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Abstract—We present an audiovisual emotion recognition sys-
tem tailored to child-robot interaction scenarios. Our proposed
system is based on deep learning and the Temporal Segment
Networks framework, receives input from both the child’s speech
and video modalities (the latter represented as RGB and optical
flow streams), and tackles several challenges that arise in emotion
recognition and child-robot interaction. The system is evaluated
on the EmoReact child emotion recognition dataset, significantly
outperforming the state-of-the-art on this corpus. In addition,
extensive ablation studies are conducted.

Index Terms—Audiovisual Emotion Recognition, Multimodal-
ity, Child-Robot Interaction, Audiovisual Fusion

I. INTRODUCTION

Emotion is one of the fundamentals of human communi-
cation, and its significance in our social lives has kickstarted
numerous studies on its automatic recognition, focusing on
various applications that range from support lines and call
centers, to e-Health, education, and human-robot interaction.

Concerning the latter, during the interaction between a
human and a social robot, the analysis of the human emotional
state should have an important role in order to develop
empathic robotic agents [1]. Emotional awareness of robotic
agents allows them to adapt their behavior towards the human
based on the perceived affect, creating a more human-like
and natural communication. Especially, as far as Child-Robot
Interaction (CRI) is concerned, it has been shown that robotic
actions in accordance with children’s emotion create a positive
and stronger bond between the two, increasing trust and
establishing long-term interactions [2], [3].

Building an emotion recognition system for children is
challenging and presents many obstacles. Children not only
differ from adults in their natural characteristics (e.g., voice
pitch, body height) but also exhibit different behavioral pat-
terns, which for example can result in abrupt movements and
occlusions [4], [5]. To counter these, a robust system for
child emotion recognition should leverage information from
multiple modalities, exploiting the fact that different emotions
can be expressed through different information channels. Fur-
ther, recognition systems should be computationally efficient,
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especially in the context of real-life CRI scenarios. Finally,
an additional challenge concerns general lack of high-quality,
large children emotion datasets [5] that are crucial in de-
veloping state-of-the-art deep learning supervised techniques.
Children corpora tend to be of small size due to the fact that
they are hard to obtain, one of the more important reasons
being data sensitivity.

In this paper, we present an audiovisual emotion recognition
system aiming to address the aforementioned challenges. The
system takes as input both the child’s speech, as well as the
visual channel, in the form of the raw RGB data stream, which
can be used to effectively identify static facial expressions, and
the optical Flow stream, which is effective in modeling the
dynamics of emotions. This selection of different modalities
is verified by ablation studies that analyze the contribution
of each modality for the prediction of different emotions and
identify the most effective fusion scheme that can be used
to combine information from all channels. In addition, the
deep learning based methods that we have employed allow
for computationally efficient training and inference, and they
can be developed on small datasets, avoiding overfitting. We
perform extensive ablation studies on the EmoReact dataset,
which, to the best of our knowledge, is the only dataset
of children expressing emotions both verbally and visually,
and establish a good trade-off between computational load
and system performance. Finally, our approach is verified by
comparing our system to the previous best published results
on the EmoReact dataset, significantly outperforming them.

The rest of the paper is organized as follows: Section II
discusses related work on emotion recognition for children and
CRI. Section III describes in detail our proposed audiovisual
emotion recognition architecture, and Section IV presents
our thorough experimental results on the EmoReact dataset.
Finally, Section V provides our conclusions and directions for
future work.

II. RELATED WORK

Recognition of children affect, as we mentioned above, is
crucial in creating empathic robots deployed during CRI. Thus,
interesting research works have been presented for designing
advanced emotion recognition modules to equip intelligent
robots. Goulart et al. proposed in [6] a computational system
for estimating children emotion during CRI, deploying visual
information from both RGB and infrared thermal cameras.
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Fig. 1. The proposed multimodal emotion recognition architecture for child-robot interaction.

The proposed system detects the facial regions of interest
that are relevant to five basic emotions. Lopez-Rincon in [7]
proposed a Convolutional Neural Network (CNN) combined
with a Viola-Jones face detector, trained using the AffectNet
database [8], and tuned it with children data in order to
recognize children facial emotional expressions. Marinou et
al. [9] proposed an automated approach using 3d skeleton data
and a CNN architecture for action and continuous emotion
recognition during robot-assisted therapy sessions of children
with Autism Spectrum Disorders (ASD). In [10], a system
perceived children affective expressions while playing chess
with an iCat robot and modified the behavior of the robot to
be more friendly and increase children engagement. Similarly,
Filippini et al. [11] classified children emotional states to un-
derstand their engagement level using thermal signal analysis
during interaction with the Mio Amico Robot. An adaptive
robot behavior based on the perceived emotional responses
was also developed for a NAO robot in [12].

