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Abstract. Mathematical Morphology and Tropical Geometry share the
same max/min-plus scalar arithmetic and matrix algebra. In this paper
we summarize their common ideas and algebraic structure, generalize and
extend both of them using weighted lattices and a max-� algebra with
an arbitrary binary operation � that distributes over max, and outline
applications to geometry, image analysis, and optimization. Further, we
outline the optimal solution of max-� equations using weighted lattice
adjunctions, and apply it to optimal regression for fitting max-� tropical
curves on arbitrary data.
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1 Introduction

Max-plus convolutions have appeared in morphological image analysis, convex
analysis and optimization [3,13,17,19,23,25], and nonlinear dynamical systems
[2,21]. Max-plus or its dual min-plus arithmetic and corresponding matrix alge-
bra have been used in operations research and scheduling [10]; discrete event
control systems, max-plus control and optimization [1,2,6,8]; idempotent math-
ematics [16]. Max-plus arithmetic is an idempotent semiring; as such it is covered
by the theory of dioids [12]. The dual min-plus has been called ‘tropical semiring’
and has been used in finite automata [15] and tropical geometry [18].

Max and min operations (or more generally supremum and infimum) form
the algebra of lattices, which has been used to generalize Euclidean morphology
based on Minkowski set operations and their extensions to functions via level
sets to morphology on complete lattices [13,14,24]. The scalar arithmetic of
morphology on functions has been mainly flat; a few exceptions include max-
plus convolutions in [25] and related operations of the image algebra in [22].
Such non-flat morphological operations and their generalizations to a max-�
algebra have been systematized using the theory of weighted lattices [20,21].
This connects morphology with max-plus algebra and tropical geometry.

Mathematical Morphology and Tropical Geometry share the same max/min-
plus scalar arithmetic and max/min-plus matrix algebra. In this paper we sum-
marize their common ideas and algebraic structure, extend both of them using
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weighted lattices, and outline applications to geometry, image analysis and opti-
mization. We begin with some elementary concepts from morphological operators
and tropical geometry. Then, we extend the underlying max-plus algebra to a
max-� algebra where matrix operations and signal convolutions are generalized
using a (max,�) arithmetic with an arbitrary binary operation � that distributes
over max. This theory is based on complete weighted lattices and allows for both
finite- and infinite-dimensional spaces. Finally, we outline the optimal solution of
systems of max-� equations using weighted lattice adjunctions and projections,
and apply it to optimal regression for fitting max-� tropical curves on data.

2 Background: Morphology on Flat Lattices

We view images, signals and vectors as elements of complete lattices (L,∨,∧),
like the set Fun(E,R) of functions with domain E and values in R = R ∪
{−∞,+∞}, and consider operators on L, i.e., mappings from L to itself.

Monotone Operators: A lattice operator ψ is called increasing (resp. decreas-
ing) if it is order preserving (resp. inverting). Examples of increasing operators
are the lattice homomorphisms which preserve suprema and infima. If a lat-
tice homomorphism is also a bijection, then it becomes an automorphism. Four
fundamental types of increasing operators are: dilations δ and erosions ε that
satisfy respectively δ(

∨
i Xi) =

∨
i δ(Xi) and ε(

∧
i Xi) =

∧
i ε(Xi) over arbitrary

(possibly infinite) collections; openings α that are increasing, idempotent and
antiextensive; closings β that are increasing, idempotent and extensive. Open-
ings and closings are lattice projections. Examples of decreasing operators are
the dual homomorphisms, which interchange suprema with infima. A lattice dual
automorphism is a bijection that interchanges suprema with infima. A negation
ν is a dual automorphism that is also involutive.

Residuation and Adjunctions: An increasing operator ψ on a complete lattice L
is called residuated [5] if there exists an increasing operator ψ� such that

ψψ� ≤ id ≤ ψ�ψ (1)

ψ� is called the residual of ψ and is the closest to being an inverse of ψ.
Specifically, the residuation pair (ψ,ψ�) can solve inverse problems of the type
ψ(X) = Y either exactly since X̂ = ψ�(Y ) is the greatest solution of ψ(X) = Y
if a solution exists, or approximately since X̂ is the greatest subsolution in the
sense that X̂ =

∨
{X : ψ(X) ≤ Y }. On complete lattices an increasing operator

ψ is residuated (resp. a residual ψ�) if and only if it is a dilation (resp. erosion).
The residuation theory has been used for solving inverse problems in matrix
algebra [2,9,10] over the max-plus or other idempotent semirings.

