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Abstract—In this work, we aim to improve the detection
of relapses in patients with psychotic disorders (i.e., bipolar
disorder and schizophrenia) using spontaneous speech data from
patient–clinician interviews and physiological signals from wear-
able sensors. To achieve this, we propose a joint autoencoder
framework, trained with coupled data from both modalities,
projecting them through distinct encoder branches into a unified
latent space and then separately decoding them. We experiment
with convolutional and LSTM-based autoencoders for the speech
data, whereas we adapt convolutional autoencoders for the physi-
ological signals. Our experimental results show that the proposed
multimodal fusion scheme consistently outperforms unimodal
baselines, with the introduced LSTM-based autoencoders proving
to be an effective alternative to convolutional ones for relapse
detection from speech. Moreover, through ablation experiments,
we confirm that not only both modalities contribute positively to
the joint framework, but our approach outperforms unimodally-
trained baselines when only the respective modality is available.

I. INTRODUCTION

Advancements in machine learning and artificial intelli-
gence in recent years have transformed healthcare, includ-
ing the field of clinical psychiatry [1]. Traditional diagnos-
tic methods based on clinical evaluations, self-reports, and
questionnaires [2] remain essential, yet they can miss the
subtle early indicators of relapse in severe mental health
disorders. By leveraging information from vocal patterns,
physiological signals, and behavioral cues, modern machine
learning approaches have been able to detect subtle signs of
relapse, thereby bolstering conventional assessments [3], [4],
and leading to improved patient outcomes.

Digital phenotyping, i.e., the collection and identification
of physiological or behavioral markers from smart devices [5],
has emerged as a promising approach for relapse detection.
Supervised approaches, using algorithms such as Naive Bayes,
k-Nearest Neighbors, and XGBoost [6], have been applied to
smartphone sensor data to predict state transitions in bipolar
disorder and depression [7], [8]. Additionally, autoencoder-
based models have been used to identify deviations in such
markers as relapse indicators [9], [10].

Regarding speech-based analysis, acoustic features such as
pitch, MFCCs, and LPCCs have been extracted from spon-
taneous speech to detect manic states in bipolar disorder via
Support Vector Machines (SVMs) and Gaussian Mixture Mod-

els (GMMs) [11]. Furthermore, deep learning architectures,
such as convolutional and Long Short-Term Memory (LSTM)
neural networks, have been employed for relapse detection in
psychotic patients [4], [12], as well as for capturing emotional
cues from speech and measure the severity of depression,
achieving high accuracy in mood disorder detection [13], [14].

Mental health conditions are multifaceted with relapses
manifesting across behavioral, physiological, and vocal do-
mains [15], [16], highlighting the need for multimodal fusion.
Several approaches have combined audio, visual, and textual
features to successfully enhance depression detection using
various deep learning architectures [17], [18], [19], [20]. More-
over, the fusion of textual, behavioral, and visual data from on-
line social networks has demonstrated improved performance
over unimodal approaches in depression detection [21].

The work presented in this paper builds upon the research
conducted during the course of the e-Prevention project [22],
where long-term biometric data from wearable sensors and
audio-visual data from clinical interviews were continuously
collected and analyzed to identify relapse-related markers,
aiming to enable effective monitoring and relapse prevention
for patients in the psychotic spectrum. As a part of the
project, anomaly detection algorithms, operating in either
spontaneous speech signals from patient-clinician interviews
[12] or physiological signals derived from smartwatch sensors
(i.e., accelerometer, gyroscope, and heart rate) [10], were
developed for the detection of relapsing states. In this work,
we combine these modalities in a unified, end-to-end trainable
framework, to improve the relapse detection of these states. In
more detail, our main contributions are as follows:

• Inspired by [23], we develop LSTM-based autoen-
coders, alongside the previously used convolutional
autoencoders for relapse detection in speech data [12],
benchmarking their performance in the – expanded
with new patient data and relapse cases – audio portion
of the e-Prevention database [22].

• We develop joint autoencoder models, consisting of an
audio branch and a physiological branch, that perform
feature-level fusion of the two modalities, deviating
from the late-fusion setup presented in [22].