A number of studies have emphasized the importance of
leveraging multiple modalities for emotion recognition in
adults [13]–[15]. In [16], 3D CNN were used to extract deep
spatiotemporal features from both the video and audio (repre-
sented as short-time Fourier transform) in order to determine
emotion scores. Kim et al. [17] used deep belief networks for
audiovisual feature generation, while [18] combined a two-
branch feature extraction scheme with a long short-term mem-
ory network for continuous dimensional emotion recognition.

On the contrary, there is a lack of works studying multiple
modalities for emotion recognition in children. Apart from the
face, which is the most commonly used channel for identifying
emotion [19], there are other modalities equally powerful to
reveal children affect such as speech and body movements.
In [20], an ensemble of AlexNet networks was applied on

multiple spectrograms in order to extract deep features, which
were then used by an SVM to identify emotions in the
EmoReact dataset. For the same dataset, [5] combined tradi-
tional audio features and features extracted from the OpenFace
framework [21] (action units, shape parameters and head
orientation) with an SVM for audiovisual emotion recogni-
tion. In [4], we proposed a two-branch architecture modeling
body movements along with the facial expressions to identify
emotions in children during CRI scenarios. In comparison to
that work, here we investigate a different modality (audio)
instead of the body skeleton, in order to tackle occlusions
and increase robustness, and also use a different dataset
(EmoReact), which includes both visual and aural expression
of emotion. Furthermore, while the CNN architecture in that
work considered each frame in the video separately, here we
use CNN architectures that take into account multiple frames
in the video using temporal sampling, as well as leverage the
video dynamics using the optical flow representation.

III. METHOD

The architecture of the proposed emotion recognition sys-
tem is shown in Figure 1. The system is composed of
different branches, each one focusing on a different input
channel/modality.

A. Visual Branch

The visual branch is based on the Temporal Segments
Network (TSN) framework [22]. During training, the input
video is split into K different segments of equal duration M ,
and in the next step, a snippet of length N < M consecutive
frames is randomly sampled from each segment, resulting in
K snippets Tk. Subsequently, each snippet is fed to a CNN,
yielding class scores Sk for each snippet. In the last step, the



scores of the different snippets are fused using the segmental
consensus function H that is applied on the representations of
all different snippets to obtain the final scores:

S = H(Sk) = H(Fv(Tk;Wv)|k∈K) (1)

where Fv(Tk;Wv) denotes the application of a CNN with pa-
rameters Wv on the snippet Tk. The most common consensus
function that can be used is averaging, while others include
maximum or weighted averaging (we use simple averaging).
The CNN is then trained using standard cross-entropy loss in
the case of multiclass classification, or binary cross-entropy
in the case of multilabel classification (which is the case of
emotion recognition we consider).

Traditionally, TSNs take input from both the RGB of the
input video, as well as the optical flow, with each one trained
separately and then fused using average or weighted average
fusion. As with TSNs for action recognition, we also use both
modalities, since the optical flow can be used to model the
dynamics that arise during expressions of emotion, while the
RGB modality can best identify static expressions such as
smiles. We also need to mention that we crop the input video
(both RGB and Flow) around the child’s face, by using the
facial landmarks obtained by OpenFace [21].

The paradigm of TSNs offers several benefits to emotion
recognition and CRI in particular. Considering an input video
with a child expressing emotion, the archetype facial expres-
sions and action units that correspond to each emotion are
not present throughout the video, but usually only during a
short period of it. As a result, temporal sampling allows the
network to access several parts of the video and model its long-
range temporal structure, thus being more likely to observe
the corresponding facial expression. In addition, compared
to processing the entire video, the sampling process ignores
redundant information in consecutive video frames, helping
avoid overfitting and offering a type of data augmentation,
valuable for children emotion databases of small size.

Finally, since the ultimate goal of the system is its deploy-
ment in real-life CRI scenarios, it is important to consider
computational costs of training, as well as the ability to run
in real time. Due to the fact that the system does not consider
the entire input video chunk, the computational load is reduced
significantly, both at training, as well as during inference.

