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ABSTRACT

Recently, various neural network architectures have shown
capability of achieving compelling results in the field of
automatic music generation. Motivated by this, in this
work we design a generative framework that is structurally
flexible and adaptable to different musical configurations
and practices. At first, we examine the task of multi-track
music generation without any human input, by modify-
ing and proposing improvements to the MuseGAN archite-
cture, an established GAN-based system, which we use as
our baseline. Afterwards, we extend our developed frame-
work to a cooperative human-Al setup for the generation
of polyphonic accompaniments to user-defined tracks. We
experiment with multiple structural variants of our model,
and two different conditional instruments, namely piano
and guitar. For both unconditional and conditional cases,
we evaluate the produced samples objectively, using a set
of widely used musical metrics, as well as subjectively, by
conducting a listening test across 40 subjects. The experi-
mental results, using the Lakh Pianoroll Dataset, reveal
that our proposed modifications lead to improvements over
the baseline from an auditory perspective in the uncondi-
tional case, and also provide useful insights about the prop-
erties of the produced music in the conditional setup, de-
pending on the utilized configuration.

1. INTRODUCTION

Automatic music generation, i.e. the process of creating
novel musical content with minimum human intervention,
is undoubtedly one of the most exciting tasks within the
scope of Al research. Music is generally perceived as a
form of artistic expression of knowledge, experience, ideas,
and emotions, but exact interpretations vary considerably
around the world [1]. Without consensus over the founda-
tion and the substance of the music itself, the act of con-
ceiving a musical piece becomes even more challenging.
One of the major difficulties in creating realistic and aes-
thetically harmonic music lies behind the hierarchical ar-
rangement of a musical composition. In general, a song
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consists of higher-level building blocks, which can be fur-
ther subdivided into smaller building blocks [2]. Since the
human brain focuses on such structural motifs, related to
coherence, rhythm, tension, and emotion flow while lis-
tening to music [3, 4], a mechanism for incorporating the
self-reference in multiple timescales is critical [5].

This hierarchy becomes even more complex when mul-
tiple tracks collectively unfold over time in an interdepen-
dent manner, preserving at the same time their own musical
properties and dynamics. In this case, notes are typically
presented in composite grouping formulations and poly-
phonic patterns that cannot be easily modeled by a compu-
tational machine.

In this paper, inspired by the latest advances in genera-
tive modeling, we attempt to tackle the aforementioned
challenges by focusing on a hierarchical design that deals
with polyphonic musical pieces of 5 distinct tracks: Piano
(P), Bass (B), Guitar (G), Strings (S), and Drums (D).

We begin by examining the task of Unconditional Gen-
eration, i.e. generation that does not involve any supple-
mentary information from the human user. For this pur-
pose, we utilize MuseGAN [2], an existing model in the
field of multi-track polyphonic music generation based on
GANSs, and propose some parameterized modifications to
its architecture in order to become adaptable to different
generative configurations and also capture more faithfully
the hierarchical nature of music. In this way, we are able to
experiment with multiple musical characteristics and fur-
ther investigate its creativity.

Afterwards, we extend our model to the task of Condi-
tional Generation by exploring practices for automatic ac-
companiment composition. In particular, given a human-
composed track (as conditional information), the system
learns how to generate the 4 remaining tracks by conside-
ring them as the rhythmic and harmonic support of the con-
ditional one. For this setup, we develop 8 different variants
of our generative framework that differ in terms of stru-
ctural components, training procedure and type of condi-
tional instrument.

For both tasks, we train our models using the Lakh Pia-
noroll Dataset [2] and apply both objective and subjective
evaluation methods. For objective assessment, we utilize a
set of 8 musical metrics that emphasize on tonal, rhythmi-
cal, texture, and harmonic attributes of the generated sam-
ples. For subjective assessment, we conduct a user study
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involving 40 listeners who evaluate the generated music
from an auditory perspective. In all cases the produced re-
sults are promising, setting the basis for further investiga-
tion within the area of multi-instrumental music, particu-
larly in the conditional setup.
Our main contributions can be summarized as follows:
* A parameterized MuseGAN-based architecture for
unconditional and conditional generation of multi-
track polyphonic music.

» Multiple variants of the above architecture differing
in terms of generative configuration, training recipe,
and GAN scheme.

* Objective and subjective validation of the proposed
models using a set of musical metrics and a user
study respectively.

The source code along with qualitative results and synthe-
sized samples are available at: https://www.github.
com/danae—-charitou/MS_SMC23

2. RELATED WORK

In the last years, the particularly promising performance
of Generative Adversarial Networks (GANSs) on the cre-
ation of realistic pictures [6] as well as news articles [7]
has inspired researchers to investigate their generation ca-
pabilities towards the domain of music.

