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Abstract. In this work, we study the problem of finding approximate,
with minimum support set, solutions to matrix max-plus equations,
which we call sparse approximate solutions. We show how one can obtain
such solutions efficiently and in polynomial time for any �p approxima-
tion error. Subsequently, we propose a method for pruning morphological
neural networks, based on the developed theory.
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1 Introduction

In the last decades, the areas of signal and image processing have greatly ben-
efited from the advancement of the theory of sparse representations [10]. Given
a few linear measurements of an object of interest, sparse approximation the-
ory provides efficient tools and algorithms for the acquisition of the sparsest
(most zero elements) solution of the corresponding underdetermined linear sys-
tem [10,20]. Based on the sparsity assumption of the initial signal, this allows
perfect reconstruction from little data. Ideas stemming from this area have also
given birth to compressed sensing techniques [5,9] that allow accurate recon-
structions from limited random projections of the initial signal, with wide-
ranging applications in photography, magnetic resonance imaging and others.

Yet, there is a variety of problems in areas such as scheduling and syn-
chronization [2,7], morphological image and signal analysis [14,18,22] and opti-
mization and optimal control [1,2,12] that do not admit linear representations.
Instead, these problems share the ability to be described as a system of non-
linear equations, which involve maximum operations together with additions.
The relevant theoretical framework has initially been developed in [2,4,7] and
the appropriate algebra for this kind of problems is called max-plus algebra.
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Motivated by the sparsity in the linear setting, [23] introduced the notion of
sparsity (signals with many −∞ values, i.e. the identity element of this alge-
bra) in max-plus algebra. Herein, we contribute to this theory, by studying the
problem of sparse approximate solutions to matrix max-plus equations allowing
the approximation error to be measured by any lp norm. Indicatively, we also
present a preliminary application of the theory to the pruning of morphological
neural networks.

In particular, we make the following contributions: a) We pose a generalized
problem of finding the sparsest approximate solution to matrix max-plus equa-
tions under a constraint which makes the problem more tractable, also known as
the “lateness constraint”. The approximation error is in terms of any �p norm,
for p < ∞. b) We prove that for any �p norm, p < ∞, the problem has super-
modular properties, which allows us to solve it approximately but efficiently via
a greedy algorithm, with a derived approximation ratio. c) We investigate the
�∞ case without the “lateness constraint”, reveal its hardness and propose a
heuristic method for solving it. d) We demonstrate how one may prune whole
neurons from morphological neural networks using the developed theory.

2 Background Concepts

For max and min operations we use the well-established lattice-theoretic symbols
of ∨ and ∧, respectively. We use roman letters for functions, signals and their
arguments and greek letters mainly for operators. Also, boldface roman letters
for vectors (lowcase) and matrices (capital). If M = [mij ] is a matrix, its (i, j)
element is also denoted as mij or as [M]ij . Similarly, x = [xi] denotes a column
vector, whose i-th element is denoted as [x]i or simply xi.

2.1 Max-Plus Algebra

Max-plus arithmetic consists of the idempotent semiring (Rmax,max,+), where
Rmax = R∪{−∞} is equipped with the standard maximum and sum operations,
respectively. Max-plus algebra consists of vector operations that extend max-plus
arithmetic to R

n
max. They include the pointwise operations of partial ordering

x ≤ y and pointwise supremum x ∨ y = [xi ∨ yi], together with a class of
vector transformations defined below. Max-plus algebra is isomorphic to the
tropical algebra, namely the min-plus semiring (Rmin,min,+), Rmin = R ∪ {∞}
when extended to R

n
min in a similar fashion. Vector transformations on R

n
max

(resp. Rn
min) that distribute over max-plus (resp. min-plus) vector superpositions

can be represented as a max-plus � (resp. min-plus �′
) product of a matrix

A ∈ R
m×n
max (Rm×n

min ) with an input vector x ∈ R
n
max(R

n
min):