B. Audio Branch

In the audio branch, considering the input waveform of
the video, we first extract its mel-spectrogram representation
and then apply a CNN Fa(W a) on it in order to extract
the audio representation. Here, we bypass the cumbersome
feature extraction methods by considering the mel-spectrogram
of the waveform as an image, and applying standard computer
vision techniques. Next, as with the visual modality, a fully
connected layer is used in order to obtain the final emotion
scores. The audio branch is susceptible to overfitting because
the full spectrogram is fed to the network, contrary to the
visual branch where temporal sampling is used. To counter

this, we apply a more aggressive regularization scheme with
high penalty for L2 regularization during training.

C. Training and Audiovisual Fusion

In order to fuse information from the visual and audio
modalities, we consider two different types of fusion between
both RGB-audio, as well as Flow-audio modalities: feature fu-
sion and score fusion, and two training schemes: independent
training and joint training.

During joint training, the RGB (or Flow) and audio CNN
are trained concurrently, and depending of the fusion scheme,
we either concatenate their feature vectors (feature fusion)
before the last fully connected layer, or average the scores
(score fusion) obtained after the last fully connected layer. In
order to achieve feature fusion under joint training, we repeat
the audio feature vector K times (where K is the number of
segments/snippets), and associate each visual snippet with the
audio feature vector for the whole video, through concatena-
tion of the feature vectors. In contrast, in independent training
the RGB (or Flow) and audio networks are trained separately,
and we then average their emotion scores.

IV. EXPERIMENTAL FRAMEWORK AND RESULTS

A. Database

The dataset we use is the EmoReact dataset. The EmoReact
dataset [5] contains videos of 63 children (32F, 31M, aged 4
to 14) reactions to different topics, and has been collected
from the YouTube channel React. The number of all videos
across the training (432 videos), validation (303 videos), and
test set (367) is 1102. Each video is annotated with one or
more emotions, from a total of 8 emotion labels: Curiosity,
Uncertainty, Excitement, Happiness, Surprise, Disgust, Fear,
and Frustration. To the best of our knowledge, the EmoReact
dataset is the only dataset of children expressing emotion, both
verbally and visually.

B. Implementation Details

The CNN backbone of the visual and audio branches is a
residual CNN with 50 layers (ResNet50) [23]. Specifically for
the CNN of the visual RGB branch, we have pretrained it on
the largest facial expression dataset, AffectNet [8], achieving
59.47% accuracy on the validation set (test set is not available).
Because the label distribution of AffectNet is highly skewed,
we employ balanced sampling so that the network sees the
underrepresented classes more often. The residual networks
of the audio branch and Flow modality are pretrained on
ImageNet (we obtain the weights of the network as provided
by the PyTorch framework).

We train all networks and modalities with stochastic gra-
dient descent for 60 epochs, starting with a learning rate of
1e-2, momentum 0.9, and regularization with weight decay
(L2 regularization) 5e-4. The learning rate is reduced by a
factor of 10 at 20 and 40 epoch milestones1. Training is done
using binary cross-entropy loss. For evaluation, we select the

1We have made the code for the experiments publicly available at https:
//github.com/filby89/multimodal-emotion-recognition
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TABLE I
ROC AUC AND AVERAGE TIME ELAPSED PER EPOCH WITH VARYING

NUMBER OF SAMPLED SNIPPETS.

Segments ROC AUC sec/train epoch sec/val epoch
Balanced Unbalanced

RGB
1 0.685 0.773 11 7
3 0.713 0.786 27 20
5 0.709 0.787 40 26
10 0.715 0.788 73 51

Flow
1 0.585 0.741 37 23
3 0.596 0.744 101 70
5 0.623 0.757 166 115
10 0.627 0.759 294 210

TABLE II
RESULTS ON THE EMOREACT DATASET FOR DIFFERENT FUSION AND
TRAINING SCHEMES BETWEEN THE RGB-AUDIO AND FLOW-AUDIO

MODALITIES.

Fusion Training ROC AUC
Balanced Unbalanced

Single Modality Audio 0.715 0.750
Visual (RGB) 0.713 0.786
Visual (Flow) 0.623 0.757

Score Fusion RGB-audio Joint Training 0.720 0.756
Independent Training 0.747 0.799

Score Fusion Flow-audio Joint Training 0.719 0.746
Independent Training 0.725 0.787

Feature Fusion RGB-audio Joint Training 0.719 0.769
Feature Fusion Flow-audio Joint Training 0.707 0.744

epoch with the best validation area under receiver operating
characteristic (ROC AUC), and apply the corresponding net-
work on the test set, reporting class-balanced and unbalanced
ROC AUC. Especially in the case of audio, we found out that
a more aggressive regularization scheme is needed to avoid
overfitting, and thus we increased the weight decay tenfold to
5e-3.