Dilations and erosions on a complete lattice L come in pairs (δ, ε) of opera-
tors; such a pair is called adjunction on L if

δ(X) ≤ Y ⇐⇒ X ≤ ε(Y ) ∀X,Y ∈ L (2)
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The double inequality (2) is equivalent to the inequality (1) satisfied by a resid-
uation pair of increasing operators if we identify the residuated map ψ with δ
and its residual ψ� with ε. There is a one-to-one correspondence between the
two operators of an adjunction; e.g., given a dilation δ, there is a unique erosion
ε(Y ) =

∨
{X ∈ L : δ(X) ≤ Y } such that (δ, ε) is adjunction. An adjunction

(δ, ε) automatically yields two lattice projections, an opening α = δε and a
closing β = εδ, such that δε ≤ id ≤ εδ. There are also other types of lattice
projections studied in [9].

3 Weighted Lattices

Lattice-Ordered Monoids and Clodum: A lattice (K,∨,∧) is often endowed
with a third binary operation, called symbolically the ‘multiplication’ �, under
which (K, �) is a group, or a monoid, or just a semigroup [4]. Consider now an
algebra (K,∨,∧, �, �′) with four binary operations, which we call a lattice-ordered
double monoid, where (K,∨,∧) is a lattice, (K, �) is a monoid whose ‘multipli-
cation’ � distributes over ∨, and (K, �′) is a monoid whose ‘multiplication’ �′

distributes over ∧. These distributivities imply that both � and �′ are increas-
ing. To the above definitions we add the word complete if K is a complete lattice
and the distributivities involved are infinite. We call the resulting algebra a com-
plete lattice-ordered double monoid, in short clodum [19–21]. Previous works on
minimax or max-plus algebra have used alternative names for structures similar
to the above definitions which emphasize semigroups and semirings instead of
lattices [2,10,12]; see [21] for similarities and differences. We precisely define an
algebraic structure (K,∨,∧, �, �′) to be a clodum if:

(C1) (K,∨,∧) is a complete distributive lattice. Thus, it contains its least ⊥ :=∧
K and greatest element � :=

∨
K. The supremum ∨ (resp. infimum ∧) plays

the role of a generalized ‘addition’ (resp. ‘dual addition’ ).

(C2) (K, �) is a monoid whose operation � plays the role of a generalized ‘mul-
tiplication’ with identity (‘unit’) element e and is a dilation.

(C3) (K, �′) is a monoid with identity e′ whose operation �′ plays the role of a
generalized ‘dual multiplication’ and is an erosion.

Remarks: (i) As a lattice, K is not necessarily infinitely distributive, although
in this paper all our examples will be such.
(ii) The clodum ‘multiplications’ � and �′ do not have to be commutative.
(iii) The least (greatest) element ⊥ (�) of K is both the ‘zero’ element for the
‘addition’ ∨ (∧) and an absorbing null for the ‘multiplication’ � (�′).
(iv) We avoid degenerate cases by assuming that ∨ 
= � and ∧ 
= �′. However, �
may be the same as �′, in which case we have a self-dual ‘multiplication’.
(v) A clodum is called self-conjugate if it has a lattice negation a �→ a∗.

If � = �′ over G = K \ {⊥,�} where (G, �) is a group and (G,∨,∧) a
conditionally complete lattice, then the clodum K becomes a richer structure
which we call a complete lattice-ordered group, in short clog. In any clog the
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distributivity between ∨ and ∧ is of the infinite type and the ‘multiplications’
� and �′ are commutative. Then, for each a ∈ G there exists its ‘multiplicative
inverse’ a−1 such that a�a−1 = e. Further, the ‘multiplication’ � and its self-dual
�′ (which coincide over G) can be extended over the whole K by involving the
null elements. A clog becomes self-conjugate by setting a∗ = a−1 if ⊥ < a < �,
�∗ = ⊥, and ⊥∗ = �. In a clog K the � and �′ coincide in all cases with only
one exception: the combination of the least and greatest elements; thus, we can
denote the clog algebra as (K,∨,∧, �).