The first comprehensive approach in the field of poly-
phonic music generation is the study of Mogren [8], who
introduced C-RNN-GAN, a model for classical music gene-
ration. Later, Yu et al. [9] developed SeqGAN, a system
that combines GANs with stochastic RL policies for the
generation of monophonic music sequences. On similar
ground, Dong et al. [2] introduced a GAN model with con-
volutional infrastructure for polyphonic music generation
called MuseGAN. This model laid the foundation for other
approaches [10, 1 1] and will be discussed in Sec. 3.1.

In the area of conditional generation, we can distinguish
the work of Yang et al. [12], who proposed MidiNet, a con-
volutional GAN for melody generation either from scratch
or by conditioning on prior information, e.g., a chord pro-
gression or previous melodic lines. Liu et al. [13] also uti-
lized a convolutional GAN infrastructure combined with
recurrent units to generate lead sheets and their multi-track
arrangements. Similarly, Trieu and Keller [14] developed
JazzGAN, an RNN-based GAN, which improvises mono-
phonic jazz melodies conditioned on chord progressions.

This brief overview of existing works indicates that there
aren’t many GAN-based conditional models capable of cap-
turing the hierarchy of polyphonic music without relying
on simplifications of the task (e.g. generating single-track
or monophonic lines). This fact provides us with a strong
motive for further exploration of this approach.

In the context of non-GAN-based conditional generation,
Jiang et al. [15] introduced RL-Duet, a model that em-
ploys Reinforcement Learning for interactive accompani-
ment generation in a human-machine duet setup. Another
generation framework for pop music is PopMAG [16], a
transformer-based model that aims at addressing the chal-
lenges of harmonic structure and long-term dependencies
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Figure 1: Architecture of our unconditional model.

in multi-track accompaniments. More recent approaches
mainly focus on exploring different types of conditional in-
formation, such as SingSong [17], a system that creates in-
strumental accompaniments for input vocals, and the novel
lyrics-to-rhythm framework of Zhang et al. [18] that uti-
lizes a Transformer architecture designed to capture depen-
dencies between syllables and notes.

3. METHOD
3.1 MuseGAN

As the name suggests, MuseGAN [2] is a framework for
symbolic multi-track polyphonic music generation, based
on GANs. A GAN model typically consists of two modu-
les: the Generator (G), which creates novel samples by
mapping random noise to the target data space, and the
Discriminator (D), which evaluates both real and generated
instances in terms of authenticity by predicting the proba-
bility that the input is derived from the ground-truth distri-
bution. These two networks are involved in an adversarial
learning procedure, where the Discriminator is trained to
distinguish the real samples from the fake ones, while the
Generator aims at “fooling” its opponent by counterfeiting
the ground-truth data as best as possible.

Dong et al. [2] exploited this mechanism in order to model
the two main compositional approaches in accordance with
the human experience. The first one is the jamming ap-
proach, which involves a group of musicians or instrumen-
talists improvising music without extensive preparation or
predefined arrangements. The second one is the composer
approach, where a composer arranges the various instru-
ments according to harmonic and orchestration principles.

Based on these compositional modes, they proposed three
distinct models capable of capturing the interdependency
among the tracks: the jamming model (one Generator and
one Discriminator for each track), the composer model (a
single Generator and a single Discriminator for all tracks),
and the hybrid model (one Generator per track, and a sin-
gle Discriminator for all tracks). All the aforementioned
models are implemented as deep CNNs and can generate
musical segments with duration up to one bar. Therefore,
in order to produce samples of longer duration, they com-
bined them with a temporal unit, which produces the con-
secutive bars in a sequential manner.

3.2 Unconditional Modifications

In terms of the unconditional generation task, we focus on
developing a GAN model that is capable of generating mu-
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Figure 2: Structural components of our conditional model.

sical phrases of variable length in a more compact setup.
To this end, based on the hybrid multi-track module of
MuseGAN and also inspired by a later work of Dong and
Yang [10], we incorporate a shared-private design for both
Generator and Discriminator, as demonstrated in Figure 1.

In more detail, our Generator module consists of a shared
network G, followed by M private subnetworks G, with
each one corresponding to a different track (in this case
M = 5). G4 can be regarded as the composer that arranges
a common high-level musical idea, while the private parts
represent the musicians improvising on their tracks in or-
der to transform the abstract idea into the final musical re-
sult. Our Discriminator module mirrors the structure of the
Generator, as it consists of M private subnetworks D,, fol-
lowed by a shared network Dg. In this case, the private
parts are responsible for extracting low-level features from
each track, while the shared part aggregates their outputs
in order to form a common, high-level abstraction of the
final musical representation.

Within this setup, our proposed system can generate mul-
tiple bars of polyphonic multi-track music altogether and
not in a sequential manner, requiring only a single noise
vector as input. This is in contrast to MuseGAN, which
employs 4 different kinds of inputs, each one representing
distinct musical dependencies.