Experimental results indicate that our proposed feature-
level fusion approach offers richer feature representations
than unimodal models, leading to enhanced relapse detec-
tion. Furthermore, experiments in which individual branches979-8-3315-1213-2/25/$31.00 ©2025 IEEE
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Fig. 1. Overview of the proposed multimodal autoencoder framework, for the case of a convolutional audio backbone; speech spectrograms and physiological
data are separately encoded into a common low-dimensional latent space, and are subsequently reconstructed through the respective decoders.

were disabled demonstrated the essential contributions of both
modalities, as well as its robustness to missing modality cases.
Finally, LSTM-based autoencoders proved to be an effective
alternative approach for detecting relapse from speech data.

II. DATA COLLECTION & PREPROCESSING

A. Data Collection

A total of thirty-nine (39) patients diagnosed with psychotic
spectrum disorders, i.e., schizophrenia and bipolar disorder.
were recruited for the purposes of the e-Prevention study;
the recruitment protocol is delineated in [22]. For biometric
data collection, participants wore Samsung Gear S3 Frontier
smartwatches, which continuously recorded physiological and
behavioral data, including heart rate and movement activ-
ity during both wakefulness and sleep. Additionally, for a
subset of the participants, weekly or biweekly unstructured
interviews were conducted between these participants and the
clinicians. The interviews, averaging 5–10 minutes each, were
conducted via a dedicated tablet application or telephone to
assess physical activity using the Greek version of the Inter-
national Physical Activity Questionnaire (IPAQ-Gr) [24]; video
recordings of these interviews were anonymized and securely
stored on a cloud server [25]. Moreover, clinicians conducted
monthly in-person follow-up assessments using established
rating scales, such as the Positive and Negative Syndrome
Scale (PANSS) [26], to evaluate overall psychopathology
and quantify the presence and severity of psychotic relapses,
thereby generating annotations reflecting each patient’s mental
health state. Detailed criteria for these annotations are provided
in [22]. Based on the clinicians’ annotations, each patient’s
data were split into three categories: clean data, representing
stable conditions, relapse data, corresponding to periods with
annotated relapses and pre-relapse data, recorded up to 28
days before a confirmed relapse. In the context of this work,
both relapse and pre-relapse states are considered anomalous.

In our work, the objective is to detect the appearance of
relapses in patients from the e-Prevention database using these
annotations as ground truth. For the audio-only autoencoder
models, after expanding the e-Prevention database [22], we
used data from 9 patients having experienced a relapse during
the course of the project and whose demographics are pre-
sented in Table I; total data used correspond to 192 clean, 27
pre-relapse, and 42 relapse sessions. For the multimodal ex-
periments, and taking into account the availability of adequate
physiological data, we used data from 7 out of 9 patients,
amounting to 3,280 hours of recorded physiological data.

TABLE I. DEMOGRAPHICS AND ILLNESS INFORMATION FOR RELAPSE
PATIENTS IN THE EXTENDED E-PREVENTION DATABASE.

Demographics
Male/Female 4/5
Age (years) 28.1 ± 7.6
Education (years) 13.3 ± 1.9
Illness duration (years) 6.6 ± 7.2

B. Data Preprocessing

Audio Data: Audio was extracted from patient–clinician
interview videos and downsampled to 16 kHz to standardize
the recordings. To isolate patient speech from that of the
clinicians, we applied the x-vector [27] diarization pipeline
from the Kaldi toolkit [28] and manually reviewed and cor-
rected segments, where necessary. Next, the isolated speech
segments were processed using Librosa to compute log-mel
spectrograms with a frame length of 512 samples, a hop length
of 256 samples, and 128 mel bands. Finally, each spectrogram
was divided into fixed-length segments of 64 frames, resulting
in a 128×64 feature representation for every second of speech.

Physiological Data: The accelerometer and gyroscope
data, sampled at 20 Hz, and the heart rate sensor, sampled at
5 Hz, were first reviewed to ensure adequate data availability –
discarding any days with less than four hours of recordings. To
optimize the use of available data, each day of recorded data
was divided into 8-hour segments, retaining only those seg-
ments containing at least four hours of valid data. Regarding
feature extraction, a set of 10 features was computed within 5-
minute windows. These features include the short-time energy
of the accelerometer and gyroscope signals, the mean heart
rate and R-R interval, as well as the power ratios of the low-
frequency (0.04–0.15 Hz) and high-frequency (0.15–0.4 Hz)
bands of the Lomb–Scargle periodogram [29]. Additionally, we
extracted the width of the ellipse from the Poincaré recurrence
plot, the ratio of valid samples within each 5-minute interval,
and the sinusoidal representation of the corresponding seconds
to capture chronological patterns. This process resulted in a
feature tensor of size 96× 10 for each 8-hour segment.

