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Abstract
This paper presents a novel feature extraction scheme tak-

ing advantage of both the nonlinear modulation speech model
and the spatial diversity of speech and noise signals in a mul-
tisensor environment. Herein, we propose applying robust fea-
tures to speech signals captured by a multisensor array mini-
mizing a noise energy criterion over multiple frequency bands.
We show that we can achieve improved recognition perfor-
mance by minimizing the Teager-Kaiser energy of the noise-
corrupted signals in different frequency bands. These Multi-
band, Multisensor Cepstral (MBSC) features are inspired by
similar ones already been applied to single-microphone noisy
Speech Recognition tasks with significantly improved results.
The recognition results show that the proposed features can per-
form better than the widely-used MFCC features.
Index Terms: Speech recognition, modulations, robust fea-
tures, multisensor array, multiband processing.

1. Introduction
Nowadays, significant research interest is focused on the use of
multisensor systems. Their improved results in speech enhance-
ment and robust speech recognition tasks seem very promising.
The main advantage is that the microphone array can simul-
taneously exploit the spatial diversity of speech and noise, so
both spectral and spatial characteristics of the speech signals
are considered. Usually, the spatial discrimination of the array
is examined by beamforming algorithms, like those proposed
in [1]. In most cases though, the obtainable noise reduction per-
formance is not sufficient and post-filtering techniques, using
Wiener filters, are applied to further enhance the output of the
beamformer. In general, these techniques accomplish higher
noise reduction than the Minimum Variance Distortionless Re-
sponse (MVDR) beamformer alone. Despite its theoretical opti-
mality, Wiener filtering is difficult to be realized due to its need
for estimating the 2nd order statistics for both the clean speech
and noise signals. A variety of post-filtering techniques, trying
to address this issue, have been proposed [2, 3, 4].

One of the early methods for post-filtering is due to Zelin-
ski [2], and was further studied by Marro et al. [5]. The general-
ized version of Zelinski’s algorithm is based on the assumption
of a spatially uncorrelated noise field. A more accurate noise
field model has been introduced by McCowan et al. [4], where
a known noise field coherence function is proposed improving
the overall performance. Both methods are characterized by
a certain drawback as the noise power spectrum at the beam-
former’s output is over-estimated, [4, 6]. In addition, the post-
filtering scheme distorts the speech spectrum, especially in the
lower bands of the speech spectrum. Some of the frequency
content of the speech signal is mistakenly taken for noise and
thus smoothed out. Therefore, these methods do not perform
well in the feature extraction process of noisy ASR tasks.

Herein, we are proposing a novel feature extraction algo-
rithm minimizing the interference of the corrupting noise signal
in different frequency bands. These features are called Multi-
band, Multisensor Cepstral Coefficients (MBSC). The single-
sensor version of the proposed features, called Teager-Energy
Cepstral Coefficients (TECCs), has been presented in [7] with
promising improvements over the recognition rates. Now, we
are expanding the notion of the TECCs in a multisensor envi-
ronment.

2. Background on the Feature Extraction
Process of TECCs

The typical MFCCs are estimated over a filterbank of triangu-
lar filters with fixed overlap as the log mean squared amplitudes
of the bandpassed signals. Herein, we propose incorporating
information about the time-varying and the dynamic nature of
speech when using the Teager-Kaiser Energy (TK-Energy) in-
stead of the typical squared-amplitude approach, [8]. In this
way, the features’ acoustic information is ‘richer’ as informa-
tion concerning the instantaneous frequency is, also, incorpo-
rated. In addition, we propose using an auditory-inspired fil-
terbank instead of the usual triangular filterbank considering
the advantages of the human hearing process. The proposed
nonlinear features are called TECCs in direct proportion to the
widely-used MFCCs.

