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Abstract. In this paper, we investigate the benefit of 3D hand skele-
tal information to the task of sign language (SL) recognition from RGB
videos, within a state-of-the-art, multiple-stream, deep-learning recogni-
tion system. As most SL datasets are available in traditional RGB-only
video lacking depth information, we propose to infer 3D coordinates of
the hand joints from RGB data via a powerful architecture that has
been primarily introduced in the literature for the task of 3D human
pose estimation. We then fuse these estimates with additional SL infor-
mative streams, namely 2D skeletal data, as well as convolutional neural
network-based hand- and mouth-region representations, and employ an
attention-based encoder-decoder for recognition. We evaluate our pro-
posed approach on a corpus of isolated signs of Greek SL and a dataset
of continuous finger-spelling in American SL, reporting significant gains
by the inclusion of 3D hand pose information, while also outperforming
the state-of-the-art on both databases. Further, we evaluate the 3D hand
pose estimation technique as standalone.

Keywords: sign language recognition, 3D hand pose, 2D body skeleton,
attention-based encoder-decoder, convolutional neural network

1 Introduction

Automatic sign language recognition (SLR) from video has been attracting sig-
nificant interest lately, following recent deep learning advances in the fields of
computer vision and human language technologies, as well as the collection of
suitable large SL corpora [4, 5, 34]. However, despite much progress in the field,
the problem remains challenging due to the complex nature and multitude of SL
articulators (both manual and non-manual), as well as variability in inter-subject
signing and in the quality of the available video data.

A significant portion of SLR approaches in the literature utilize hand and/or
body skeletal information in their pipelines. Such can be obtained from special
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data acquisition tools in conjunction with wearable markers or data gloves [26,
28], but at the expense of naturalness in the interaction, or provided directly
by RGB-D cameras [12, 20, 40] that also yield a depth information data stream.
Specifically, systems utilizing such cameras have been introduced [11, 25, 35],
with most of them relying on hand-crafted feature descriptors extracted from
the depth and/or skeleton streams. For example, work in [19] explores the incor-
poration of 3D skeleton data, leveraging the advancement of depth sensors for
SLR. Further, a number of promising works [23, 30] are based on 2D body skeletal
data inferred from OpenPose [39]. Such representations are often complemented
with appearance or optical-flow based motion information [21, 24, 36].

Since hand-based articulation plays a crucial role in SL and there exist mul-
tiple signs with very similar skeletal motion patterns, it is vital to seek schemes
that enrich hand motion and structure information. The problem of hand pose
estimation in videos is a long-standing one and has given birth to many im-
portant applications. Following the emergence of RGB-D sensors, many efforts
have been devoted to 3D hand pose estimation through depth sensor and RGB
input. However, in the majority of SL corpora and in real-world settings, signs
are not recorded with depth sensors and depth information is unavailable. Thus,
since RGB cameras are more widely used than depth sensors, recent works focus
mostly on 3D hand pose estimation from monocular RGB images. The work
in [44] is the first to address the problem with the use of deep learning, adopting
a three-stage pipeline that performs hand segmentation, 2D joint generation, and
then 3D joint prediction. A similar approach is suggested in [31], where state-
of-the-art deep-learning networks are used for 2D hand detection and 2D hand
joint localization, and the results are fitted to a generative model formulated as
a non-linear least-squares optimization problem. In addition, the work in [29]
proposes a cycle-consistent generative adversarial network (CycleGAN) which
transforms synthetic 3D annotated hand images into real looking ones, whose
statistical distribution matches real-world hand images. The resulting data are
trained via a convolutional neural network (CNN) regressor for 2D and 3D hand
joint predictions, and the predictions are fitted to a kinematic skeleton model.
Finally, one of the most recent advances is the work of [17], which proposes a
hand-model regularized graph refinement network for 3D hand pose estimation
from a monocular image. It employs an adversarial learning framework and esti-
mations from a parametric hand model as a structure prior, which is then refined
via residual graph convolution.