Moreover, MuseGAN is designed to process data of spe-
cific configuration in terms of time-related attributes, as
well as tonal characteristics. In order to tackle this limita-
tion and further investigate the capabilities of our proposed
system, we implement both the Generator and the Dis-
criminator as deep parameterized CNNs (generative modu-
les apply transposed convolutional operations, discrimina-
tive modules apply typical convolutions) with respect to a
group of musical characteristics (e.g. beat resolution, num-
ber of pitches) that define various generative configura-
tions. In this way, our model becomes structurally adapta-
ble to different musical properties.

We note that our parameterization exploits the hierarchi-
cal structure of music, especially regarding rhythm-related
features, such as note durations: our Generator succes-
sively transforms notes with longer duration into smaller
ones in accordance with the utilized resolution, by align-
ing the convolutions to the beats of each bar.

3.3 Conditional Modifications

In the context of the conditional generation task, we ex-
tend our unconditional framework, which we thoroughly
described in the previous section, to a human-Al coopera-
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tion setup. This process requires some structural and func-
tional modifications on the existing system components, as
well as the incorporation of additional networks.

In particular, our Conditional Generator, which is graphi-
cally illustrated in Figure 2a, preserves the unconditional
infrastructure but comprises only 4 private subnetworks
instead of 5. The reason for this is that in the conditional
setup the Generator is responsible for producing 4 tracks,
which accompany the conditional one rhythmically and
harmonically. We also modify properly its shared part in
order to receive two distinct inputs: a random noise vector
z sampled from a prior distribution, and an embedding u
of the conditional track into the latent space of noise.

In order to acquire a general critic capable of measuring
the fitness of the accompaniment parts for the correspon-
ding conditional track, we incorporate the Unconditional
Discriminator into our conditional model and refer to it as
“Global”. In this case, there are 5 private subnetworks,
since our Global Discriminator assesses all 5 tracks colle-
ctively. We also include a second Discriminator, called
“Local”, which is responsible for evaluating only the ac-
companiment tracks as an independent musical composi-
tion. Structurally, it follows the design of the Global (Fig-
ure 2b) but comprises only 4 private subnetworks instead.

Apart from the typical GAN components, our conditional
framework includes also an Encoder module, which pro-
duces embeddings of the conditional tracks into the latent
space of the noise distribution. We also implement the cor-
responding Decoder, which decompresses the hidden rep-
resentations of the conditional tracks into the original data
space (Figure 2c). In this way, we are able to experiment
with the training mode of the Encoder.

Similar to the unconditional case, all the structural com-
ponents of our conditional framework are designed as con-
figurable CNNs with respect to the same set of musical
parameters.

4. EXPERIMENTAL SETUP
4.1 Data
4.1.1 Data Representation

Following [2, 10], we employ the multi-track pianoroll for-
mat for the representation of music samples. A multi-track
pianoroll is defined as a set of binary-valued scoresheet-
like matrices called pianorolls, each one corresponding to
a different musical instrument. As demonstrated in Figu-
re 3, the horizontal axis of each pianoroll indicates time in
a symbolic format that discards tempo information, resul-
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ting in equally-sized timesteps, while the vertical dimen-
sion represents notes ordered from the low-pitched to the
high-pitched ones. The binary values designate the pre-
sence (1) or absence (0) of notes over different timesteps.

4.1.2 Dataset

For the training of our models we follow our baseline and
utilize the Lakh Pianoroll Dataset, a collection of 174,154
multi-track pianorolls derived from the Lakh MIDI Dataset
[2, 19]. More specifically, we employ the LPD-5-cleansed
version, which contains only the 5-track pianorolls with
the higher matching confidence score to MSD entries [20],
a “Rock” tag and 4/4 time signature. We also apply some
preprocessing steps in order to segment the pianorolls into
musical phrases of proper format in terms of tonal and
rhythmical arrangement. This process involves temporal
downsampling, removal of notes outside the desired pitch
range and randomized selection of samples that contain an
adequate amount of notes as specified by a fixed threshold.
The resulting set of musical examples contains approxi-
mately 15,600 phrases from 7,323 songs.

polyphonic v multi-track v’

i
\
tracks

== ! pitchEF— =

Figure 3: Multi-track pianoroll format [2].

4.2 Training Protocol

According to [21], the GAN mechanism can be modeled as
a turn-based game between two opponents, the Generator
(G) and the Discriminator (D). Mathematically, this ad-
versarial setup can be described by the following minimax
value function:
0 max B, [10g (D(x))] + Eamp, [log (1~ D(G(2))].
M
Following [2], we employ a modified version of the above
function that includes an additional gradient penalty term:
min max Bup, [D(x)] = Eonp, [D(G(2))]
G D )
+Eznpg [(IV2DR) |2 = 1)°],

where py is implicitly defined by uniform sampling along
straight lines between pairs of points derived from the data
distribution p,4 and the generator distribution p,. This term
is found to ensure faster convergence to better optima and
stabilize the overall training process [22].

In the unconditional case, our training strategy is estab-
lished on consecutive interchanges between k optimization
steps of the Discriminator and one update of the Genera-
tor. In this way, D is being maintained near its optimal
solution, as long as G adjusts slowly enough [2,21,22].