Example 1. (a) Max-plus clog (R,∨,∧,+,+′): ∨/∧ denote the standard
sup/inf on R, + is the standard addition on R playing the role of a ‘multi-
plication’ � with +′ being the ‘dual multiplication’ �′; the operations + and +′

are identical for finite reals, but a + (−∞) = −∞ and a +′ (+∞) = +∞ for all
a ∈ R. The identities are e = e′ = 0, the nulls are ⊥ = −∞ and � = +∞, and
the conjugation mapping is a∗ = −a.
(b) Max-times clog ([0,+∞],∨,∧,×,×′): The identities are e = e′ = 1, the nulls
are ⊥ = 0 and � = +∞, and the conjugation mapping is a∗ = 1/a.
(c) Max-min clodum ([0, 1],∨,∧,min,max): As ‘multiplications’ we have � =
min and �′ = max. The identities and nulls are e′ = ⊥ = 0, e = � = 1. A
possible conjugation mapping is a∗ = 1 − a. Additional clodums that are not
clogs are discussed in [19,21] using more general fuzzy intersections and unions.
(d) Matrix max-� clodum: (Kn×n,∨,∧, � , � ′) where Kn×n is the set of n × n
matrices with entries from a clodum K, ∨/∧ denote here elementwise matrix
sup/inf, and � , � ′ denote max-� and min-�′ matrix ‘multiplications’:

C = A � B = [cij ], cij =
n∨

k=1

aik � bkj , D = A � ′ B = [dij ], dij =
n∧

k=1

aik �′ bkj

This is a clodum with non-commutative ‘multiplications’.

Complete Weighted Lattices: Consider a nonempty collection W of mathe-
matical objects, which will be our space; examples of such objects include the
vectors in R

n
or signals in Fun(E,R). Also, consider a clodum (K,∨,∧, �, �′) of

scalars with commutative operations �, �′ and K ⊆ R. We define two internal
operations among vectors/signals X,Y in W: their supremum X ∨Y : W2 → W
and their infimum X ∧ Y : W2 → W, which we denote using the same supre-
mum symbol (∨) and infimum symbol (∧) as in the clodum, hoping that the
differences will be clear to the reader from the context. Further, we define two
external operations among any vector/signal X in W and any scalar c in K: a
‘scalar multiplication’ c � X : (K,W) → W and a ‘scalar dual multiplication’
c �′ X : (K,W) → W, again by using the same symbols as in the clodum.
Now, we define W to be a weighted lattice space over the clodum K if for
all X,Y,Z ∈ W and a, b ∈ K all the axioms of Table 3 in [21] hold. These
axioms bear a striking similarity with those of a linear space. One difference is
that the vector/signal addition (+) of linear spaces is now replaced by two dual
superpositions, the lattice supremum (∨) and infimum (∧); further, the scalar
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multiplication (×) of linear spaces is now replaced by two operations � and �′

which are dual to each other. Only one major property of the linear spaces is
missing from the weighted lattices: the existence of ‘additive inverses’. We define
the weighted lattice W to be a complete weighted lattice (CWL) space if
(i) W is closed under any (possibly infinite) suprema and infima, and (ii) the
distributivity laws between the scalar operations � (�′) and the supremum (infi-
mum) are of the infinite type. Note that, a commutative clodum is a complete
weighted lattice over itself.

4 Vector and Signal Operators on Weighted Lattices

We focus on CWLs whose underlying set is a space W = Fun(E,K) of func-
tions f : E → K with values from a clodum (K,∨,∧, �, �′) of scalars as
in Examples 1(a), (b), (c). Such functions include n-dimensional vectors if
E = {1, 2, ..., n} or d-dimensional signals of continuous (E = R

d) or discrete
domain (E = Z

d). Then, we extend pointwise the supremum, infimum and scalar
multiplications of K to the functions: e.g., for F,G ∈ W, a ∈ K and x ∈ E, we
define (F ∨ G)(x) := F (x) ∨ G(x) and (a � F )(x) := a � F (x). Further, the
scalar operations � and �′, extended pointwise to functions, distribute over any
suprema and infima, respectively. If the clodum K is self-conjugate, then we can
extend the conjugation (·)∗ to functions F pointwise: F ∗(x) � (F (x))∗.