[A � x]i �
n∨

k=1

aik + xk, [A �′
x]i �

n∧

k=1

aik + xk (1)
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More details about general algebraic structures that obey those arithmetics can
be found in [19]. In the case of a max-plus matrix equation A � x = b, there is
a solution if and only if the vector

x̂ = (−A)ᵀ �′
b (2)

satisfies it [4,7,19]. We call this vector the principal solution of the equation.
It also satisfies the inequality A � x̂ ≤ b. The previous expressions are best
understood through the notion of adjunctions [13,14]. A pair of lattice operators
δ : L → M, ε : M → L, where L,M are complete lattices, is called an adjunction
if it satisfies the relation δ(X) ≤ Y ⇐⇒ X ≤ ε(Y ) for all X ∈ L, Y ∈ M,
and δ, ε are called the adjoint operator of each other. Loosely speaking, we
can define an operator δ : R

n
max → R

m
max for a matrix A ∈ R

m×n
max , such as

δ(x) = A � x. It can be shown [19] that its adjoint operator ε is given by the
formula ε(y) = (−A)ᵀ �′y, and the aforementioned expressions follow from this
observation. Lastly, a vector x ∈ R

n
max is called sparse if it contains many −∞

elements and we define its support set, supp(x), to be the set of positions where
vector x has finite values, that is supp(x) = {i | xi �= −∞}.

2.2 Submodularity

Let U be a universe of elements. A set function f : 2U → R is called submodular
[17] if ∀A ⊆ B ⊆ U, k /∈ B holds:

f(A ∪ {k}) − f(A) ≥ f(B ∪ {k}) − f(B). (3)

A set function f is called supermodular if −f is submodular. Submodular func-
tions occur as models of many real world evaluations in a number of fields and
allow many hard combinatorial problems to be solved fast and with strong
approximation guarantees [3,16]. It has been suggested that their importance
in discrete optimization is similar to convex functions’ in continuous optimiza-
tion [17].

The following definition captures the idea of how far a given function is from
being submodular and generalizes the notion of submodularity.

Definition 1. [8] Let U be a set and f : 2U → R
+ be an increasing, non-

negative, function. The submodularity ratio of f is

γU,k(f) � min
L⊆U,S:|S|≤k,S∩L=∅

∑
x∈S f(L ∪ {x}) − f(L)

f(L ∪ S) − f(L)
(4)

Proposition 1. [8] An increasing function f : 2U → R is submodular if and
only if γU,k(f) ≥ 1, ∀ U, k.

In [8], the authors used the submodularity ratio to analyze the properties of
greedy algorithms in discrete optimization problems with functions that are only
approximately submodular (γ ∈ (0, 1)). They proved that the performance of the
algorithms degrade gradually as a function of γ, thus allowing guarantees for a
wider variety of objective functions.
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3 Sparse Approximate Solutions to Max-Plus Equations

We consider the problem of finding the sparsest approximate solution to the max-
plus matrix equation A � x = b,A ∈ R

m×n,b ∈ R
m. Such a solution should i)

have minimum support set supp(x), and ii) have small enough approximation
error ‖b − A � x‖p

p, for some �p, p < ∞ norm. For this reason, given a prescribed
constant ε, we formulate the following optimization problem:

arg min
x∈Rn

max

|supp(x)|, s.t. ‖b − A � x‖p
p ≤ ε, p < ∞

A � x ≤ b.
(5)

Note that we add an additional constraint A � x ≤ b, also known as the “late-
ness” constraint. This constraint makes problem (5) more tractable; it enables
the reformulation of problem (5) as a set optimization problem in (13). In many
applications this constraint is desirable–see [23]. However, in other situations, it
might lead to less sparse solutions or higher residual error. A possible way to
overcome this constraint is explored in Sect. 3.1.

Even with the additional lateness constraint, problem (5) is very hard to
solve. For example, when ε = 0, solving (5) is an NP-hard problem [23]. Thus, we
do not expect to find an efficient algorithm which solves (5) exactly. Instead, as
we prove next, there is a polynomial time algorithm which finds an approximate
solution, by leveraging its supermodular properties. First, let us show that the
above problem can be formed as a discrete optimization problem over a set. We
follow a similar procedure to [23], where the case p = 1 was examined. For the
rest of this section, let J = {1, . . . , n}.

Lemma 1 (Projection on the support set, �p case). Let T ⊆ J ,

XT = {x ∈ R
n
max : supp(x) = T, A � x ≤ b}. (6)

and x|T be defined as x̂ inside T and −∞ otherwise, where x̂ is the principal
solution defined in (2). Then, it holds:

– x|T ∈ XT .
– ‖b − A � x|T ‖p

p ≤ ‖b − A � x‖p
p ∀ x ∈ XT .

