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Abstract—Nowadays, multimodal attention plays a significant
role in many machine-based understanding applications, com-
puter vision and robotic applications, such as action recognition
or summarization. In this paper, we present our approach to
the problem of audio-visual salient event detection based on
visual and audio modalities by employing modern Convolutional
Neural Network (CNN) based architectures. In this way, we
extend our previous work, where a hand-crafted frontend was
examined, an energy based synergistic approach, where a non-
parametric classification technique was used for the classification
of salient vs. non-salient events. Our comparative evaluations
over the COGNIMUSE database [1], consisting of movies and
travel documentaries, as well as ground-truth data denoting
the perceptually mono- and multimodal salient events, provided
strong evidence that the CNN-based approach for all modalities
(i.e., audio, visual and audiovisual), even in this task, manages
to outperform the hand-crafted frontend in almost all cases,
accomplishing really good average results.

I. INTRODUCTION

One of the most fundamental research challenges nowadays
is the automatic video understanding that assists people with
effective organization, retrieval, indexing, compression or even
summarization of the video content. This has come to be
eminent due to the increased amount of video data (i.e.,
movies, documentaries, home videos, music videos etc.) that
have grown into an easily created and distributed media.
People, in order to parse, structure and organize the available
information, use cognitive mechanisms such as attentional
selection and information abstraction that are grounded in
conscious or non-conscious activities, such as guided search,
communication and interaction, awareness, action taking, vi-
sual and auditory scene analysis etc. [2], [3].

Event detection for the task of video summarization and
abstraction has been the subject of many recent research works
aiming to create automatic summaries generated either by
using key-frames, which correspond to the most important
video frames [4]–[6], or with video skims that combine
the most descriptive and informative video segments [7]–[9]
(Fig. 1). To tackle the problem of summarization various
algorithms have been proposed [5], [7], [8]. Some of these
relate to user attention or saliency models [8], [10], they can
be domain-specific [11], relate to the plot of the video [7], or
the query context [12]. For more general reviews about video
summarization we refer the reader to [8], [10], [13]–[15].

This research work was partially supported by the project “COGNIMUSE”
which is implemented under the “ARISTEIA” Action.

Fig. 1. Monomodal (A-blue, V-green) and Multimodal (AV-red) estimated
Saliency Curves (bottom) and the respective Keyframes (top), extracted as
local extrema of the AV curve for the movie Crash. Best viewed in color.

However, due to this increased number of video data, there
is an immediate need to find video descriptors that solve large-
scale video tasks. As stated in [16] such descriptors need
to be generic, compact, efficient to compute and simple to
implement. With today’s breakthrough in the area of deep
learning, which has been extensively applied in various image
domains, giving state-of-the-art results on applications such
as recognition [17], detection, segmentation [18] and retrieval,
this can be now realized.

Various approaches [19]–[21] employ 3D-convolutional net-
works on short video clips of a few seconds in order to
learn motion features from raw frames implicitly and then
aggregate predictions at the video level. In [21] was shown
that their network was marginally better than a single frame
baseline. In [22] they incorporated motion information from
optical flow, sampling up to 10 consecutive frames at inference
time. In [23] a max-pooling Convolutional Neural Network
(CNN) architecture as well as a recurrent neural network that
uses Long Short-Term Memory (LSTM) cells are proposed
to obtain global video-level descriptors for the combination
of image information on full length videos and not just short
clips, showing their ability to handle such videos.

The existing works on CNN architectures, which deal with
video content can be classified into two main categories: 1)
learning local spatiotemporal filters [16] and 2) incorporating
optical flow using two-stream CNNs [22], [24]. In the first
approach, the so-called C3D method learns a 3D CNN on a
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Fig. 2. System architectures overview for multimodal saliency detection and video summarization. The hand-crafted frontend (top-above the red dotted line)
and the CNN-based arhitectures (bottom) can be seen.

limited temporal support of consecutive frames by letting all
filters operate over space and time. On the other hand, two-
stream CNN architectures decompose the video into spatial
and temporal components by using RGB and optical flow
frames. These components are fed into separate deep CNNs,
to learn spatial as well as temporal information about the
appearance and movement of a related visual activity. Each
stream is performing the recognition on its own and for the
final decision, softmax scores are combined by late fusion.

In this paper, motivated by the recent advances in deep
architectures and the fact that multimodal framewise saliency
(see Fig.1) can be another area where deep learning can be
efficiently applied, we propose CNN-based architectures for
salient event detection. For the visual stream we employ a
CNN approach based on 3D convolutional nets (C3D), while
for the audio stream a 2D CNN (based on the VGG idea
of small kernels) is applied for this higher level salient vs.
not salient event detection. Those architectures are compared
to our baseline hand-crafted frontend for saliency detection
and movie summarization, over our multimodal video database
[1], consisting of mono- and multimodal ground-truth saliency
annotations, which are crucial for training, content analysis
and evaluation. The presented results show to be promising.