Elementary increasing operators on W are those that act as vertical trans-
lations (in short V-translations) of functions. Specifically, pointwise ‘multiplica-
tions’ of functions F ∈ W by scalars a ∈ K yield the V-translations τ a and dual
V-translations τ ′

a, defined by τ a(F )](x) := a�F (x) and τ ′
a(F )](x) := a�′F (x).

A function operator ψ on W is called V-translation invariant if it commutes
with any V-translation τ , i.e., ψτ = τψ. Similarly for dual translations.

Every function F (x) admits a representation as a supremum of V-translated
impulses placed at all points or as infimum of dual V-translated impulses:

F (x) =
∨

y∈E

F (y) � qy(x) =
∧

y∈E

F (y) �′ q′
y(x) (3)

where qy(x) = e at x = y and ⊥ else, whereas q′
y(x) = e′ at x = y and � else. By

using the V-translations and the representation of functions with impulses, we
can build more complex increasing operators. We define operators δ as dilation
V-translation invariant (DVI) and operators ε as erosion V-translation
invariant (EVI) iff for any ci ∈ K, Fi ∈ W

DVI : δ(
∨

i

ci � Fi) =
∨

i

ci � δ(Fi), EVI : ε(
∧

i

ci �′ Fi) =
∧

i

ci �′ ε(Fi) (4)

The structure of a DVI or EVI operator’s output is simplified if we express
it via the operator’s impulse responses. Given a dilation δ on W, its impulse
response map is the map H : E → Fun(E,K) defined at each y ∈ E as the
output function H(x, y) from δ when the input is the impulse qy(x). Dually, for
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an erosion operator ε we define its dual impulse response map H ′ via its outputs
when excited by dual impulses: for x, y ∈ E

H(x, y) � δ(qy)(x), H ′(x, y) � ε(q′
y)(x) (5)

Applying a DVI operator δ or an EVI operator ε to (3) and using the definitions
in (5) proves the following unified representation.

Theorem 1. (a) An operator δ on W is DVI iff its output can be expressed as

δ(F )(x) =
∨

y∈E

H(x, y) � F (y) (6)

(b) An operator ε on W is EVI iff its output can be expressed as

ε(F )(x) =
∧

y∈E

H ′(x, y) �′ F (y) (7)

On signal spaces, the operations (6) and (7) are shift-varying nonlinear con-
volutions.

Weighted Lattice of Vectors: Consider now the nonlinear vector space
W = Kn, equipped with the pointwise partial ordering x ≤ y, supremum
x ∨ y = [xi ∨ yi] and infimum x ∧ y = [xi ∧ yi] between any vectors x,y ∈ W.
Then, (W,∨,∧, �, �′) is a complete weighted lattice. Elementary increasing oper-
ators are the vector V-translations τ a(x) = a � x = [a � xi] and their duals
τ ′

a(x) = a�′ x, which ‘multiply’ a scalar a with a vector x elementwise. A vector
transformation on W is called (dual) V-translation invariant if it commutes with
any vector (dual) V-translation. By defining as ‘impulses’ the impulse vectors
qj = [qj(i)] and their duals q′

j = [q′
j(i)], where the index j signifies the position

of the identity, each vector x = [x1, ..., xn]T has a representation as a max of
V-translated impulse vectors or as a min of V-translated dual impulse vectors.
More complex examples of increasing operators on this vector space are the
max-� and the min-�′ ‘multiplications’ of a matrix A with an input vector x,

δA(x) � A � x, εA(x) � A � ′ x (8)

which are the prototypes of any vector transformation that obeys a sup-� or an
inf-�′ superposition.