Proof. – It suffices to show that A � x|T ≤ b. For j ∈ T it is [x|T ]j = x̂j and
for j ∈ J \ T, [x|T ]j = −∞ ≤ x̂j . Thus,

x|T ≤ x̂ ⇐⇒ A � x|T ≤ A � x̂ =⇒ A � x|T ≤ b. (7)

Hence, x|T ∈ XT .
– Let x ∈ XT , then A � x ≤ b ⇐⇒ x ≤ x̂, which implies (since both x,x|T

have −∞ values outside of T ):

x ≤ x|T ⇐⇒ b − A � x|T ≤ b − A � x. (8)
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Hence:

‖b−A�x|T ‖p
p =

∑

j∈T

(b−A�x|T )p
j ≤

∑

j∈T

(b−A�x)p
j = ‖b−A�x‖p

p. (9)

��
The previous lemma informs us that we can fix the finite values of a solution of
Problem (5) to be equal to those of the principal solution x̂. Indeed,

Proposition 2. Let xOPT be an optimal solution of (5), then we can construct a
new one with values inside the support set equal to those of the principal solution
x̂.

Proof. Define

z =

{
x̂j , j ∈ supp(xOPT)
−∞, otherwise

, (10)

then supp(xOPT) = supp(z) and, from Lemma 1, ‖b−A�z‖p
p ≤ ‖b−A�xOPT‖p

p

and A � z ≤ b. Thus, z is also an optimal solution of (5). ��
Therefore, the only variable that matters in Problem (5) is the support set. To
further clarify this, let us proceed with the following definitions:

Definition 2. Let T ⊆ J be a candidate support and let Aj denote the j-th
column of A. The error vector e : 2J → R

m is defined as:

e(T ) =

{
b − ∨

j∈T (Aj + x̂j), T �= ∅∨
j∈J e({j}), T = ∅.

(11)

Observe that for any T , it holds
∨

j∈T (Aj + x̂j) ≤ ∨
j∈J(Aj + x̂j) ≤ b, which

means that the above vector e(T ) = (e1(T ), e2(T ), . . . , em(T ))ᵀ is always non-
negative. We also define the corresponding error function Ep : 2J → R as:

Ep(T ) = ‖e(T )‖p
p =

m∑

i=1

(ei(T ))p. (12)

Problem (5) can now be written as:

arg min
T⊆J

|T |
s.t. Ep(T ) ≤ ε

(13)

The main results of this section are based on the following properties of Ep.

Theorem 1. Error function Ep is decreasing and supermodular.
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Proof. Regarding the monotonicity, let ∅ �= C ⊆ B ⊂ J , then
∨

j∈C

(Aj + x̂j) ≤
∨

j∈B

(Aj + x̂j) ⇐⇒ e(B) ≤ e(C), (14)

thus raising the, non-negative, components of the two vectors to the p-th power
and adding the inequalities together yields Ep(B) ≤ Ep(C). The case for C = ∅
easily follows from the definition of e.

Let S,L ⊆ U ⊆ J , with |S| ≤ K, S ∩L = ∅ and define f(U) = −Ep(U), ∀ U .
Then:

γU,K(f) = min
L,S

∑
sk∈S f(L ∪ {sk}) − f(L)

f(L ∪ S) − f(L)
, (15)

where f(L) =
∑m

i=1[bi − ∨
j∈L(Aij + x̂j)]p. Let now I1 be the set:

I1 = {i |
∨

j∈L∪S

(Aij + x̂j) =
∨

j∈L

(Aij + x̂j)} (16)

and for each sk ∈ S, we define two sets of indices:

I2(sk) = {i |
∨

j∈L∪{sk}
(Aij + x̂j) =

∨

j∈L∪S

(Aij + x̂j) >
∨

j∈L

(Aij + x̂j)} (17)

and:

I3(sk) = {i |
∨

j∈L∪S

(Aij + x̂j) >
∨

j∈L∪{sk}
(Aij + x̂j) >

∨

j∈L

(Aij + x̂j)}. (18)

Then, if

Σ1(L, S) =
∑

sk∈S

∑

i∈I1,I2(sk)

{−[bi −
∨

j∈L∪{sk}
(Aij + x̂j)]p + [bi −

∨

j∈L

(Aij + x̂j)]p}

(19)
and

Σ2(L, S) =
∑

sk∈S

∑

i∈I3(sk)

− [bi −
∨

j∈L∪{sk}
(Aij + x̂j)]p + [bi −

∨

j∈L

(Aij + x̂j)]p,

(20)
the ratio becomes:

γU,K(f) = min
L,S

Σ1(L, S) + Σ2(L, S)
Σ1(L, S)