In the conditional setup, we apply this practice for the
GAN components, updating both Global and Local Dis-
criminators during the same training steps and aggregating
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their feedback for the optimization of the Generator. Re-
garding the Encoder, we experiment with 2 training modes:
1-phase training, where the Encoder is trained jointly with
the GAN, following the Generator’s practice, and 2-phase
training, where the Encoder is pre-trained along with the
Decoder, using a typical VAE loss: Lgn. = Lyse + LKLs
where Lyisg represents the Mean Square Error between
original and reconstructed conditional tracks and Lki, the
Kullback-Liebler divergence between the embeddings and
the Standard Normal Distribution N (0,I) [23]. Using a
GeForce GTX 1080 Ti, the training time is nearly 8 hours
for the 1-phase mode and 4 hours for the 2-phase mode.

4.3 Objective Evaluation

In the context of objective evaluation, we utilize 8 musical
metrics that emphasize on tonal, thythmical, and harmonic
characteristics of the produced music samples (e for intra-
track metrics, — for inter-track metrics):

* Empty Bars (EB): ratio of empty bars (in %).

* Used Pitch Classes (UPC): mean number of pitch
classes used per bar (from 0 to 12).

¢ Qualified Notes (QN): ratio of “qualified” notes (in
%), i.e., notes with duration greater than a fixed num-
ber of timesteps (2 in this work).

* Drum Pattern (DP): ratio of notes presented at the
downbeats of 4/4 rthythm in accordance with the uti-
lized resolution (in %).

— Tonal Distance (TD): measures the harmonicity be-
tween a pair of tracks as the Euclidean distance be-
tween their chroma vectors projected in the interior
space of a 6D polytope [24].

* Used Pitches (UP): mean number of unique pitches
used per bar, including all octaves in the predefined
range.

* Scale Ratio (SR): ratio of notes (in %) in the given
music scale (C major).

¢ Polyphonic Rate (PR): ratio of polyphonic timesteps
(in %), i.e., timesteps where the number of pitches
being played exceeds a specified threshold (2 in this
work).

The first 5 are applied by Dong et al. [2] for the quanti-
tative assessment of MuseGAN. We re-implement them in
order to compare the performance of our proposed frame-
work with the baseline on a common objective basis. Fol-
lowing the related literature [25], we also include the last
3, as they provide useful insights into tonal and texture ele-
ments of the produced music.

4.4 Subjective Evaluation

In the field of music generation, human evaluation is con-
sidered essential, since the objective metrics cannot pre-
cisely reflect the human perception over a piece of music.
To this end, we conduct a user study in the form of a liste-
ning test across 40 subjects mainly recruited via our social
circles. As demonstrated in Figure 4, the participants are
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characterized by diversity regarding various, not necessari-
ly musical, aspects. Our survey is divided into two sec-
tions, corresponding to the unconditional and conditional
tasks, respectively.

The section of Unconditional Generation aims at a com-
prehensive comparison between our developed framework
and MuseGAN; thus, the respective questionnaire is struc-
tured on listening pairs. Each pair consists of two 4-bar
musical phrases (ca. 12 sec) that are randomly selected
from pools of samples generated by the two models and
presented to the user in random order. Each subject evalu-
ates 2 listening pairs, resulting in a total of 80 comparisons.

The section of Accompaniment Generation aims at a com-
prehensive comparison among multiple variants of our con-
ditional framework, as well as comparison between real
and fake accompaniment versions. In this case, the que-
stionnaire is structured on listening triplets, with each one
consisting of a conditional track and 2 matching accom-
paniments for it, derived either from the models or the
ground-truth distribution. Both the order of the testing
triplets and the sample order within each triplet are ran-
domized for each user. Each subject evaluates 18 listening
triplets, resulting in a total of 720 comparisons.

In both questionnaires, the evaluator is required to choose
from each listening pair or triplet the sample or accompa-
niment version that they prefer in terms of:

* Music Naturalness: Could the musical segment be
composed by human?

* Harmonic Consistency: Are the sounds produced
by different instruments in musical consonance? Is
the result acoustically pleasant?

* Musical Coherence: Are the various musical phrases
associated somehow through time?

Age Gender Music Knowledge
Self-taught

4 e / /.10.0%
20-30( / 65.0%
[

Mal
87.5%
‘ 30 plus \\
\ , _

90.0%
~ Non self-taught
g

-

Female

Familiarity with ML and Al
Proficient

Years of Music Study
7-10

Competent
22.5% SRRERY
/

o
Expert | 5.0%
“\ Advanced
\35.0% Beginner

Novice

17.5% 57

10.0%
22.5%
735

3

Figure 4: User study demographics.