Theorem 2. (a) Any vector transformation on the complete weighted lattice
W = Kn is DVI iff it can be represented as a matrix-vector max-� product
δA(x) = A � x where A = [aij ] with aij = {δ(qj)}i.
(b) Any vector transformation on Kn is EVI iff it can be represented as a matrix-
vector min-�′ product εA(x) = A � ′ x where A = [aij ] with aij = {ε(q′

j)}i.

Given a vector dilation δ(x) = A � x, there corresponds a unique erosion ε
so that (δ, ε) is a vector adjunction on W, i.e. δ(x) ≤ y ⇐⇒ x ≤ ε(y). We can
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find the adjoint vector erosion by decomposing both vector operators based on
scalar operators (η, ζ) that form a scalar adjunction on K:

η(a, v) ≤ w ⇐⇒ v ≤ ζ(a,w) (9)

If we use as scalar ‘multiplication’ a commutative binary operation η(a, v) = a�v
that is a dilation on K, its scalar adjoint erosion becomes

ζ(a,w) = sup{v ∈ K : a � v ≤ w} (10)

which is a (possibly non-commutative) binary operation on K. Then, the original
vector dilation δ(x) = A � x is decomposed as

{δ(x)}i =
∨

j

η(aij , xj) =
∨

j

aij � xj , i = 1, ..., n (11)

whereas its adjoint vector erosion is decomposed as

{ε(y)}j =
∧

i

ζ(aij , yi), j = 1, ..., n (12)

The latter can be written as a min-ζ matrix-vector multiplication

ε(y) = AT �′
ζy (13)

Further, if K is a clog, then ζ(a,w) = a∗ �′ w and hence

ε(y) = A∗ � ′ y, (14)

where A∗ = [aji
∗] is the adjoint (i.e. conjugate transpose) of A = [aij ].

Weighted Lattice of Signals: Consider the set W = Fun(E,K) of all sig-
nals f : E → K with values from K. The signal translations are the operators
τ k,v(f)(t) = f(t − k) � v and their duals. A signal operator on W is called
(dual) translation invariant iff it commutes with any such (dual) translation.
This translation-invariance contains both a vertical translation and a horizon-
tal translation (shift). Consider now operators Δ on W that are dilations and
translation-invariant. Then Δ is both DVI in the sense of (4) and shift-invariant.
We call such operators dilation translation-invariant (DTI) systems. Apply-
ing Δ to an input signal f decomposed as supremum of translated impulses yields
its output as the sup-� convolution ©� of the input with the system’s impulse
response h = Δ(q), where q(x) = e if x = 0 and ⊥ else:

Δ(f)(x) = (f ©� h)(x) =
∨

y∈E

f(y) � h(x − y) (15)

Conversely, every sup-� convolution is a DTI system. As done for the vector
operators, we can also build signal operator pairs (Δ, E) that form adjunctions.
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Given Δ we can find its adjoint E from scalar adjunctions (η, ζ). Thus, by (9)
and (10), if η(h, f) = h � f , the adjoint signal erosion becomes

E(g)(y) =
∧

x∈E

ζ[h(x − y), g(x)] (16)

Further, if K is a clog, then

E(g)(y) =
∧

x∈E

g(x) �′ h∗(x − y) (17)

5 Tropical Geometry and CWL Generalizations

Tropical geometry [18] is an extension of analytic Euclidean geometry where the
traditional arithmetic of the real field (R,+,×) involved in the analytic expres-
sions of geometric objects is replaced by the arithmetic of the min-plus tropical
semiring (Rmin,∧,+); some authors use its max-plus dual semiring (Rmax,∨,+).
We use both semirings as part of the weighted lattice - clog (R,∨,∧,+). For
example, the analytic expressions for the Euclidean line ye-line = ax + b and
parabola ye-parab = ax2 + bx + c become the tropical curves shown in Fig. 1 and
described by the max-plus polynomials

yt-line = max(a + x, b), yt-parab = max(a + 2x, b + x, c) (18)

The above examples generalize to multiple dimensions or higher degrees
and show us the way to tropicalize any classic n-variable polynomial (lin-

ear combination of power monomials)
∑

i aiz
ui
1

1 · · · zui
n

n defined over R
n where

ui = (ui
1, ..., u

i
n) is some nonnegative integer vector: replace the sum with max

and log the individual terms so that the multiplicative coefficients become addi-
tive and the powers become integer multiples of the indefinite log variables. Thus,
a general max-polynomial p : Rn → R has the expression:

p(x) =
k∨

i=1

bi + cT
i x, x = (x1, ...xn) (19)