≥ 1, ∀ U,K (21)

meaning (Proposition 1) that f is submodular or, equivalently, Ep = −f is
supermodular. ��
Setting Ẽp(T ) = max(Ep(T ), ε)1 and leveraging the previous theorem, we are
able to formulate problem (13), and thus the initial one (5), as a cardinality
1 The new, truncated, error function remains supermodular; see [16].
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Algorithm 1: Approximate solution of problem (5)
Input: A,b
Compute x̂ = (−A)ᵀ �′

b
if Ep(J) > ε then

return Infeasible
Set T0 = ∅, k = 0
while Ep(Tk) > ε do

j = argmins∈J\Tk
Ep(Tk ∪ {s})

Tk+1 = Tk ∪ {j}
k = k + 1

end
xj = x̂j , j ∈ Tk and xj = −∞, otherwise
return x, Tk

minimization problem subject to a supermodular equality constraint [24], which
allows us to approximately solve it by the greedy Algorithm 1. The calculation
of the principal solution requires O(nm) time and the greedy selection of the
support set of the solution costs O(n2) time. We call the solutions of prob-
lem (5) Sparse Greatest Lower Estimates of b. Regarding the approximation
ratio between the optimal solution and the output of Algorithm 1, the following
proposition holds.

Proposition 3. Let x be the output of Algorithm 1 after k > 0 iterations of the
inner while loop and Tk the respective support set. Then, if T ∗ is the support set
of the optimal solution of (5), the following inequality holds:

|Tk|
|T ∗| ≤ 1 + log

(
mΔp − ε

Ep(Tk−1) − ε

)
, (22)

where Δ =
∨

i,j(bi − Aij − x̂j).

Proof. From [24], the following bound holds for the cardinality minimization
problem subject to a supermodular and decreasing constraint, defined as function
f : 2J → R, by the greedy algorithm:

|Tk|
|T ∗| ≤ 1 + log

(
f(∅) − f(J)

f(Tk−1) − f(J)

)
(23)

For our problem, it is f = Ẽp. Observe now that, since k > 0, Ẽp(∅) = Ep(∅) ≤
mΔp, 0 ≤ Ẽp(J) = ε and Ẽp(Tk−1) > ε. Therefore, the result follows. ��
The ratio warns us to expect less optimal and, thus, less sparse vectors when
increasing the norm p that we use to measure the approximation. It also hints
towards an inapproximability result when p → ∞, which is formalised next.

3.1 Sparse Vectors with Minimum �∞ Errors

Although in some settings the A � x ≤ b constraint is needed [23], in other cases
it could disqualify potentially sparsest vectors from consideration. Omitting the
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constraint, on the other hand, makes it unclear how to search for minimum error
solutions for any �p (p < ∞) norm. For instance, it has recently been reported
that it is NP-hard to determine if a given point is a local minimum for the �2
norm [15]. For that reason, we shift our attention to the case of p = ∞. It is well
known [4,7] that problem minx∈Rn

max
‖b − A � x‖∞ has a closed form solution;

it can be calculated in O(nm) time by adding to the principal solution element-
wise the half of its �∞ error. Note that this new vector does not necessarily
satisfy A � x ≤ b, so it shows a way to overcome the aforementioned limitation.

First, let us demonstrate that problem (5), when considering the �∞ norm,
becomes harder than before and non-approximable by the greedy Algorithm 1.
Hence, consider now the following optimization problem:

arg min
x∈Rn

max

|supp(x)|

s.t. ‖b − A � x‖∞ ≤ ε.
(24)

Thanks to a similar construction as in the previous section, this problem can be
recast as a set-search problem.

Lemma 2 (Projection on the support set, �∞ case). Let T ⊆ J , x|T
defined as x̂ inside T and −∞ otherwise and x∗ = x|T + ‖b−A�x|T ‖∞

2 . Then
∀ z ∈ R

n
max with supp(z) = T , it holds:

‖b − A � z‖∞ ≥ ‖b − A � x∗‖∞ =
‖b − A � x|T ‖∞

2
. (25)

Proof. (Sketch) By fixing the support set of the considered vectors equal to T ,
equivalently we omit the columns and indices of A and x, respectively, that
do not belong in T (since they will not be considered at the evaluation of the
maximum). By doing so, we get a new equation with same vector b and restricted
A,x. The vector x∗ that minimizes the �∞ error of this equation is obtained from
its principal solution plus the half of its �∞ error. But now observe that the new
principal solution shares the same values with the original principal solution
(follows from Lemma 1) inside T , which is exactly vector x|T . Extending x∗

back to R
n
max yields the result. ��

So, a similar result to Proposition 2 holds.