III. METHODOLOGY

We present an overview of our proposed framework in
Fig. 1. In more detail, it consists of two separate en-
coder branches, one processing the mel-spectrograms and one
the physiological feature tensors, in order to generate latent
representations. These latent feature representations are then
concatenated into a unified latent space, which is subsequently
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TABLE II. COMPARISON OF ROC-AUC SCORES FOR THE
PERSONALIZED CONVOLUTIONAL AUTOENCODER (CAE) AND LSTM

AUTOENCODER (LSTMAE).

Patient ID ROC-AUC
CAE LSTMAE

#1 0.653 ± 0.048 0.668 ± 0.050
#2 0.468 ± 0.159 0.500 ± 0.087
#3 0.722 ± 0.165 0.733 ± 0.231
#4 0.650 ± 0.093 0.653 ± 0.135
#5 0.754 ± 0.082 0.727 ± 0.081
#6 0.500 ± 0.159 0.510 ± 0.183
#7 0.905 ± 0.055 0.958 ± 0.093
#8 0.483 ± 0.187 0.492 ± 0.172
#9 0.817 ± 0.186 0.850 ± 0.200

Mean 0.661 ± 0.146 0.679 ± 0.152

TABLE III. COMPARISON OF ROC-AUC SCORES FOR THE GLOBAL
CONVOLUTIONAL AUTOENCODER (CAE) AND LSTM AUTOENCODER

(LSTMAE) UNDER PER-PATIENT AND GLOBAL NORMALIZATION
SCHEMES.

Norm. ROC-AUC
CAE LSTMAE

Per-Patient 0.618 ± 0.023 0.640 ± 0.031
Global 0.633 ± 0.033 0.648 ± 0.031

fed into two distinct decoders, one for each modality, trained to
reconstruct their respective inputs. During inference, the input
reconstruction error is used as the anomaly score, with higher
reconstruction errors corresponding to relapsing states.

Audio Branch: Regarding the audio branch, we experi-
mented with both a Convolutional Autoencoder and an LSTM
Autoencoder. The Convolutional Autoencoder [12] compresses
128 × 64 mel-spectrograms through 4 downsampling blocks,
each consisting of a ReLU-equipped 2D-Convolution layer and
a Max Pooling layer. To reconstruct its input, it applies 4
consecutive convolutional upsampling blocks upon the latent
representation, each including an Upsampling layer, a 2D-
Convolution layer and a ReLU activation function, followed
by an 1-channel 2D-convolution that restores the original
dimensions of the mel-spectrogram. The various architectural
parameters are the same as in [12].

In the case of the LSTM Autoencoder, the encoder consists
of an LSTM layer with 64 units, followed by Layer Normaliza-
tion, Leaky ReLU activation, and a Dropout layer. The encoded
sequence is then flattened, and mapped to a low-dimensional
latent space through a Dense layer (of 64 neurons). Conversely,
the decoder expands the latent representation with a Dense
layer, reshapes it into a 64 · 64 sequence format, and uses
another LSTM layer, symmetric to the encoder, followed by a
Time-Distributed layer to reconstruct the original spectrogram.

Physiological Branch: In the physiological branch, the
Convolutional Autoencoder, adapted from the best-performing
architecture in the e-Prevention study [22], compresses 96×10
physiological feature tensors through 4 downsampling blocks,
each consisting of a 1D-Convolutional layer with Batch Nor-
malization, a Leaky ReLU activation, and a Max Pooling layer.
The decoder reconstructs the original input using 4 upsampling
blocks, each comprising an Upsampling layer followed by a
1D-Convolutional layer with Batch Normalization and a Leaky
ReLU activation, and concludes with a Dense layer with a
linear activation that restores the original dimensions.

Data Alignment: Since the proposed framework operates
on pairs of audio and physiological data, defining a strategy

to sample those pairs is of profound importance. Initially, we
created pairs by aligning the physiological data to the exact
dates of the audio interviews sessions. However, given the
requirement for a sufficient number of paired samples across
many sessions, this naive approach resulted in an insufficiently
sized dataset of only 4 patients. Thus, we relaxed this strict
alignment criterion by pairing each interview with physiolog-
ical data collected within defined time windows (± 7 days)
around the interview dates, thereby expanding our dataset
with additional paired samples; that is, for each interview,
a spectrogram is randomly coupled with an 8-hour tensor of
physiological data. Under these criteria, data from 7 patients
and 158 sessions are incorporated in the dataset.