II. COGNIMUSE MULTIMODAL VIDEO DATABASE

The COGNIMUSE Database [1] is a video oriented
database annotated with ground-truth annotations for sensory
and semantic saliency, audio and visual events, cross-media
relations as well as emotion, aiming to assist in training and
evaluation of event detection and summarization algorithms. It
consists of half-hour continuous segments from seven Holly-
wood movies1 (three and a half hours in total), five travel

1List of movies: “A Beautiful Mind” (BMI), “Chicago” (CHI), “Crash”
(CRA), “The Departed” (DEP), “Gladiator” (GLA), “Lord of the Rings - the
Return of the King” (LOR) and the animation movie “Finding Nemo” (FNE).

2List of travel documentaries: four episodes from “Alternate Routes” series,
i.e., “London” (LON), “Tokyo” (TOK), “Sydney” (SYD), “Rio” (RIO) and
one episode from “Get Outta Town” series: “London” (GLN)

3Full movie: “Gone with the Wind” (GWW) (the first part)

documentaries2, ca. twenty minutes long and a full length
movie3 with a duration of ca. hundred minutes. From the seven
Hollywood movies, we excluded FNE as outlier, since it is
an animation movie and thus not fitting for the training and
evaluation of the CNN approach since we have not any other
animation movies in the training set.

The ground-truth annotation of the database was based on
video elements that captured the viewers’ attention instan-
taneously or in segments including monomodal, i.e., audio
(A) and visual (V) saliency annotation, and multimodal (AV)
saliency annotation of the sensory content; hence, segments
that are acoustically, visually or audio-visually interesting. In
this paper, the sensory annotation was used for training and
evaluation of our algorithms. For more details regarding the
COGNIMUSE database we refer the reader to [1].

III. ARCHITECTURES FOR SALIENCY DETECTION

Figure 2 shows the two system architectures for multimodal
saliency detection and video summarization; the hand-crafted
frontend (top) that employs state-of-the-art computational al-
gorithms for feature extraction and salient event detection
(top) and the End-to-End CNN-based architecture (bottom),
combining softmax scores; both presented next.

A. Hand-crafted Frontend
For visual saliency estimation, we employed the recently

proposed spatio-temporal model for visual saliency, which has
achieved a good performance in many applications such as
movie summarization [25], eye-fixation prediction [26] and
action classification [27]. Specifically, we employed a spatio-
temporal filterbank of 400 3D Gabor filters [26], as described
in [25] for both the luminance and color streams to extract
spatio-temporal and static dominant energies. This model is
assumed to be more relevant to the cognition-inspired saliency
methods [28], [29]. For the auditory modeling we employed
the audio features proposed in [30]. These features are based
on the Teager-Kaiser Energy Operator [31] and AM-FM
demodulation [32], and variants have been successfully used in
many applications such as speech and music recognition [32],
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Fig. 3. CNN architecture for visual saliency detection using deep 3D convolutional nets.

Fig. 4. CNN architecture for audio saliency detection using 2D convolutional nets on audio time-frequency representations.

[33] and summarization [8], [25], [30]. The employed features
consist of 25 Teager-Kaiser energies that are extracted using a
Gabor filterbank. Sound loudness and roughness, which have
been found to correlate with the functioning of the human
auditory system and attention [34], are included as additional
features. The combination of the visual and audio frontends
constitute our energy based synergistic approach for audio-
visual salient event detection and video summarization.

Machine Learning based architecture for the classifica-
tion of salient vs. non-salient events: For the multimodal
saliency event detection task a machine learning classification
approach has been adopted, where we employed a K-Nearest
Neighbor Classifier (KNN) as in [25]. The combination of
the above mentioned features was used, thus, 4 visual and 27
auditory features, along with their first and second temporal
derivatives. Specifically, we considered frame-wise saliency as
a two-class classification problem, while a confidence score
was also determined for every classification result (i.e., each
frame), in order to obtain results for various compression
rates and hence be able to produce summaries of various
lengths. For the creation of the summaries [25], we have used
the classifier’s output that consists of the frames classified
as salient; thus, segments or frames (chosen based on high
confidence scores) are used as an indicator function curve,
representing the most salient audio-visual events.