Proposition 4. Let xOPT be an optimal solution of (24), then we can construct
a new one with values inside the support set equal to those of the principal
solution x̂ plus the half of its �∞ error.

By defining E∞(T ) = ‖b−A�x|T ‖∞
2 , (24) becomes:

arg min
T⊆J

|T |
s.t. E∞(T ) ≤ ε

(26)

Unfortunately this problem does not admit an approximate solution by the
greedy Algorithm 1 (to be precise, the modified version of Algorithm 1 when
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Ep becomes E∞), as its error function, although decreasing, is not supermodu-
lar. The following example also reveals that the submodularity ratio (4) of E∞
is 0. Therefore, it is not even approximately supermodular and a solution by
Algorithm 1 can be arbitrarily bad [8].

Example 1. Let A =

⎛

⎝
0 5 2
4 1 0
0 1 0

⎞

⎠ ,b =

⎛

⎝
3
1
0

⎞

⎠, then principal solution x̂ is:

x̂ =

⎛

⎝
0 −4 0

−5 −1 −1
−2 0 0

⎞

⎠ �′

⎛

⎝
3
1
0

⎞

⎠ =

⎛

⎝
−3
−2
0

⎞

⎠ .

We calculate now the error function on different sets:

– When T = {3}, then x̂|{3} =
(−∞,−∞, 0

)ᵀ and

E∞({3}) = 1
2‖b − ∨

j∈{3}(Aj + x̂|{3},j)‖∞ = 1
2‖

⎛

⎝
3
1
0

⎞

⎠ −
⎛

⎝
2
0
0

⎞

⎠ ‖∞ = 1
2 .

– Likewise, when T = {1, 3}, E∞({1, 3}) = 1
2‖

⎛

⎝
3
1
0

⎞

⎠ −
⎛

⎝
−3
1

−3

⎞

⎠ ∨
⎛

⎝
2
0
0

⎞

⎠ ‖∞ = 1
2 .

– T = {2, 3}, E∞({2, 3}) = 1
2‖

⎛

⎝
3
1
0

⎞

⎠ −
⎛

⎝
3

−1
−1

⎞

⎠ ∨
⎛

⎝
2
0
0

⎞

⎠ ‖∞ = 1
2 .

– T = {1, 2, 3}, E∞({1, 2, 3}) = 1
2‖

⎛

⎝
3
1
0

⎞

⎠ −
⎛

⎝
−3
1

−3

⎞

⎠ ∨
⎛

⎝
3

−1
−1

⎞

⎠ ∨
⎛

⎝
2
0
0

⎞

⎠ ‖∞ = 0.

Let now f = −E∞, L = {3}, S = {1, 2}, then, by (4), we have:

f({3} ∪ {1} − f({3}) + f({3} ∪ {2}) − f({3})
f({3} ∪ {1, 2}) − f({3})

=
−1/2 + 1/2 − 1/2 + 1/2

0 + 1/2
= 0,

(27)
meaning that f has submodularity ratio 0 or E∞ is not even approximately
supermodular.

Although the previous discussion denies from problem (24) a greedy solution
with any guarantees, we propose next a practical alternative to get a sparse
enough vector. We first obtain a sparse vector xp,ε by solving problem (5). Then,
we add to this vector element-wise half of its �∞ error ‖b − A � xp,ε‖∞/2.
Interestingly, this new solution minimizes the �∞ error among all vectors with
the same support, as formalized in the following result.

Proposition 5. Let xSMMAE ∈ R
n
max be defined as:

xSMMAE = xp,ε +
‖b − A � xp,ε‖∞

2
, (28)
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where xp,ε is a solution of problem (5) with fixed (p, ε). Then ∀ z ∈ R
n
max with

supp(z) = supp(xp,ε), it holds

‖b − A � z‖∞ ≥ ‖b − A � xSMMAE‖∞ =
‖b − A � xp,ε‖∞

2
(29)

and, also,

‖b − A � xSMMAE‖∞ ≤
p
√

ε

2
. (30)

Proof. Observe that xp,ε is equal to the principal solution x̂ inside supp(xp,ε).
So the first inequality holds from Lemma 2. Regarding the second one, we have:

‖b − A � xSMMAE‖∞ =
‖b − A � xp,ε‖∞

2
=

∨
i(bi − [A � xp,ε]i)

2
. (31)

But, notice that:

(
∨

i

bi − [A � xp,ε]i)p =
∨

i

(bi − [A � xp,ε]i)p ≤
∑

i

(bi − [A � xp,ε]i)p ≤ ε, (32)

so ∨

i

(bi − [A � xp,ε]i) ≤ p
√

ε (33)

and the result follows from (31). Note that the bound tightens, as p increases. ��
The above method provides sparse vectors that are approximate solutions

of the equation with respect to the �∞ norm without the need of the late-
ness constraint. After computing xp,ε, xSMMAE requires O(m|supp(xp,ε)| +
|supp(xp,ε)|) = O((m + 1)|supp(xp,ε)|) time. We call xSMMAE Sparse Minimum
Max Absolute Error (SMMAE) estimate of b.