5. OBJECTIVE EVALUATION RESULTS
5.1 Unconditional Generation

In order to examine the effectiveness of our proposed modi-
fications to the baseline on the task of unconditional genera-
tion, we compare our model with MuseGAN using the ob-
jective metrics presented in Sec. 4.3. In particular, we se-
lect 2 experimental configurations (see Table 1) and com-
pare them with the 4 multi-track models of MuseGAN (the
41 i5 an ablated version of the composer model which cor-
responds to the absence of Batch Normalization). We note
that C4 corresponds to MuseGAN’s generative setup, ap-
plied in our implementation. Following [2], we generate
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| [ & [ & ]
Number of Pitches 84 72
Beat Resolution 24 4
Generation Number of Bars 4 4
parameters Lowest Pitch 24 24
Samples per song 8 8
Latent Dimension 128 128
Number of Steps 10000 10000
Batch Size 16 16
Training Number of Phrases 4 4
Steps per G update 6 6
parameters Steps per Evaluation 50 50
Learning Rate 0.001 0.001
Betas (0.5,0.9) | (0.5,0.9)

Table 1: Experimental configurations.

5,000 4-bar musical phrases with each model and calcu-
late the mean of the objective metrics. Table 2 summarizes
the produced results.

Regarding the intra-track metrics, we report a small dif-
ference between the statistics of the training data used for
our proposed architectures and the original MuseGAN [2].
This results from the stricter criteria that were set in our
case for selecting random candidate phrases. However,
both of our models accomplish to approximate the stati-
stics of the real distribution (bold values denote greater
proximity). Moreover, in the case of ON and DP, where
the training divergence is negligible, we remark that our
framework outperforms almost all the baseline variations
to a large degree (colored cells). This fact confirms the
beneficial contribution of our parameterized architecture to
the rhythm-related attributes of the generated music.

When it comes to the inter-track metric TD (smaller va-
lues are considered better), our C; model surpasses all the
baseline architectures by generating extremely harmonic
samples (TD around 0.2 for all pairs). The performance
of the C2 model, even though weaker than Cj, is also
conside-rable, especially regarding the harmonic distance
between a monophonic track (B) and a chord-like track (P,
G, S). We attribute this improvement to the shared modules
of our architectures, which are responsible for handling the
dependencies among the tracks.

5.2 Conditional Generation

In the context of accompaniment generation, we experi-
ment with 8 distinct variants of our conditional framework.
As demonstrated in Table 3, these models differ in terms of
the employed Discriminator scheme (“v"” for the inclusion
of Local Discriminator), the training mode of the Encoder
(“-” for 1-phase training, “v"” for 2-phase training) and the
type of conditional instrument (Piano, Guitar). We note
that all conditional models are designed and trained with
the same configuration and parameters as the C5 model.

5.2.1 Quantitative Analysis

In order to investigate the generation capabilities of the 8
conditional models, we utilize the objective metrics pre-
sented in Sec. 4.3 and apply the inference process described
in Sec. 5.1. Table 4 summarizes the produced results.

In the Piano case, we observe that the utilization of the 2-
phase training mode (models P;y and P;;) benefits some
musical characteristics of the generated samples, such as
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EB UPC QN DP TD (})
Instruments B D G P S B G P B G P S D B-G B-S B-P G-S G-P S-P
raining data baseline | 806 8.06 194 248 10.1 | 1.71 3.08 3.28 338 |90.0 819 834 89.6| 886 | -
ours 1.6 1.1 41 51 32 |248 416 42 457|917 853 89.7 89.7 | 83.1 - - - - - -
jamming | 6.59 233 183 226 6.10 | 1.53 3.69 4.13 409 [ 7.5 566 622 63.1 | 932|156 160 154 105 099 1.05
Baseline  composer 0.01 289 134 002 001|251 420 489 519|495 474 499 525|753 | 137 136 130 095 098 091
hybrid | 2.14 297 11.7 178 6.04 | 235 476 545 524|446 432 455 520 713|134 135 132 085 085 0383
ablated | 924 100 125 0.68 0.00 | 1.00 2.88 232 472 |0.00 228 31.1 262 | 0.0 - - - - - -
Ours Cy 00 07 04 13 12 |363 467 464 529|556 758 741 759 595 | 02 022 02 021 02 021
Cy 03 00 09 19 21 |289 44 488 514|590 582 572 608 |79.6 | 0.86 091 09 098 099 097

Table 2: Results of the objective evaluation of the baseline models and our proposed framework. For the intra-track
metrics values closer to those of the training data are better. For the inter-track metric smaller values are better.

‘ H AutoEncoder ‘ Local Discriminator ‘

Poo - -

. P()1 - v
Piano Pio 7 -
Py v v

Goo - -

. Go1 - v
Guitar Gio 7 -
G v v

Table 3: Configurations of conditional models.

the note density (EB), the rhythmical patterns (DP), the
general tonality (UPC) and foremost the harmonicity be-
tween a melody-like and a chord-like track (TD). However,
it seems to negatively affect the form of the Bass track
by making it more sparse than the original (EB equal to
17.4%). On the other hand, the inclusion of Local Dis-
criminator in the architecture (models Py, and P;1) has a
positive impact on the overall tonality (SR, UP), as well
as the fragmentation (QN) and the polyphonicity (PR) level
of each track. This outcome confirms that the extra feed-
back over the quality of the accompaniment parts actually
improves the Generator’s performance.

