with fMRI data will
be useful for many areas in computer vision and multime-
dia since researchers can take advantage of this additional
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data in order to evaluate and design better computational
models. Specifically, we have elected to present 20 minutes
for each one of the five films: “Chicago” (CHI), “Crash”
(CRA), “The Departed” (DEP), “Gladiator” (GLA), “Lord
of the Rings - the Return of the King” (LOR) on the grounds
that we have observed adequate discernible fluctuations in
the corresponding annotated saliency curves. Each film ex-
cerpt was viewed by six different participants and the cor-
responding data has been collected.

The MRI images were acquired with a 3T Philips
Achieva TX MRI scanner using gradient-echo EPI se-
quences (Time to Repetition – TR = 2 s, Field Of View
– FOV of 192⇥240 mm2, 36 sequential bottom-up trans-
verse slices, voxel size 3⇥3⇥3 mm3). Subjects were lying
inside the scanner while the film excerpt was being back-
projected on a semi-opaque material and they viewed the
video through a mirror attached to the equipment. Head-
phones designated for usage inside MRI scanners were used
for the audio stream.

4.2. fMRI Data Preprocessing

The SPM Toolbox [2] was used to preprocess the fMRI
data and fit a General Linear Model (GLM). Raw data are
spatially realigned (motion correction), temporally interpo-
lated to compensate for acquisition delay, normalized to
standard MNI space1and smoothed with an 8 mm wide
Gaussian kernel. Following the preprocessing stage, high-
pass filtering of 128 seconds cutoff is applied to the voxel
time-series to remove low-pass physiological components
such as respiration and heart beat. fMRI residual tempo-
ral autocorrelation was modeled as an autoregressive pro-
cess AR(1) and integrated in the GLM estimation. Partici-
pants that had spontaneous movement above 4mm or 1 de-
gree where excluded, unless transient movement could be
removed by interpolation (scrubbing). We were thus left
with 4, 6, 6, 5 and 5 participants for CHI, CRA, DEP, GLA
and LOR respectively.

5. FMRI Analysis for Saliency Validation
5.1. Saliency Regressor Construction

As described in [51], in order to construct regressors
suitable for the low-resolution fMRI time-series, based on
saliency curves we need to sub-sample the curves from 25
values per second (per frame) to one value per 2 seconds
(MRI scanner TR). The curves further need to be convolved
with the standard haemodynamic response function (HRF),
a low-pass function that introduces a time blurring and is
considered to adequately model the transfer function of a
voxel seen as a time-invariant linear system.

1Standard coordinate space for MRI data, based on the anatomical atlas
by Montreal Institute of Neurology

(a) Visual Features (b) Audio-Visual Features

Figure 2: Results of GLM fit for visual and audio-visual
features (F-test). Projection on transverse slices MNI z=-6,
z=0, z=6 and z=10.

5.2. Mixed-effects Model for FMRI
In a manner similar to [51], the computationally con-

structed regressors are used to fit a General Linear Model
(GLM) for each voxel independently. However, contrary
to the previous works of [4, 51], which had been limited
by the amount of data available to a fixed-effects approach,
here we employ a mixed-effects model [48]. This approach
is commonly accepted and widely used, since it accounts
for variation across participants (inter-subject variation). It
thus allows for generalization of results for the entire under-
lying population and is not restricted to the specific sample
at hand. A mixed-effects model comprises of fixed-effect
models fitted to the data of each participant individually
(first level analysis) which are then combined in a random-
effects group level model (second level analysis).

More specifically in SPM a “summary statistic” proce-
dure is followed [17], whereby contrasts of effects of in-
terest (in our case effects of regressors comprising features
or saliency) are computed for each participant individually
and then the corresponding statistical maps are used to fit
an overall random effects model including all participants.
Because T-contrasts are more reliable to take to the second
level, when constructing regressors for the feature models,
we manually orthogonalize features consecutively with re-
spect to all the previous ones, so that b estimators will not
be biased and we then use corresponding T-contrasts.

Also, in order to account for possible variation across
movies that might induce a bias in the estimation, we also
included in the group level model an extra regressor en-
coding the 5 different movies as a random effect. In the
group level model, for feature models an F-contrast (based
on F-statistics) was performed on b to test the overall vari-
ance of the observed data that could be explained by the
model comprising the feature regressors. For saliency mod-
els, comprising only one regressor of interest, we use T-
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(a) Visual Saliency - Average (b) Visual Saliency - Max

(c) Audio-Visual Saliency - Aver-
age

(d) Audio-Visual Saliency - Max

Figure 3: Results of GLM fit for visual and audio-visual
saliency with different fusion schemes in the level of
saliency maps (t-test). Projection on transverse slices MNI
z=-6, z=0, z=6 and z=10.

contrasts, which have the additional advantage of being di-
rectional (i.e. differientiate between positive and negative
correlations) in contrast to F-contrasts which only measure
the amount of variance explained. For voxels whose p-value
satisfies the p-FWE = 0.05 threshold, corrected for multiple
comparisons (family-wise error correction), the model re-
gressors associated with the F- or T-contrast are considered
to have a good predictability of the voxel time-series [16].

6. Evaluation

Results are presented in the form of thresholded statisti-
cal maps [51] that are produced by the GLM analysis. In the
figures that follow, we have elected to present axial slices
with z=-6, z=0, z=6 and z=10 (MNI space coordinates),
which allow for a good and concise view of both the vi-
sual and the auditory cortex and can facilitate a comparison
between the visual and the audiovisual saliency (or feature)
models. The color scale runs from red to white, the latter
corresponding to the highest predictability.