In this paper, we incorporate the depth dimension in the coordinates of the
hand joints, in order to enrich model knowledge about the trajectory of hand
movement by enabling its observation in 3D. Our motivation is that such en-
riched information, effectively capturing the relative position between hand joints
in the 3D space, will translate to improved SLR performance. To this end, and
as detailed in Section 2, we extract 3D hand skeletal information exclusively
from RGB videos through a powerful architecture [27], originally proposed in
the field of 3D human pose estimation. Specifically, after extracting 2D human
skeleton data of the body, hands, and face via the OpenPose library [39], we
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Fig. 1. Architecture of our proposed SLR system operating on RGB videos. Estimated
3D hand pose features are concatenated with additional SL informative feature streams
and fed to an attention-based encoder-decoder for SLR.

project 2D hand-joint coordinates to the 3D space via a deep multi-layer neu-
ral network [27]. We then utilize an appropriately normalized representation
of the 3D hand-joint estimates for SLR, in conjunction with state-of-the-art
attention-based encoder-decoder architectures for sequence-to-sequence predic-
tion. Further, we include more SL informative streams in the SLR system, in
order to investigate the additional benefit of the 3D hand pose. Specifically, we
consider normalized 2D skeletal features, as well as CNN-based representations
via the ResNet-18 architecture [16] of the hands and mouth regions-of-interest
(ROIs), segmented based on the 2D skeletal information, capturing manual artic-
ulation (handshape) and mouthing information, respectively. To our knowledge,
this constitutes the first ever investigation of 3D hand pose information within a
state-of-the-art, multiple-stream, deep learning-based SLR framework operating
on traditional RGB video data.

We conduct SLR evaluations on two suitable multi-signer datasets: (i) a
corpus of isolated signs of Greek SL (GSL) [2] and (ii) the ChicagoFSWild
database [37], namely a corpus of continuous finger-spelling in the American
SL (ASL). On both sets, inclusion of 3D hand pose information is able to benefit
SLR on top of all other feature streams combined. Further, our results exceed
the current state-of-the-art on both sets. In addition, we report experimental re-
sults of the 3D hand pose estimation technique on the Rendered HandPose [44]
and the FreiHAND [45] datasets. Details are provided in Section 3.

2 The Sign Language Recognition System

We next overview our proposed SLR system, also depicted in Fig. 1, providing
details of its feature extraction and sequence-to-sequence prediction modules, as
well as its implementation details.

2.1 Feature extraction

2D human skeleton detection and features: The system initiates with the
extraction of 2D human skeletal data employing the OpenPose human-joint de-
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Fig. 2. Examples of extracted human skeleton via OpenPose [39] (middle column) and
3D hand skeleton representation through 3D projection architecture [27] (right column)
on original data frames (left column). Images are from the GSL dataset (upper row)
and the ChicagoFSWild corpus (lower row).

tector [39], which provides a descriptive motion and structural representation of
the human body, employing deep convolutional pose models. Specifically, Open-
Pose renders in total 137 body skeleton joint descriptors, extracted in the form
of image pixel coordinates, namely 25 body pose keypoints, 21 joints for each
hand, and 70 face keypoints, as also depicted in the middle column of Fig. 2.
Since only upper-body videos are employed in this work, we exploit 57 extracted
image coordinates, excluding 10 body joints corresponding to the lower body,
as well as the face keypoints. As a result, 114-dimensional (dim) feature vectors
are extracted capturing the 2D coordinates of the upper-body skeleton (30-dim)
and the two hands (84-dim in total). Note that, to incorporate translation and
scale invariance, the estimated 2D human skeletal joints are subjected to nor-
malization by transforming them to a local coordinate system, where the neck
joint is assumed to be the origin, whereas further normalization is applied based
on the distance between the left and right shoulder keypoints.

2D to 3D hand skeleton projection: Our approach extracts 3D hand-joint
keypoints by “lifting” 2D joint locations to the 3D space. Our input is a series of
2D hand-joint keypoints, previously generated by the OpenPose framework, and
our output is a series of points in the 3D space. We zero-center both 2D and 3D
poses around the wrist joint, so as to ensure that our model learns translation-
invariant representations. A noticeable source of error in 3D joint predictions is
noise in the input 2D predictions. Since an increase in performance is noticed
when smoothing is applied to the input, we use a median filter with radius one
to remove noise spikes and eliminate instability in the predictions.
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Fig. 3. The building blocks of the architecture that generates 3D hand skeleton joints
from 2D hand skeletal data (figure modified from [27]).