In the Guitar case, we observe that similarly to the Piano
models the utilization of the 2-phase training mode (mod-
els G'19 and G'11) benefits musical characteristics related to
overall note density (EB) and tonality (UP, UPC, SR), es-
pecially for the chord-like instruments. On the other hand,
the inclusion of Local Discriminator results in stronger har-
monic relations between the tracks (TD) and improves the
rhythm (DP) as well as texture elements such as PR.

Drums

Piano

¥
-
B !
Guitar |
)
Bass Z

Strings %

8
Drums ¢

Piano

i
k
Guitar  f= —= =
)i
&

Bass

Strings £ =

(b) Generated sample
Figure 5: Examples of pianorolls with common
conditional track.
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5.2.2 Qualitative Analysis

Figure 5 illustrates 2 pianorolls representing 4-bar musical
phrases with a common conditional Piano track. The first
one is a real sample, while the second has been created
by the model P;; (see Table 3). We can observe the fol-
lowing: (a) The fake Drum track follows a rhythmic pat-
tern that resembles the original. (b) The fake Bass track
is mainly monophonic playing the lowest pitches. (¢) The
fake Strings and Guitar tracks tend to play the chord-like
parts, but are quite noisy. We attribute this difference to
these tracks being more rhythmically complex and poly-
phonic as compared to Drums and Bass. (d) All tracks
usually play in the same music scale. Overall, our model
is capable of learning some musical properties of the ac-
companiments, but tends to incorporate more noise than
the original samples.

6. SUBJECTIVE EVALUATION RESULTS
6.1 Unconditional Generation

The results of our subjective testing for the unconditional
case are graphically illustrated in Figure 6. The bar-plot
represents the evaluators’ preferences between the com-
pared models under the examined musical criteria in the
form of percentages (%). As can be seen, our developed
framework outperforms MuseGAN with respect to all the
examined musical aspects.

Naturalness 11

s Ours

15 )
Baseline

Harmony

Coherence 82 18

Figure 6: Subjective results for unconditional generation.

This outcome confirms the contribution of our proposed
modifications and extensions to the quality of the genera-
ted music. More specifically, we attribute the improvement
in Naturalness and Coherence to our parameterized archi-
tecture that emphasizes on rhythmical attributes, since an
evident beat pattern is capable of creating a sense of co-
hesion and connectivity among the various parts of a mu-
sic piece and hence is considered a key feature of human-
composed songs. We also claim that the stronger harmonic
relations among the tracks and the enhanced overall tonali-
ty are the results of the shared/private design we employ
for both Generator and Discriminator modules.
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EB UPC QN UP

Instruments B D G P S B G P S B G P S B G P S
Piano train 1.6 1.0 50 56 3.7 |247 409 419 45 |91.6 856 90.0 89.7 271 568 585 6.71
Guitar train 1.8 09 43 52 3.6 |247 421 414 449|918 875 91.6 905 | 27 585 584 6.75
Poo 0.6 00 22 - 24| 271 393 - 433 | 51.4 565 - 589 | 294 579 - 6.28
Po1 02 00 18 - 1.5 257 4.09 - 4.76 | 58.2 56.1 - 61.7 | 294 5.77 - 7.17
Py 174 02 3.0 - 44 | 1.68 39 - 43 | 50.7 49.2 - 55.1 | 1.74 5.05 - 6.07
Py 1.6 00 0.7 - 09 | 256 4.19 - 5.16 | 548 56.6 - 51.0 | 2.84 543 - 7.3
Goo 0.8 0.0 - 2.1 1.8 251 - 5.04 459 | 62.5 - 49.3  60.3 | 2.77 - 7.31 691
Go1 0.0 0.0 - 3.1 0.0 ] 3.05 - 431 528 | 57.6 - 524 59.6 | 3.36 - 6.18  7.69
Gho 1.6 00 - 1.8 35| 235 - 428 4.01 | 50.2 - 59.5 58.6 | 2.59 - 6.13 5.88
G 04 0.2 - 33 0.6 | 232 - 4.62 4.66 | 55.6 - 47.8 579 | 2.46 - 64  6.68
T™D (}) SR PR DP