4 Application in Neural Network Pruning

Recently, there has been a renewed interest in Morphological Neural Networks [6,
11,21,25] which consist of neural networks with layers performing morphological
operations (dilations or erosions). While they are theoretically appealing because
of the success that morphology operations had in traditional computer vision
tasks and the universal approximation property that these networks possess,
they have also shown an ability to be pruned and produce interpretable models.
Herein, we propose a way to do this systematically, by formulating the pruning
problem as a system of max-plus equations.

Let a morphological network be a multi-layered network that contains layers
of linear transformations followed by max-plus operations. The authors of [25]
call this sequence of layers as a Max-plus block. If x ∈ R

d represents the input
and k is the output’s dimension, then a simple network of 1 Max-plus block (see
Fig. 1) performs the following operations:

z = Wx,

y = A � z,
(34)
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(a) A simple Max-plus block with
d = 4, n = 5, k = 3.

(b) The same Max-plus block, after
pruning two neurons from its first layer.

Fig. 1. Morphological neural networks.

where W ∈ R
n×d and A ∈ R

k×n
max . Suppose now that this network has been

trained successfully, possibly with a redundant number n of neurons and we
wish to maintain its accuracy while minimizing its size. For each training sample
(x(i),y(i)), it holds ỹ(i) = A � z(i), where ỹ(i) is the network’s prediction. We
keep now fixed the prediction (that we wish to maintain) and the matrix A and
we find a sparse approximate solution of this equation with respect to vector
z(i). Observe that if a value of z equals −∞, then equivalently we can set the
corresponding column of A to −∞, thus pruning the whole unit. Of course, this
naive technique would prune units that are important for other training samples.
We propose overcoming this by finding sparse solutions for each sample, counting
how many times each index j ∈ {1, . . . , n} has been found inside the support set
of a solution and then keeping only the k most frequent values.

The proposed method enables one to fully prune neurons from any layer that
performs a max-plus operation, without harming its performance, and produce
compact, interpretable networks. We support the above analysis by providing an
experiment on MNIST and FashionMNIST datasets. Both datasets are balanced
and contain 10 different classes.

Example 2. We train 2 networks for each dataset, containing 1 max-plus block
with 64 and 128 neurons, respectively, inside the hidden layer, for 20 epochs
with Stochastic Gradient Descent optimizing the Cross Entropy Loss. After the
training, we pick at random 10000 samples from the training dataset (which
account to 17% of the whole training data), we perform a forward pass over the
network for each one of them to obtain predictions and then run Algorithm 1
with p = 20 and ε = 220, so that we acquire sparse vectors z (and their support
sets). Then, we simply find the 10 (same as the number of classes) most frequent
indices inside the support sets of the solutions, keep the units that correspond
to those indices and prune the rest of them. As can be seen in Table 1, all of the
pruned networks record the same test accuracy as the full models, while having
54 and 118 less neurons, respectively. Note that trying to train from scratch
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networks with n = 10, under the same training setting, produces significantly
worse results (around 60% for both datasets).

Table 1. Test set accuracy before and after pruning.

MNIST FashionMNIST

64 128 64 128

Full model 92.21 92.17 79.27 83.37

Pruned (n = 10) 92.21 92.17 79.27 83.37

5 Conclusions and Future Work

In this work, we developed the theory of sparsest approximate solutions to max-
plus equations, tackled the hardness of finding one by exploiting problem’s sub-
modular structure and provided efficient algorithms for any �p approximation
error. We briefly presented then a usage of the developed algorithms in a rep-
resentative area of applications, the pruning of Morphological Neural Networks.
It is a subject of future work to investigate the applications of sparsity in more
areas of applications, perform further experiments on the proposed pruning tech-
nique in deeper and more general networks and develop a theory of sparsity in
general nonlinear vector spaces called Complete Weighted Lattices [19].
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