Consequently, we implement a simple but powerful architecture, originally
proposed in [27] for human pose 3D estimation, also depicted in Fig. 3. Our
model is a deep multi-layer neural network with batch normalization, dropout,
rectified linear units (ReLU), and residual connections. The latter improve gen-
eralization performance, while batch normalization and dropout improve model
robustness to noisy 2D detections. Additionally, in order to further stabilize
performance, a constraint on the weights of each layer is applied, so that the
maximum norm is less than or equal to one. More precisely, the building block
of the network is a linear layer followed by batch normalization, dropout, and
ReLU activation. This block is repeated twice, and the two blocks share a resid-
ual connection. For this task we stack two outer residual blocks, and our model
contains approximately 4 million trainable parameters. For network training, we
use the Rendered HandPose Dataset [44], a large-scale 3D hand pose dataset
based on synthetic hand models (see also Section 3.1).

The model yields 21 3D joints for each hand, thus 126-dim feature vectors
are extracted. Note that, for translation and scale invariance, the wrist is as-
sumed as the coordinate system origin, and the hand 3D keypoints are further
subjected to normalization according to the distance between the shoulder and
elbow keypoints of each hand.

Hand and mouth ROIs extraction and appearance features: Hands
contain the most prominent SL information. Additional information also exists in
mouthing patterns, being part of non-manual SL articulation. Thus, our system
detects the ROIs of the mouth and each hand, exploiting the corresponding 2D
human skeleton points returned by OpenPose. To generate appearance feature
maps (one for the mouth and one for each hand), each ROI is resized to 224×224
pixels and fed to a ResNet-18 network [16] (using 3×3 convolutional kernels and
downsampling with stride 2), pretrained on the ImageNet corpus [9]. This yields
512-dim features for each stream by taking the output of the network fully-
connected layer.

Feature fusion: The extracted feature streams are then fused through simple
vector concatenation. Thus, our SLR system employing all aforementioned data
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streams will have 1776-dim features (114-dim for the 2D human skeleton, 126-
dim for the 3D hand joints, and 512-dim for the ROIs of each of the mouth
and two hands). Additional systems with fewer feature streams (hence lower
dimensionalities) are also evaluated in Section 3.4. It should be noted that in case
of missing streams due to OpenPose failures or occluded hands, the respective
features are filled by zeros.

2.2 Sequence learning model

Regarding SLR from videos as a sequence-to-sequence prediction task, we ad-
dress the SLR problem by a sequence learning approach based on an encoder-
decoder module equipped with an attention mechanism. In its general form, the
encoder is fed with the latent representations generated by a particular feature
learner outputting a hidden states sequence, which is then processed by the de-
coder producing the predicted output. Further, the attentional models are based
on the alignment between input and output accomplished by the likelihood of
each portion of source sequence being related to the ongoing output.

Considering the above typical structure, a variety of attention based encoder-
decoder schemes have been proposed, with most of them being mainly associ-
ated with recurrent neural networks (RNNs). The most dominant RNN encoder-
decoder variants are long short-term memory networks (LSTMs) [18] and gated
recurrent units (GRUs) [6]. Additionally, various architectures have been in-
troduced relying on bi-directional RNNs [3, 42, 43]. Recently, the Transformer
multi-head attention-based architecture [41] has been proposed that instead of
involving CNNs or RNNs, it is complemented with position encoding and layer
normalization. Moreover, in [32], a sequence-learning model using multi-step
attention-based CNNs (enabling parallelization) is employed for finger-spelling
recognition.

In this work, four sequence learning models are considered, namely: an atten-
tional LSTM encoder-decoder [18], an attentional GRU encoder-decoder [6], an
attentional CNN encoder-decoder [32], and a Transformer network [41]. Details
of their implementation are provided next.

2.3 Implementation Details

All aforementioned deep-learning models are implemented in PyTorch [33], and
their training carried out on a GPU. Specifically, the 3D hand skeleton generation
network of Section 2.1 is trained for 150 epochs using the Adam optimizer [22],
a batch size of 64, a starting learning rate of 0.001 and exponential decay. The
weights of the linear layers are set using Kaiming He initialization [15].