Instruments B-G B-S B-P G-S G-P S-P B G P S B D G P S D
Piano train - - - - - - 759 744 741 728 | 1.1 152 557 61.8 623 | 829
Guitar train - - - - - - 754 735 734 731108 155 59.7 61.0 62.6 | 85.0
Poo 082 0.83 088 087 095 094 | 81.7 758 - 77.1 | 1.2 133 40.6 - 442 | 86.1
Poy 0.79 081 085 085 094 094 | 771 763 - 75.6 | 1.5 152 48.7 - 59.9 | 86.3
Py 074 0.73 081 094 1.02 1.01 | 822 80.6 - 79.0 | 0.2 10.1 222 - 30.2 | 87.0
Py 0.83 092 097 099 1.12 1.17 | 80.7 77.6 - 723|119 9.7 382 - 56.3 | 86.2
Goo 083 085 09 096 1.01 098 | 847 - 809 77.0 | 1.1 109 - 53.9 534 | 87.1
Go1 0.87 0.87 083 093 092 0.86 | 86.7 - 83.6 839 |28 149 - 553 60.8 | 86.0
Gho 0.84 0.84 084 093 095 0.89 | 82.0 - 798 854 107 6.0 - 37.5 44.0 | 91.7
G11 089 0.87 088 1.06 1.09 097 | 78.0 - 769 805 |09 9.7 - 42.1 544 | 83.7

Table 4: Results of the objective evaluation of our conditional models. For the intra-track metrics values closer to those of
the training data are better. For the inter-track metric smaller values are better.

Naturalness 59 72 28 65 ——
PUU
Harmony 65 70 30 79
Pll
R
Coherence 57 80 20 84
Naturalness 56 44 47 53 73 —_—
Pll
Harmony 54 46 49 51 73
Pﬂﬂ
R
Coherence 58 42 49 51 3
Naturalness 48 64 36 80 —
GUU
Harmony 45 66 34 85
Gll
R
Coherence 62 64 36 78
Naturalness 38 44 84 ——
Gll
Harmony 29 36 82
Goo
R
Coherence 38 47 87

Figure 7: Subjective results for conditional generation.

6.2 Conditional Generation

The results of our subjective testing for the conditional
models are illustrated in Figure 7. Each row demonstrates
the comparisons of a model with two others, one differing
in discriminator scheme (left column), and one differing in
training procedure (middle column), as well as with real
samples, denoted as R (right column). Similar to the un-
conditional case, each bar-plot represents the users’ prefer-
ences (%) between the compared models for each criterion.

For the Piano models, we observe that the majority of
fake accompaniments are easily distinguishable from the
real ones. The highest favor proportion against human per-
formance corresponds to model Fy; for Naturalness and
is equal to 35%, indicating that the additional feedback
provided by the Local Discriminator can actually help the
Generator to create samples that sound more natural to the
human subjects. When it comes to the comparison between

model variants, we notice that Py; outperforms P;; with
respect to all the examined musical aspects, especially Co-
herence. This result suggests that the most suitable trai-
ning practice for the architecture of both Discriminators is
the 1-phase mode. We can also observe that Pj( outper-
forms Piq, indicating that the proper structural design for
the 2-phase mode includes only the Global Discriminator.

The results for the Guitar models are similar to those of
the Piano case. More specifically, in terms of comparison
with the real accompaniments, the fake versions are easily
distinguishable under all musical criteria but with lower
favor proportions ranging from 13 to 20%. This fact proba-
bly indicates that Guitar, which typically plays the chords
in Rock songs, provides less conditional information than
Piano, which includes some melodic features as well. We
can also observe that GGy outperforms both Goy and G1;
with respect to all musical aspects. This outcome suggests
that the most effective combination of training practice and
architectural design is the 2-phase mode applied in a GAN
with only the Global Discriminator. We also notice that
G surpasses (G11, indicating that the most suitable trai-
ning practice for the architecture of both Discriminators is
the 1-phase mode. However, we remark that the utilization
of only the Global Discriminator with the 1-phase training
setup seems to have a beneficial impact on the coherence
of the generated accompaniments (Ggg scores 62% in the
pairwise comparison against Go1).

7. CONCLUSIONS

In this work, we have presented a configurable genera-
tive framework that is capable of creating multi-track poly-
phonic musical phrases from scratch and also generating
multi-instrumental accompaniments for human-composed
tracks. Our proposed architecture is established on Muse-
GAN and employs a hierarchical shared/private design for
both Generator and Discriminator modules, which is adap-
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table to different generative configurations. We evaluate
our models objectively, using a set of widely used musical
metrics, and subjectively by conducting a user study across
40 listeners. The results demonstrated that our model out-
performs MuseGAN in the unconditional setup under 3
musical criteria and also provided useful insights on trai-
ning and structural schemes for conditional architectures
that pave the way for further exploration of the accompa-
niment generation field. As future work, we aim at valida-
ting these findings on transformer-based architectures and
using other feature representations.

Acknowledgments

This research was supported by the Hellenic Foundation
for Research and Innovation (H.F.R.I.) under the “3rd Call
for H.F.R.I. Research Projects to support Post-Doctoral Re-
searchers” (Project Number: 7773).

8. REFERENCES

[1] 1. Morley, The Prehistory of Music: Human Evolution,
Archaeology, and the Origins of Musicality. Oxford
University Press, 2013.

[2] H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, and Y.-H. Yang,
“MuseGAN: Multi-track Sequential Generative Adver-
sarial Networks for Symbolic Music Generation and
Accompaniment,” in Proc. AAAI 2018, New Orleans,

LA, USA, 2018.