(a) Euclidean line
(b − a)

b

(b) Tropical line (c) Euclid parabola
(c − b) (b − a)

c

(2b − a)

(d) Tropic parabola

Fig. 1. Euclidean curves and their tropical versions.
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where k is the rank of p. Further, we can assume as in [6] real coefficient vectors
ci ∈ R

n. An interesting geometric object related to a max-polynomial p is its
Newton polytope (conv(·) denotes convex hull)

New(p) � conv{ci : i = 1, ..., rank(p)} (20)

This satisfies several important properties [7] (see Fig. 2 for an example):

New(p1 ∨ p2) = conv(New(p1) ∪ New(p2)) (21)
New(p1 + p2) = New(p1) ⊕ New(p2) (22)

(0, 0)

(0, 1)(−1, 1)

(−1, 0)

P1
(3, 1)(1, 1)

(1, 2)

P2

(a) Polytopes

conv(P1 ∪ P2)

(0, 0)

(−1, 1)

(−1, 0)

(3, 1)

(1, 2)

(b) Newton (max)

P1 ⊕ P2

(0, 3)

(0, 1)

(1, 3)

(3, 2)

(3, 1)
P1PP

P2PP

P1PP

P2PP

(c) Newton (sum)

Fig. 2. (a) Newton polytopes of two max-polynomials p1(x, y) = max(x+y, 3x+y, x+
2y) and p2(x, y) = max(0, −x, y, y−x), (b) their max p1∨p2, and (c) their sum p1+p2.

In pattern analysis problems on Euclidean spaces R
n+1 we often use halfspaces

H(a, b) := {x ∈ R
n : aTx ≤ b}, polyhedra (finite intersections of halfspaces)

and polytopes (compact polyhedra formed as the convex hull of a finite set
of points). Replacing linear inner products aTx with max-plus versions yields
tropical halfspaces [11] with parameters a = [ai],b = [bi] ∈ R

n+1:

T (a,b) � {x ∈ R
n : max(an+1,

n∨

i=1

ai + xi) ≤ max(bn+1,

n∨

i=1

bi + xi)} (23)

where min(ai, bi) = −∞ ∀i. Examples of regions formed by such tropical half-
spaces are shown in Fig. 3. Obviously, their separating boundaries are tropical
lines. Such regions were used in [7] as morphological perceptrons.

−2 0 2 4
0

1

2

3

4

Rr≥

Rr≤

x

y

(a) Single region

−4 −2 0 2 4 6 8
0

1

2

3

4

RP

Rb≥

Rg≥

Rr≤

x

y

(b) Multiple regions

Fig. 3. Regions formed by tropical halfspaces in R
2.
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In the same way that weighted lattices generalize max-plus morphology and
extend it to other types of clodum arithmetic, we can extend the above objects
of max-plus tropical geometry to other max-� geometric objects. For example,
over a clodum (K,∨,∧, �, �′), we can generalize tropical lines as y = max(a�x, b)
and tropical planes as z = max(a � x, b � y, c). Figure 4 shows some generalized
tropical lines where the � operation is sum, product and min. Further, we can
generalize max-plus halfspaces (23) to max-� tropical halfspaces:

T (a,b) � {x ∈ Kn : aT �

(
x
e

)

≤ bT �

(
x
e

)

} (24)

b

0b-α

α

(a) max-plus line

b

0 b/α

(b) max-product line

b

0 αb

α

1

1

(c) max-min line

Fig. 4. Max-� tropical lines y = max(a � x, b): (a) � = +, (b) � = ×, (c) � = ∧.