IV. EXPERIMENTAL SETUP

In our analysis, we employed a common training and
evaluation pipeline across both unimodal and multimodal
frameworks. Following previous studies [22], [12], we used
two experimental setups: personalized, where separate models
were trained on each patient’s data, and global, where models
were trained on combined data from all patients. In the global
experiments, we experimented with i) per-patient normaliza-
tion by normalizing each patient’s data independently, and ii)
global normalization by normalizing all patients’ data together.
Models were trained exclusively on clean data using 5-fold
cross-validation and evaluated on clean and anomalous (pre-
relapse, relapse) data. Each fold’s clean data was split into
training, validation, and testing sets (3:1:1 ratio), ensuring
data from the same interview date remained within one set
to prevent session-wise overfitting. Models were implemented
in Keras, with a maximum training duration of 200 epochs and
a batch size of 8; early stopping was applied by monitoring
the validation loss, with a patience of 10 epochs. We used
the Adam optimizer with a learning rate of 3e-4 for the
convolutional models and 1e-3 for the LSTM model, and
the Mean Squared Error (MSE) as the loss function. For
multimodal frameworks, loss weights per branch were exper-
imentally adjusted to balance modality reconstruction quality.

The performance of all models was evaluated on a per-
session basis, where anomaly scores from all samples within
a session were aggregated into a single score, using recon-
struction MSE as the anomaly score. We assessed the models’
capability to differentiate between clean and anomalous states
using the Area Under the Receiver Operating Characteristic
Curve (ROC-AUC). For joint autoencoder models, we initially
compared the anomaly scores of the audio and physiologi-
cal branches individually to their unimodal baselines. Subse-
quently, we calculated a combined anomaly score, employing
a weighted sum of the branches’ scores with the same weights
used during training, to evaluate overall performance compared
to both unimodal baselines. We note that, for personalized
setups, we report on the macro-average ROC-AUC score across
all patients, whereas for global setups, we use the per-session
average ROC-AUC score across sessions.

V. RESULTS & DISCUSSION

Audio Model Comparison: We first compare the perfor-
mance of the audio autoencoders used in our joint framework,
under a unimodal setting. Tables II and III report the results
for the personalized and global experiments, respectively, for
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TABLE IV. COMPARISON OF ROC-AUC SCORES FOR UNIMODAL MODELS, BRANCHES, AND THE OVERALL COMBINED PERFORMANCE OF THE JOINT
AUTOENCODER MODELS ACROSS EXPERIMENTAL SETUPS AND NORMALIZATION SCHEMES.

Exp. Setup Audio Model Audio Bio Combined
Unimodal Branch Unimodal Branch

Personalized
CAE 0.598±0.064 0.643±0.079

0.557±0.136
0.629±0.120 0.652±0.170

LSTMAE 0.624±0.143 0.650±0.143 0.597±0.151 0.627±0.163

Per-Patient
CAE 0.603±0.059 0.614±0.048

0.553±0.029
0.555±0.032 0.582±0.028

LSTMAE 0.632±0.032 0.612±0.042 0.576±0.033 0.603±0.043

Global
CAE 0.600±0.060 0.607±0.053

0.543±0.050
0.572±0.039 0.598±0.046

LSTMAE 0.617±0.022 0.629±0.051 0.556±0.037 0.612±0.046

TABLE V. COMPARISON OF ROC-AUC SCORES OF THE UNIMODAL
MODELS AND EACH BRANCH OF THE JOINT CONVOLUTIONAL MODEL
WITH THE OTHER DISABLED (JOINT UNIMODAL) AND ENABLED (JOINT

BRANCH) RESPECTIVELY, FOR BOTH PERSONALIZED AND GLOBAL
EXPERIMENTAL SETUPS AND NORMALIZATION SCHEMES.