[3] D. Herremans, C.-H. Chuan, and E. Chew, “A Func-
tional Taxonomy of Music Generation Systems,” ACM

Comp. Surveys (CSUR), vol. 50, no. 5, pp. 1-30, 2017.

[4] D. Herremans and E. Chew, “MorpheuS: Generating
Structured Music with Constrained Patterns and Ten-

sion,” IEEE Trans. on Affective Computing, 2017.

[5] C.-Z. A. Huang et al., “Music Transformer: Generating
Music with Long-Term Structure,” in Proc. ICLR 2018,

Vancouver, BC, Canada, 2018.

[6] A. Radford, L. Metz, and S. Chintala, “Unsu-
pervised Representation Learning with Deep Con-
volutional Generative Adversarial Networks,” arXiv

preprint arXiv:1511.06434, 2015.

[71 R. Zellers, A. Holtzman, H. Rashkin, Y. Bisk,
A. Farhadi, F. Roesner, and Y. Choi, “Defending
against Neural Fake News,” in Proc. NeurlPS 2019,

vol. 32, Vancouver, BC, Canada, 2019.

[8] O. Mogren, “C-RNN-GAN: Continuous Recurrent
Neural Networks with Adversarial Training,” arXiv

preprint arXiv:1611.09904, 2016.

[9] L. Yu et al., “SeqGAN: Sequence Generative Adver-
sarial Nets with Policy Gradient,” in Proc. AAAI 2017,

San Francisco, CA, USA, 2017.

[10] H.-W. Dong and Y.-H. Yang, “Convolutional Gen-

erative Adversarial Networks with Binary Neurons

193

for Polyphonic Music Generation,” arXiv preprint
arXiv:1804.09399, 2018.

F. Guan, C. Yu, and S. Yang, “A GAN Model with Self-
Attention Mechanism to Generate Multi-Instruments
Symbolic Music,” in Proc. IJCNN 2019, Budapest,
Hungary, 2019.

L.-C. Yang, S.-Y. Chou, and Y.-H. Yang, “MidiNet:
A Convolutional Generative Adversarial Network for
Symbolic-Domain Music Generation,” arXiv preprint
arXiv:1703.10847, 2017.

H.-M. Liu and Y.-H. Yang, “Lead Sheet Generation
and Arrangement by Conditional Generative Adversar-
ial Network,” in Proc. ICMLA 2018, Orlando, Florida,
USA, 2018.

(1]

[12]

[13]

[14] N. Trieu and R. Keller, “JazzGAN: Improvising with
Generative Adversarial Networks,” in Proc. MUME

2018, Salamanca, Spain, 2018.

[15] N. Jiang et al., “RL-Duet: Online Music Accompa-
niment Generation using Deep Reinforcement Learn-

ing,” in Proc. AAAI 2020, New York, NY, USA, 2020.

Y. Ren, J. Hel, X. Tan, T. Qin, Z. Zhao, and T.-Y. Liu,
“PopMAG: Pop Music Accompaniment Generation,”
in Proc. ICME 2020, New York, NY, USA, 2020.

[16]

[17] C. Donahue, A. Caillon, A. Roberts et al., “SingSong:
Generating Musical Accompaniments from Singing,”

arXiv preprint arXiv:2301.12662, 2023.

D. Zhang, J.-C. Wang, K. Kosta, J. B. Smith, and
S. Zhou, “Modeling the Rhythm from Lyrics for
Melody Generation of Pop Song,” arXiv preprint
arXiv:2301.01361, 2023.

(18]

[19] C. Raffel, “Learning-Based Methods for Compar-
ing Sequences, with Applications to Audio-to-MIDI
Alignment and Matching,” Ph.D. dissertation, Ph.D.

Thesis, Columbia University, 2016.

T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and
P. Lamere, “The Million Song Dataset,” in Proc.
ICWWW 2012, Lyon, France, 2012.

I. Goodfellow, J. Pouget-Abadie, M. Mirza et al.,
“Generative Adversarial Nets,” in Proc. NeurIPS 2014,
Montreal, Canada, 2014.

(20]

(21]

[22] I. Gulrajani, F. Ahmed, M. Arjovsky et al., “Improved
Training of Wasserstein GANs,” in Proc. NeurlPS

2017, Long Beach, CA, USA, 2017.

[23] D. P. Kingma and M. Welling, “Auto-Encoding Varia-
tional Bayes,” arXiv preprint arXiv:1312.6114, 2013.

C. Harte, M. Sandler, and M. Gasser, ‘“Detecting Har-
monic Change in Musical Audio,” in Proc. ICAMCM,
Santa Barbara, CA, USA, 2006.

[24]

[25] S.Ji, J. Luo, and X. Yang, “A Comprehensive Survey
on Deep Music Generation: Multi-Level Representa-
tions, Algorithms, Evaluations, and Future Directions,”

arXiv preprint arXiv:2011.06801, 2020.