Recent studies of the human hearing physiology, [9, 10, 11],
have shown that the human physiology dictates that the auditory
filter bandwidths should be given by the ERB(f) function

ERB(fc) = 6.23(fc/1000)2 +93.39(fc/1000)+28.52 (1)

where fc is the filter center frequency in Hz. Moreover, the fil-
ter placing is equidistant in the Critical Band (Bark) frequency
scale

Bark(fc) =
26.81fc

fc + 3920
− 0.53 (2)

and 0 ≤ fc ≤ Fs/2, where Fs the sampling frequency. Finally,
a good approximation of the auditory filters are the asymmetri-
cal Gammatone filters, [9],

g(t) = Atn−1 exp (−2πbERB(fc)t) cos(2πfct) (3)

where A, b, n are the Gammatone filter design parameters and
fc its center frequency. In [9] it is proposed that the auditory
filters should have b = 1.019 and n = 4.

The proposed features are proved to be more robust in ad-
ditive noise and provide additional acoustic information when
compared to the typical MFCCs, [7]. The Gammatone filters
are smoother and broader than the usual triangular filters due to
the increased filter overlap dictated by the ERB-curve, provid-
ing additional robustness to noise, [12].

The TECC extraction algorithm can be summarized as fol-
lows:
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i. Use of a Gammatone filterbank, as mentioned above, to
create a set of bandpass speech signals. The number N
of filters can vary from 30 to 200 filters depending on
the SNR levels. In general, more filters provide addi-
tional robustness to noise and better frequency resolu-
tion, Fig 1,

ii. Estimation of the mean TK-energy for each one of the
framed and bandpassed signals,

iii. Cepstrum coefficient computation of the log mean ener-
gies with the DCT, and

iv. Truncation of these Cepstrum coefficients by keeping the
first 12 coefficients, c1 − c12. The 0th-coefficient, c0,
augments the final feature vector similarly to the MFCC
extraction scheme.

The first two steps combine the auditory filtering process with
the more ‘natural’ approach of the speech energy notion. These
steps differentiate the proposed algorithm from the widely-
spread MFCC extraction algorithm. A mean TK-energy coef-
ficient corresponds to each one of the frequency bands. These
energy coefficients are highly dependant on the spectral content
of the speech signal at any given time.
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Figure 1: Normalized Power Spectrum and TK-Energy Time-
Frequency Distribution, with 150 Filters, for a Phoneme /aa/.

As shown in Fig. 1 these coefficients are closely related to
the corresponding speech spectrum but they provide additional
information concerning the instantaneous frequency content of
the speech bands. For the estimation of the TK-energy Time-
Frequency distribution, a filterbank with 150 filters is used, sim-
ilar to the one mentioned above. Some of the presented dif-
ferences, between the common Spectral Envelope and the TK-
energy distributions, are due to the filter spacing. For the case
of linear spacing, we would obtain a similar distribution to the
common, linear Spectral Envelope curve. Finally, note the in-
creased detail of the proposed distribution in the lower bands
of the speech spectrum due to the fact that the filters are placed
closer in this part of the speech spectrum than those placed in
the higher part of it, as the filters are placed according to the
Critical Band spacing, Eq. (2). The larger part of the acoustic
information is located exactly in this part of the spectrum.

The TK-energy coefficients are highly correlated due to the
increased filter overlap in the frequency axis. A certain level of
decorrelation can be achieved through the DCT. The estimation
of the Cepstrum coefficients and their truncation process remain

unaltered, similarly to that of the MFCCs. Though, the ASR re-
sults show significant improvement, especially when applied to
noisy recognition tasks. According to the experimental results,
the use of Gammatone filters and the TK-energy appears to pro-
vide the much wanted additional robustness to noise.