For the sequence-learning models of Section 2.2, we employ a one-layer atten-
tional LSTM encoder-decoder [18] with 128 hidden units and a one-layer GRU
encoder-decoder [6] with hidden dimensionality equal to 256. Both RNNs are
trained via the Adam optimizer [22] with an initial learning rate of 0.001 de-
cayed by a factor of 0.3 and a dropout rate of 0.3. Beam search is applied during
decoding with beam-width 5. The attentional CNN encoder-decoder model has 3
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layers with kernel width 5 and 256 hidden units, and its training is based on the
Adagrad optimizer [10] with an initial learning rate of 0.003, decreased by a fac-
tor of 1.0. Dropout of 0.1 and beam search of width 5 are employed. Finally, the
Transformer is a 4-layer one with 8 heads for Transformer self-attention, 2048-
dimension hidden Transformer feed-forward, and 512 hidden units. Its training
is conducted via the Adam optimizer with an initial learning rate of 0.001 de-
creased by a factor of 2.0 and dropout 0.4. Parameter initialization is carried
out by the Xavier process [14].

3 Experiments

Before proceeding to the SLR experiments that constitute the main focus of this
paper, we briefly evaluate our 3D hand pose estimation approach.

3.1 3D hand pose corpora

We conduct experiments on the 3D hand skeleton generation network perfor-
mance using two corpora: the Rendered HandPose dataset (RHD) [44] and the
FreiHand database (FHD) [45]. More details are provided next.

Rendered HandPose dataset: We use this corpus for network training. It
constitutes a large-scale 3D hand pose dataset, based on synthetic hand mod-
els [44]. The dataset utilizes 3D human models with corresponding animations
from Mixamo 2 [13], and the open-source software Blender 3 [7] is used for image
rendering. It consists of 20 different characters performing 39 actions, and for
each frame a different camera location is randomly selected. The dataset provides
41,258 images for training and 2,728 images for evaluation with a resolution of
320 × 320 pixels. Annotations of a 21 keypoint skeleton model of each hand are
available, as well as segmentation masks. In our work, we take advantage of the
hand keypoints with their coordinates in the image frame and their coordinates
in the world frame.

FreiHAND Dataset: The dataset consists of real images and shows samples
both with and without object interactions. It is captured with a multi-view setup
and contains 33,000 samples. Hand poses are recorded from 32 subjects, and the
set of actions include ASL signs, counting and moving fingers to their kinematic
limits. 3D annotations for 21 hand keypoints are provided. For this work, we
partition the data to 80% for training and 20% for testing.

3.2 3D hand pose estimation results

In Table 1 and Fig. 4, we evaluate the performance and generalization power of
our model on the aforementioned datasets for various training / testing scenar-
ios, reporting average median point error per keypoint of the predicted 3D pose,
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Fig. 4. Percentage of correct keypoints (PCK) over a certain threshold in mm, evalu-
ated: (a) on RHD-test for model trained on RHD-train; and (b) on FHD-test for model
trained on FHD-train.

when given the 2D ground truth pose, as well as the area under the curve (AUC)
on the percentage of correct keypoints for different error thresholds. Specifically,
in Table 1, among other results, in order to investigate the cross-dataset general-
ization of our network, we use the model trained on RHD-train and report AUC
score and median error per joint on the FHD dataset, after alignment with the
ground truth (Procrustes analysis). We also report percentage of correct key-
points (PCK) in Fig. 4, which returns the mean percentage of predicted joints
below an Euclidean distance from the correct joint location.

The results show that our method demonstrates good performance on both
datasets. The RHD set is characterized as challenging, due to the variations in
viewpoints, and as a result we report higher 3D pose error. Since we are mostly
interested in the generalization power of our model and its performance “in the
wild”, we find that our model manages to adapt effectively to unseen data and
accurately captures the hand pose.

Table 1. Performance of the 3D hand pose estimation algorithm evaluated by two
metrics for different training/testing scenarios.