(a) Visual Saliency - Average (b) Visual Saliency - Max

(c) Audio-Visual Saliency - Aver-
age

(d) Audio-Visual Saliency - Max

Figure 4: Results of GLM fit for visual and audio-visual
saliency with different fusion schemes in the level of
saliency curves (t-test). Projection on transverse slices MNI
z=-6, z=0, z=6 and z=10.

6.1. Evaluation of Visual and Auditory Features
In Fig. 2 we present the results regarding the 3 differ-

ent features curves (static visual saliency, temporal visual
saliency, auditory saliency) which have the expected pat-
tern. The works of [4, 51] have pointed the brain areas
that are activated when a visual or audio stimuli is attended.
More specifically, when only visual features are employed
we are able to predict only the responses of voxels in the
visual cortex while adding the auditory feature activation
in the auditory cortex is also present. With this analysis
we were able to validate the appropriateness of these three
independent subsystems for the task of temporal saliency
prediction.

6.2. Evaluation of Audio-Visual Model for Tempo-
ral Saliency

Afterwards, we proceed to the evaluation of the proposed
audio-visual temporal saliency model. In order to validate
the proposed fusion and integration schemes we expect to
have the same behavior as in the previous analysis by em-
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Table 1: Location of activation peaks for visual saliency
model (fusion in curves level with max function) 2.

MNI Coordinates Hemisphere Functional or T-value
X Y Z [Anatomical] area

-42 -73 -2 Left V5/MT 14.23
-18 -85 -8 Left V3 ventral 12.69
39 -73 -11 Right V4 ventral 11.58
45 -67 1 Right V5/MT 11.01

-33 -82 -8 Left V4 dorsal 10.98
-42 -28 10 Left Area TE 1.1 8.69
-39 -31 13 Left Area TE 1.1 8.67

Table 2: Location of activation peaks for audio-visual
saliency model (fusion in curves level with max function).

MNI Coordinates Hemisphere Functional or T-value
X Y Z [Anatomical] area

-45 -76 -2 Left V4 ventral 16.69
-21 -82 -8 Left V3 ventral 12.22
48 -67 1 Right V4 ventral 12.07
36 -73 -8 Right V5/MT 11.72
-9 -91 -5 Left V1 10.87

-39 -31 13 Left Area TE 1.1 10.70
-48 -31 16 Left Area TE 1.1 10.67
-42 -28 10 Left Area TE 1.1 10.43

ploying only one curve rather than independent features se-
ries. In Figs 3,4 we present the results regarding the visual
and audio-visual models for the two different fusion levels
respectively.

Looking at the figures, we can clearly see that although
the results in the visual cortex are almost identical between
the visual and the audiovisual model, the latter also has vis-
ible clusters of activation in the auditory cortex, especially
where we apply fusion at the curve level. Traces of activa-
tion within the auditory cortex can be found in the visual
saliency model as well, which are, however, limited both in
extent and peak magnitude. We should also bear in mind
that the visual and auditory modality in natural stimuli (i.e.
not deliberately manipulated) are often correlated in the first
place, which has an innate effect on our results.

Regarding the level where fusion is performed, it seems
that fusion at the curve level works better for the task of
temporal saliency prediction than fusion of the saliency
maps which are extensively employed in the task of fixation
prediction. In addition, when we compare the two fusion
schemes we see that the nonlinear fusion with max works
slightly better than the average, since it gives more focused
activation in the visual and auditory cortex areas.

In Tables 1,2 we present the locations of the top activa-
tion peaks for the visual and audio-visual saliency models
respectively, for fusion at the curve level with max func-
tion. Comparing the two tables, we can observe that they
are quite similar. Also, peaks within the auditory cortex
can be found both in the audio-visual as well as in the vi-
sual model. However, one can notice the difference in the

Table 3: Visual vs. audio-visual saliency model: % of vox-
els of each visual or auditory area that shows significant
association (fusion in curves level with max function) 3.

Visual area % for Visual Model % for AV Model
V1 5.90 7.50
V2 1.40 1.80

V3 ventral 12.10 13.60
V3 dorsal 0.25 1.00
V4 ventral 23.40 24.30
V4 dorsal 32.10 35.80
V5/MT 96.50 98.60

Auditory area % for Visual Model % for AV Model
TE 1.0 19.2 (L only) 63.25
TE 1.1 51.5 76.40
TE 1.2 0 4.6 (L only)
TE 3 1.00 (R only) 1.2 (R only)

T-statistic value, which is much higher for the audio-visual
model.

Table 3 depicts the voxel percentage of each visual or
auditory area that shows significant association, which can
be considered as a measure for the overall sensitivity of the
proposed saliency models. We highlight the fact that the
overall detection is significant higher for the auditory areas
when the audio-visual model is employed, while detection
in the visual areas remains high for both models.

7. Conclusion
In this work we proposed an audio-visual approach for

tracking the temporal saliency in video as well as an alter-
native way for validation using fMRI data. We developed
a computational audio-visual saliency model by employ-
ing deep learning architectures that are originally proposed
for the task of fixation prediction, where we additionally
incorporated several behavioral findings related to audiovi-
sual integration. In addition, we collected a fMRI database,
which contains both different videos and subjects, that may
become useful for many computer vision problems related
to the video domain. The fMRI-based evaluation showed
that the proposed audio-visual model has high correlation
with the brain responses and both the visual and auditory
cortex are localized. As future work, we intend to extend the
audio-visual saliency model by designing a deep architec-
ture that will be trained jointly by employing audio-visual
data. We also plan to take advantage of the fMRI data in or-
der to find feature embeddings that will augment the current
deep methods with the human brain information.

Acknowledgements: This work was partially supported by
EU projects Babyrobot/687831 and i-Support/643666.

2Brain areas are given in conventional notation. See Anatomy Toolbox
atlas for full names.

3Unless otherwise specified average of left and right hemisphere is
given, since no laterality effect was observed.
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