6 Applications to Optimization and Machine Learning

6.1 Solving Max-� Equations

Consider a scalar clodum (K,∨,∧, �, �′), a matrix A ∈ Km×n and a vector
b ∈ Km. The set of solutions of the max-� equation

A � x = b (25)

over K is either empty or forms a sup-semillatice. A related problem in appli-
cations of max-plus algebra to scheduling is when a vector x represents start
times, a vector b represents finish times and the matrix A represents processing
delays. Then, if A � x = b does not have an exact solution, it is possible to
find the optimum x such that we minimize a norm of the earliness subject to
zero lateness. We generalize this problem from max-plus to max-� algebra. The
optimum will be the solution of the following constrained minimization problem:

Minimize ‖A � x − b‖ s.t. A � x ≤ b (26)

where the norm || · || is either the �∞ or the �1 norm. While the two above
problems have been solved in [10] for the max-plus case, we provide next a more
general result using adjunctions for the general case when K is just a clodum or
a general clog.
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Theorem 3 ([21]). Consider a vector dilation δ(x) = A � x over a clodum K
and let ε be its adjoint vector erosion. (a) If Eq. (25) has a solution, then

x̂ = ε(b) = AT �′
ζb = [

∧

i

ζ(aij , bi)] (27)

is its greatest solution, where ζ is the scalar adjoint erosion of � as in (10).
(b) If K is a clog, the solution (27) becomes

x̂ = A∗ � ′ b (28)

(c) The solution to problem (26) is generally (27), or (28) in the case of a clog.

A main idea for solving (26) is to consider vectors x that are subsolutions
in the sense that δ(x) = A � x ≤ b and find the greatest such subsolution
x̂ = ε(b), which yields either the greatest exact solution of (25) or an optimum
approximate solution in the sense of (26). This creates a lattice projection onto
the max-� span of the columns of A via the opening δ(ε(b)) ≤ b that best
approximates b from below.

6.2 Regression for Optimal Fitting Tropical Lines to Data

We examine a classic problem in machine learning, fitting a line to data by
minimizing an error norm, in the light of tropical geometry. Given data (xi, yi) ∈
R

2, i = 1, ..., n, if we wish to fit a Euclidean line y = ax + b by minimizing the
�2 error norm, the optimal (least-squares) solution for the parameters a, b is

âLS =
n

∑
i xiyi − (

∑
i xi)(

∑
i yi)

n
∑

i(xi)2 − (
∑

i xi)2
, b̂LS =

1
n

∑

i

(yi − âLSxi) (29)

Suppose now we wish to fit a general tropical line y = max(a�x, b) by minimizing
the �1 error norm. The equations to solve become:

⎡

⎢
⎣

x1 e
...

...
xn e

⎤

⎥
⎦

︸ ︷︷ ︸
X

�

[
a
b

]

=

⎡

⎢
⎣

y1
...

yn

⎤

⎥
⎦

︸ ︷︷ ︸
y

(30)

By Theorem 3, the optimal (min �1 error) solution for any clodum arithmetic is
[

â

b̂

]

= XT �′
ζy =

[∧
i ζ(xi, yi)∧
i ζ(e, yi)

]

(31)

where ζ is the scalar adjoint erosion (10) of �. If K is a clog like in the max-
plus and max-product case, then ζ(a,w) = a∗ �′ w. Next we write in detail
the solution for the tropical line for the three special cases where the scalar
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arithmetic is based on the max-plus clog, max-product clog and the max-min
clodum (the shapes of the corresponding lines are shown in Fig. 4):

(â, b̂) =

⎧
⎨

⎩

∧
i yi − xi,

∧
i yi), max-plus (� = +)∧

i yi/xi,
∧

i yi), max-times (� = ×)∧
i max([yi ≥ xi], yi),

∧
i yi), max-min (� = ∧)

(32)

where [·] denotes Iverson’s bracket in the max-min case. Thus, the above app-
roach allows to optimally fit tropical lines to arbitrary data. Figure 5 shows
an example. It can also be generalized to higher-degree curves and to high-
dimensional data.
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(a) T-line with Gaussian Noise
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8

(b) T-line with Uniform Noise

Fig. 5. (a) Red curve: Optimal fitting via (32) of a max-plus tropical line to data
y = max(x − 2, 3) corrupted by additive i.i.d. Gaussian noise N(0, 0.25). Blue line:
Euclidean line fitting via least squares. (b) Same experiment as in (a) but with uniform
noise U(−0.5, 0.5). (Color figure online)
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