Metrics =⇒ AUC Median error
Training Testing score per joint (mm)

RHD-train 0.729 18.1
RHD-train RHD-test 0.616 22.6

FHD-test 0.771 16.2

FHD-train FHD-test 0.900 11.0
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3.3 SL Corpora

As already mentioned, the proposed SLR system is evaluated on two multi-signer
SL corpora: (i) The isolated sign GSL dataset [2] and (ii) the continuous ASL
fingerspelling ChicagoFSWild database [37]. More details are provided next.

GSL dataset: This consists of 15 (5 × 3) different dialogues, organized in sets
of 5 individual tasks in 3 public services, performed by 7 different signers. The
dialogues, between a deaf person and a single service employee, are pre-defined
and are performed by each signer 5 consecutive times (5 × 7 × 5 × 3). Signing is
captured by an Intel RealSense D435 RGB-D camera at a rate of 30 Hz, providing
simultaneously RGB and 24-bit depth data streams at the same spatial resolution
of 648×480 pixels. Additionally, during recording, camera pose adjustments are
made, thus offering a desirable variation in the videos. Corpus annotations by
GSL linguistic experts are provided at both the signed sentence and signed word
levels. The corpus signed vocabulary consists of 310 unique glosses (40,785 gloss
instances) and 331 unique sentences (10,290 sentences), with 4.23 glosses per
sentence on average. Here, an isolated sign recognition task is built concerning
306 unique words (numerals are discarded) that are expressed between 4 and 10
times by each signer in the dataset, yielding 12,897 clips. The dataset is trained
under a multi-signer framework, with all experiments conducted through ten-
fold cross-validation, where 80% of each fold is allocated to training, 10% to
validation, and 10% to testing.

ChicagoFSWild database: This corpus includes ASL finger-spelling image
frame sequences collected from online videos, providing a natural SL corpus in a
real-world setting. The absence of unique signs for several words, such as names,
foreign lexical items, and technical terms renders finger-spelling [32, 37, 38] a
meaningful SL variant, basically expressed in a continuous letter signing un-
scrambling manner. The corpus was annotated through ELAN [1, 8] by students
that have studied ASL. The data contain 7,304 ASL finger-spelling sequences
with frame resolution of 640 × 360 expressed by 160 signers, leading to a 3,553
unique finger-spelled word vocabulary. Here, we employ a small-vocabulary sub-
set concerning 103 unique finger-spelled words, involving 26 English letters with
a sufficient number of occurrences among all signers (143 signers) between 10
and 130 times in the corpus. These yield 3,076 video snippets of words obtained
by the ELAN annotation time-stamps of the words of interest. Training is con-
ducted under a multi-signer setting, through ten-fold cross-validation with 80%
of each fold used for training, 10% for validation, and 10% for testing. For com-
parison purpose, training is also conducted in a signer-independent (SI) setting,
where the dataset is divided into training, validation, and testing sets without
signers overlap among the partitions. Applying the same partition as in [37], the
training partition corresponds to 5,455 samples, the validation 981 videos, and
the testing set 868 clips.
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Table 2. Word accuracy (%) on two SL datasets under a multi-signer experimen-
tal paradigm, employing various feature stream combinations in conjunction with the
attentional multi-step CNN encoder-decoder sequence-learning model of Section 2.2.

Feature Streams Datasets

Hand Mouth 2D-Hand 2D-Body 3D-Hand
CNNs CNN Skeleton Skeleton Skeleton GSL ChFSWild

(1024-dim) (512-dim) (84-dim) (30-dim) (126-dim)