Modality Exp. Setup ROC-AUC
Unimodal Joint Unimodal Joint Branch

Audio
Personalized 0.598±0.064 0.620±0.108 0.643±0.079
Per-Patient 0.603±0.059 0.607±0.093 0.614±0.048

Global 0.600±0.060 0.602±0.056 0.607±0.053

Bio
Personalized 0.557±0.136 0.602±0.108 0.629±0.120
Per-Patient 0.553±0.029 0.555±0.040 0.555±0.032

Global 0.543±0.050 0.550±0.057 0.572±0.039

the Convolutional Autoencoder (CAE) and the LSTM Autoen-
coder (LSTMAE), with superior ROC-AUC scores highlighted
in bold. In the personalized experiments, the LSTMAE model
outperformed the CAE for nearly all patients, with the excep-
tion of Patient #5, raising the average ROC-AUC from 0.661
to 0.679. Notably, in both models, we observe comparatively
lower ROC-AUC scores for Patients #2 and #8, presumably
due to the low severity of their relapses or limited training data.
Similarly, in the global experiments, the LSTMAE achieved
superior ROC-AUC scores compared to the CAE under both
per-patient and global normalization schemes. These results
indicate that the LSTMAE’s ability to capture temporal depen-
dencies enhances its ability to distinguish between normal and
anomalous states, making it an effective alternative for relapse
detection in spontaneous speech data. Finally, we note that due
to the differences in dataset selection, direct comparison with
other research works is not possible; however, these results
are comparable to those reported at the literature, achieved
with [12] or without [4] the e-Prevention dataset.

Fusion Scheme Performance: In Table IV, we present the
results for the Joint Convolutional Autoencoder and LSTM-
Convolutional Autoencoder, comparing the audio and phys-
iological (bio) unimodal baselines to i) their corresponding
branches in the joint framework and ii) the combined ROC-
AUC score of the joint models, across both personalized
and global experimental setups with per-patient and global
normalization; bolded values indicate where the branches
outperform their unimodal counterparts or the joint model
outperforms both. We observe that while the audio modality
is generally stronger than the physiological modality, the
branches consistently outperform their unimodal counterparts
in both experimental setups, demonstrating that the comple-
mentary information from the added modality enhances relapse
prediction. In the personalized experiments, the overall perfor-
mance of the joint models exceeds both unimodal baselines,
whereas in the global experiments the combined performance
is enhanced primarily over the physiological baseline. Thus, we
conclude that the multimodal fusion approach is more effective
in a personalized setting for detecting relapse from individual

patients’ speech and physiological signals.

An advantage of the feature-level fusion scheme is that,
in contrast to late fusion, it can also operate when one of the
two modalities is missing. Thus, we disable each branch of
the Joint Convolutional Autoencoder by zeroing its input, and
proceed to the evaluation as before. In Table V, we present
the results obtained from the branch disabling experiments,
reporting on i) the unimodal models, ii) the joint models
with one branch disabled, and iii) the joint models with both
modalities available. Across both modalities, a progressive im-
provement is evident; while the jointly trained model performs
better under the availability of both audio and physiological
modalities, the results obtained after disabling one branch of
the joint model are superior to those of the respective unimodal
model. Notably, in the global experiments, the progressive
improvement is more moderate than in the personalized setting,
which is consistent with the results discussed earlier. Overall,
these findings confirm that the joint framework effectively
leverages complementary information from both speech and
physiological signals, enhancing relapse detection, and high-
lighting the value of the feature-level fusion approach.

VI. CONCLUSION

In this work, we proposed and evaluated advanced autoen-
coder architectures for improved relapse detection in patients
with psychotic disorders using spontaneous speech and physio-
logical signals. We introduced LSTM-based autoencoders and
compared them to convolutional ones, demonstrating that the
LSTM architecture’s ability to capture temporal dependencies
in speech data makes it an effective and robust alternative for
relapse detection. We also proposed a multimodal joint autoen-
coder framework employing a feature-level fusion approach,
which proved effective and significantly enhanced accuracy
in relapse prediction compared to unimodal baselines. These
frameworks were particularly effective in personalized setups,
highlighting the importance of individual patient monitoring.
Furthermore, ablation studies underscored the complementary
nature of audio and physiological modalities. For future work,
we are interested in exploring pretraining and fine-tuning
strategies tailored specifically to individual patients, as well
as integrating additional modalities such as video or text.
Another interesting avenue for exploration is user grouping
or clustered federated learning methods to further enhance
the model’s predictive performance, whereas transfer learning
from larger audio/physiological signal datasets, as well as data
augmentations [30], could be applied to overcome dataset size
limitations.
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