B. CNN-based architectures for saliency detection
Convolutional Neural Networks consist a biologically in-

spired class of deep learning models, which could actually
replace the stages of feature extraction and classification to
one single network that is trained end-to-end from raw pixel
values to classifier outputs. Here, we propose two architectures
for the estimation of the visual and audio saliencies as the
softmax scores of the CNN output. We used the monomodal
(A, V) and the multimodal (AV) annotations as ground-truth
labels for the two classes (salient vs. non salient) during the
training phases. For both networks we employ a Multinomial
Logistic Loss for binary classification which takes the form:

L (W) = �
X

j2Y+

logP (yj = 1|X;W)�
X

j2Y�

logP (yj = 0|X;W),

where W are the trainable parameters of a CNN, X are the
network input samples (see Figs. 3, 4), yj 2 {0, 1} is the

binary saliency label of X , and Y+ and Y� are the positive
(salient) and negative (non-salient) labeled sample sets. P (·)
is obtained by the softmax activation of the final layer. The
trained models can then be employed for computing saliency
curves in a new unseen video.
Visual 3D CNN: The core stage of the hand-crafted visual
frontend consists of a spatio-temporal filtering with a carefully
designed 3D Gabor filterbank. Then the extracted energies are
sent to the classifier in order to take advantage of the existing
ground-truth saliency annotations. In this work, we propose a
deep end-to-end CNN architecture for learning the filterbank
parameters as a sequence of 3D convolutional networks. We
employed a CNN approach based on 3D convolutional nets
(C3D) that was first introduced in [16], mainly for the action
recognition problem. We believe that this approach is also
suitable for the higher level concept of salient vs. non-salient
events detection, since C3D nets can learn spatio-temporal
patterns, which are related to visual saliency.

The 3D CNN has the ability to model successfully the tem-
poral information of a video since convolutions and pooling
operations are applied inside spatio-temporal cuboids, while
in classic CNNs they are done only in the spatial domain.
For this reason, the dimension of the feature maps in each
convolutional layer is n ⇥ t ⇥ h ⇥ w, where the additional
parameter t stands for the number of video frames, while w
and h describe the spatial size of each frame and n defines
the number of filters in each layer. The employed deep C3D
architecture is shown in Fig. 3. Specifically, videos are split
into non-overlapping 16-frame RGB clips, which are used as
input to the networks. The C3D network has 8 convolutional,
5 max-pooling, and 2 fully connected layers, followed by a
softmax output layer. The number of filters are denoted in each
box. The sizes of all 3D convolutional kernels are 3⇥3⇥3, and
the stride of all these kernels are 1 in both spatial and temporal
domain. The sizes of all pooling kernels are 2⇥ 2⇥ 2, except
for the first one. We used small kernel sizes following the
idea proposed by VGG Net [17] to replace large convolutional
kernels by a stack of 3 ⇥ 3 kernels without pooling between
these layers. Each fully connected layer has 4096 output units
and we have also applied dropout with a probability 0.5.

We trained from scratch end-to-end C3D models in Caffe
[35] using an Nvidia Titan X GPU. We used mini-batches of
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30 clips, with initial learning rate 0.003 and momentum 0.9.
We have applied 10000 iterations of the Stochastic Gradient
Descent, which approximately corresponds to 15 epochs. The
learning rate is divided by 10 after the half of the iterations.
Audio 3D CNN: For the audio stream we employed a 2D CNN
that is based on the VGG idea of small kernels and is also
applied in other audio related problems, i.e., acoustic event
detection [36]. In this approach we want to represent the raw
audio signal in the 2D time-frequency domain and preserve
locality in both axis. The conventional mel-frequency cepstral
coefficients (MFCCs) representation cannot maintain locality
to the frequency axis due to the discrete cosine transform
projection. Thus, 50 log-energies were computed directly from
the mfccs using 25 ms frames with 10 ms shift. In addition,
we computed first and second temporal derivatives, in order
to have a 3 channel 2D input, similarly to the RGB image.

Figure 4 shows the employed deep 2D CNN architecture.
The network has 6 2D convolutional, 3 2D max-pooling, and 2
fully connected layers, followed by a softmax output layer. The
number of filters are denoted in each box. The max-pooling
layers are written as time ⇥ frequency. The sizes of all 2D
convolutional kernels are 3 ⇥ 3, and the stride of all these
kernels is fixed to 1. For the training we followed a similar
to the visual approach; however, we used mini-batches of 128
clips, with initial learning rate 0.02 and momentum 0.9.

IV. EXPERIMENTAL EVALUATION ON COGNIMUSE DB
For the evaluation of the various video data included in the

COGNIMUSE database, different types of evaluation setups
were adopted. For the six Hollywood movies a six fold cross-
validation was applied, where five movies were used for
training and tested on the sixth. For the travel documentaries
a five fold cross-validation was considered, where four doc-
umentaries where used for training and the fifth for testing,
while for GWW two different setups were adopted; i) only the
six Hollywood movies were used for training (GWW*) and
ii) all data was used for training (GWW**), thus six movies
and five travel documentaries.