C. Results

a) Number of segments: As a first ablation study, we
consider the number of segments (and as a consequence the
number of snippets), which are used during training of the
visual branch with the RGB and Flow modalities. We consider
4 different values: 1, 3, 5, and 10, and report in Table I the
results on the ROC AUC (balanced per class and unbalanced),
as well as average time taken per epoch for training and
inference, on a computer with an RTX 2080 GPU.

We can see that in the case of RGB, increasing the number
of segments above 3 does not result in significant performance
difference, showing that even a small number of segments
can achieve satisfactory performance. However, increasing the
number of segments increases significantly both the training
and inference times. For the Flow modality, we see that
selecting 5 as a number of segments results in a balanced
trade-off between performance and execution time, since the
performance increase using 10 segments is minuscule. For the
following experiments, we use 3 segments for RGB and 5
segments for the Flow modality.

TABLE III
FINAL ROC AUC RESULTS ON THE EMOREACT DATASET.

ROC AUC
Balanced Unbalanced

Audio
audio features + SVM [5] 0.610 -
dnn ensemble + SVM [20] 0.718 -
Ours (End-to-End) 0.715 0.750
Visual
openface + SVM [5] 0.620 -
Ours (Flow) 0.623 0.757
Ours (RGB) 0.713 0.786
AudioVisual
[5] 0.640 -

Ours (RGB+Audio+Flow) 0.754 0.809

b) Audiovisual fusion and training schemes: Next, we
experiment with the different kinds of fusion schemes that
can be used to merge the RGB and audio, as well as the
Flow and audio modalities: feature vs. score fusion, as well
as the pretraining scheme: joint training of both networks
vs. independent training. The results of this study are shown
in Table II. Training the networks independently and then
averaging their scores achieves the best result in both cases
of audiovisual fusion (RGB-audio and Flow-audio), when
compared to both the single modalities, as well as their fusion
using joint training. This could be attributed to the fact that
while the TSN framework inherently avoids overfitting using
the temporal sampling, in the case of audio this is not the
case, since the full spectrogram is used, and more elaborate
schemes of regularization are needed.

c) Emotion by modality: Next, we explore the strengths
and weaknesses of each different modality, by showing the
different ROC AUC scores for each emotion, in Figure 2. We
observe that especially for Happiness, RGB is the most ap-
propriate modality, while Fear and Disgust, are best identified
through the children’s speech. Flow, in almost all cases under-
performs when compared to the other modalities, however in
the case of Excitement and Surprise it achieves a high score,
which can be explained by the more intense movements a
person does when expressing these emotions. The figure also
shows the result of average score fusion using independent
training for all three modalities, RGB, Flow, and audio.
We can see that overall, fusion increases the total balanced
and unbalanced scores, however in the case of Uncertainty,
Excitement, and Happiness, it results in slightly lower score
when compared to RGB only.

d) Final Results: We present the final results of the
emotion recognition system on EmoReact in Table III, where
we have also added the result of average score fusion between
the three different modalities (using independent training), as
well as the previous reported best results in the literature.
For the audio modality, our architecture achieves significantly
better ROC AUC than [5], which used a carefully selected
speech features set with an SVM, as well as similar results
with Nagarajan et al. [20]. However, our approach is end-to-
end and simple to implement, while Nagarajan et al. employed
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an elaborate scheme involving multiple AlexNet architectures
for feature extraction and an SVM on top of them to achieve
the final result.

In the visual modality, our RGB TSN architecture improves
significantly upon the best previous published result, which
used features extracted from the OpenFace framework with
an SVM [5].

Finally, our audiovisual fusion scheme using all three
modalities with independent training further increases the
ROC-AUC up to 0.754, resulting in significant score improve-
ment upon all previous studies.

V. CONCLUSION

In this paper we proposed a novel multimodal emotion
recognition system that can be used for deducing the emotion
of children, with the ultimate goal being child-robot interaction
scenarios. To that end, we have used deep learning methods
that tackle challenges met in CRI: small datasets, real-time
inference, and computationally low-cost training. We have also
thoroughly explored several aspects of our architecture and
identified the contribution of different parts of our network to
the final outcome. We have evaluated the emotion recognition
system on the EmoReact dataset of children expressing their
emotions multimodally, and showed that it achieves high
performance and state-of-the art results. In the future, we aim
to conduct extensive emotion recognition evaluations in real-
life CRI scenarios with numerous children and custom use-
cases.
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