X 88.25 84.71

X 29.46 23.57

X 40.33 34.20

X 33.87 30.07

X 78.91 75.29

X X 88.96 86.47

X X X 93.17 90.81

X X X 90.20 86.33

X X X X 93.40 91.17

X X 89.13 86.54

X X X 89.81 87.65

X X X X 93.41 91.01

X X X X 91.23 87.10

X X 81.22 80.36

X X X 83.42 80.98

X X X X X 94.56 91.38

3.4 SL recognition results

We first evaluate our SLR model for various feature streams using the attentional
multi-step CNN encoder-decoder sequence-learning model, showcasing the power
of 3D hand skeleton representations in the SLR task. Both datasets are evalu-
ated in terms of word accuracy (%) in a multi-signer setting. As deduced from
Table 2, the 3D hand skeleton seems to be a robust representation, achieving the
highest accuracies on both datasets when added to 2D skeleton joints (body and
hand skeletons) and hand and mouth articulator appearance feature represen-
tations, revealing the benefit of using multiple visual features streams that are
complementary to each other. Incorporating 3D hand pose information boosts
system performance on top of all other streams, obtaining 94.56% accuracy on
the GSL dataset and 91.38% on ChicagoFSWild. It can also be viewed that
its incorporation as additional hand information performs better when included
with the 2D hand skeletal data. As demonstrated, the CNN-based articulator
feature representations perform well, while the mouth region is mostly comple-
mentary in benefiting other feature streams. Finally, it can be observed that
skeletal features yield lower accuracies when used alone than appearance feature
streams, demonstrating the need for their combined used.

Next, in Table 3, we investigate the performance of the various sequence-
learning techniques of Section 2.2, when employing all feature streams discussed
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(1776-dim). Again, word accuracy is reported on the two datasets under the
multi-signer experimental paradigm. As it can be observed, the best results are
obtained by the attentional CNN encoder-decoder, revealing its superiority to
the considered alternatives. This is primarily due to the good learning ability
of CNNs. It can be readily seen that the worst results for the GSL dataset are
obtained by the Transformer encoder-decoder module, while for the ChicagoFS-
Wild database by the attentional GRU encoder-decoder.

We also evaluated the performance of the proposed system employing the
attentional CNN encoder-decoder under a speaker-independent experimental
paradigm in terms of letter accuracy (%) on the ChicagoFSWild dataset, improv-
ing over the best reported results of [38] from 45.1% to 47.93%. Additionally, our
model outperforms previous reported approaches regarding the GSL dataset [2],
yielding word accuracy improvements from 89.74% to 94.56%.

Further, in Table 4, a number of variations of the sequence-learning model
(attentional CNN encoder-decoder) are considered, regarding the number of
layers, kernel widths, and the beam width employed during decoding. Results
demonstrate that deeper architectures enhance model performance.

Finally, it should be noted that our system was evaluated using alternative
skeletal joints normalization schemes, namely instead of normalizing 3D hand
skeletal data regarding the elbow-shoulder distance, we applied the shoulder-to-
shoulder distance, achieving 1.23% less accuracy in the GSL dataset and 2.47%
in the ChicagoFSWild dataset. Additionally, employing the Euclidean distance
between joints, generating 57 instead of 114 2D skeletal features results in an
accuracy decrease for both datasets (6.44% for GSL dataset and 8.91% for the
ChicagoFSWild database).

4 Conclusion

In this paper we investigated the benefit of estimated 3D hand skeletal informa-
tion to the task of SLR from RGB videos, within a state-of-the-art deep-learning
recognition system, operating on multiple feature streams. We proposed to infer
3D hand pose from 2D skeletal information obtained from OpenPose, using a
deep-learning architecture previously used for 3D human pose estimation. Our
results on two multi-signer SL corpora demonstrated that 3D hand pose adds
value on top of other feature streams, including 2D skeletal information and

Table 3. Word accuracy (%) on two SL datasets under a multi-signer experimental
paradigm, using various encoder-decoder models with all feature streams concatenated.

Encoder-decoder GSL corpus ChFSWild corpus

Attentional LSTM 89.97 86.42
Attentional GRU 89.55 84.50
Attentional CNN 94.56 91.38
Transformer 88.21 85.63
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Table 4. Comparative evaluation of model variations of the attentional multi-step CNN
encoder-decoder sequence-learning model of Section 2.2 in terms of word accuracy (%)
in a multi-signer setting, with L being the number of layers, KW the kernel widths,
and BW the beam width.

Model details Datasets

L KW BW GSL ChFSWild

1 3 3 84.21 82.74
2 3 3 93.83 87.45
3 3 3 94.33 90.87
1 5 5 87.52 85.48
2 5 5 93.27 91.12
3 5 5 94.56 91.38

CNN-based representations of manual and non-manual articulators. Further,
our results outperformed the previously reported state-of-the-art on the two SL
corpora considered.
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