Table I shows evaluation results using AUC (Area Under
Curve) as a metric between the hand-crafted frontend (denoted
as Hndcr.) and the CNN-based architectures for all modalities
and evaluation setups, thus audio on audio (A-A), visual
on visual (V-V) and audio-visual on audio-visual (AV-AV)
annotation, for all movies (top) and travel documentaries
(bottom) individually and on average for each video genre. For
the audio-visual saliency estimation we fuse, using average,
the softmax scores that are provided by the two-stream CNNs
trained with the AV annotation labels.

For the movies, we immediately observe that the CNN-
based architecture outperforms the hand-crafted frontend in
almost all movies and all evaluation setups, e.g., for the visual
modality we have an increase up to 3%. Note that for the audio
modality only in CHI we cannot achieve an improvement due
to the fact that this movie is a musical containing mostly
music segments and thus the CNN training on the other movies
cannot capture efficiently this type of information.

TABLE I
EVALUATION RESULTS USING AUC FOR THE CNN-BASED

ARCHITECTURES AND THE HAND-CRAFTED FRONTEND (DENOTED AS
HNDCR.) COMPARING EACH MODALITY TO THE CORRESPONDING

ANNOTATION, I.E., V-V, A-A AND AV-AV EVALUATION (USING AVERAGE
FOR THE CNN) INDIVIDUALLY FOR EACH MOVIE AND TRAVEL

DOCUMENTARY. AVERAGE RESULTS ARE ALSO SHOWN. REGARDING
GWW, GWW* DENOTES RESULTS FOR TRAINING IN THE HOLLYWOOD

MOVIES ONLY AND GWW** RESULTS WHEN THE TRAINING WAS
PERFORMED IN ALL DATABASE VIDEOS.

AUC
Results V-V A-A AV-AV (mean)

videos Hndcr. CNN Hndcr. CNN Hndcr. CNN
Six Hollywood Movies

BMI 0.718 0.765 0.823 0.844 0.842 0.839
GLA 0.739 0.772 0.840 0.849 0.850 0.830
CHI 0.645 0.706 0.847 0.815 0.819 0.820
LOR 0.688 0.738 0.873 0.872 0.811 0.832
CRA 0.720 0.726 0.848 0.874 0.804 0.799
DEP 0.778 0.741 0.822 0.861 0.824 0.856
Aver. 0.715 0.742 0.842 0.853 0.825 0.830

Full Length Movie
GWW* 0.589 0.644 0.714 0.706 0.664 0.735
GWW** 0.626 0.660 0.706 0.740 0.648 0.710

Five Travel Documentaries
LON 0.650 0.806 0.794 0.830 0.777 0.814
RIO 0.668 0.718 0.690 0.737 0.821 0.805
SYD 0.621 0.771 0.726 0.787 0.734 0.863
TOK 0.767 0.831 0.796 0.849 0.819 0.856
GLN 0.657 0.679 0.809 0.894 0.693 0.810
Aver. 0.673 0.761 0.763 0.819 0.769 0.830

Significant improvement is also obtained for GWW, which
constitutes a real challenging task since it is a full length
movie. We note an improvement of up to 7% for the visual and
audio-visual evaluation and more than 3% for the audio when
trained in all videos. For the five travel documentaries, we note
that the deep CNN-based architectures, for the visual modality,
significantly outperforms the hand-crafted frontend with an
increase up to 15% for LON and an average percentage of ca.
9% for all five travel videos, while an increased performance
of ca. 6% is noted for audio and audio-visual modalities.
Finally, we notice that even though the two networks are
trained independently for the AV case, their late fusion of
the softmax probabilities achieves a really good performance
outperforming the baseline in most cases.

V. CONCLUSIONS

In this paper, we proposed CNN-based architectures for
the problem of audio-visual salient event detection. These
architectures were compared with our previous hand-crafted
frontend, which employs advanced state-of-the-art methods for
saliency detection, over the COGNIMUSE database, consist-
ing of different types of videos and mono- and multimodal
ground-truth annotations of the salient events. Our experimen-
tal evaluations show that the deep CNN-based architecture
manages to outperform almost in all cases and all types of
videos the hand-crafted frontend. For future work, we intent to
further refine our methods and the proposed CNN architectures
regarding their parameterizations by taking into consideration
the transfer of the rapid CNN improvements that are achieved
in other domains, i.e., visual object and action recognition.
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