3. Noise Analysis
Going one step further, we consider the case of a M -sensor lin-
ear microphone array in a noisy environment capturing a speech
waveform. The observed signal ŷm(n) on the mth sensor,
m = 0, . . . , M − 1, corresponds to a linearly filtered version
of the arriving source signal s(n), plus an additive noise com-
ponent v̂m(n). This additive noise component is assumed to
be a zero mean, wide-sense stationary (WSS) Gaussian random
process with an autocorrelation function Rm(τ) and a spectral
density Φm(ω). The signals, received by the sensors, have to be
scaled and time-aligned (T.A.) accounting for the spatial prop-
agation effects. The obtained, time-aligned, signals are denoted
as

ym(n) = s(n) + vm(n) (4)
where m = 0, . . . , M − 1 the number of the aligned signals.

Herein, we are proposing a multisensor-multiband process-
ing scheme where every aligned input signal is decomposed into
N bandpass signals using an auditory-based analysis filterbank,
as in Section 2. Let us denote with ymk each of the signals ob-
served at the output of the mth sensor and filtered by the kth

filter. As in Section 2, the TK-energy of each passband signal is
estimated

Ψ [ymk(t)] = ẏ2
mk(t)− ymk(t)ÿmk(t) (5)

Expanding this expression, we shall obtain

Ψ [ymk(t)] = Ψ [sk(t)] + Ψ [vmk(t)] + Ψc [sk(t), vmk(t)]

+ Ψc [vmk(t), sk(t)] (6)

where Ψc is the cross-Teager energy between the source signal
and the noise, as defined in [13].

The last three terms are related to the noise signal. Assum-
ing that the signal s(t) can be approximated by an AM-FM sig-
nal, we are able to simplify further Eq. (6). Such an approxima-
tion is well-motivated for speech signals since experimental re-
sults have produced strong evidence for the existence of ampli-
tude and frequency modulations (AM–FM) in speech resonance
signals. Thus, the corresponding TK-energy is given, [14], by
Ψ [sk(t)] ≈ a2

k(t)ω2
k(t), where ak(t), ωk(t) are the instanta-

neous amplitude and frequency signals. Additionally, the pass-
band signal sk(t) can be approximated, [15], by

ŝk(t) ≈ ak(t) |Gk [ωk(t)]| cos {φ(t) + ∠Gk [ωk(t)]} (7)

Finally, the TK-energy of the filtered signal sk(t) is

Ψ [sk(t)] ≈ a2
k(t)ω2

k(t) |Gk [ωk(t)]|2 (8)

Since the noise process vm(t) has a spectral density given by
Φm(ω), the spectral density Φmk(ω) of its filtered version,
vmk(t) = vm(t) ∗ gk(t), is

Φmk(ω) = |Gk(ω)|2 Φm(ω). (9)

Furthermore, the vmk(t), v̇mk(t) and v̈mk(t) processes are
WSS and Gaussians. In addition, v̇mk(t) is statistically inde-
pendent of both vmk(t) and v̈mk(t), [16]. Therefore the energy
operator output is the sum of two independent processes, i.e.

Ψ [vmk(t)] = v̇2
mk(t)− vmk(t)v̈mk(t) (10)

Proc. of Intern. Conf. on Speech Communication and Technology - Interspeech 2007, Antwerp, Belgium, Aug. 2007 2



Computing its mean value, only two quantities are necessary

E
[
v̇2

mk(t)
]

= −R
(2)
mk(0)

E [vmk(t)v̈mk(t)] =R
(2)
mk(0)

(11)

The second time-derivative of the autocorrelation function
R

(2)
mk(τ) of the filtered noise process, at τ = 0, is given by

R
(2)
mk(0) =

1

2π

+∞∫

−∞

(jω)2 |Gk(ω)|2 Φm(ω) dω (12)

It can be approximated, as in [15], by

R
(2)
mk(0) ≈ R

(2)
mk(ωk(t)) = ω2

k(t) |Gk(ωk(t))|2 Γmk (13)

where

Γmk =
1

2π

+∞∫

−∞

∣∣∣∣
Gk(ω)

Gk(ωc)

∣∣∣∣
2

Φm(ω) dω

is the concentration of noise power within the passband of the
filter gk(t).

Finally, from Eqs. (6, 8, 10, 11, 13) and noting that the last
two terms on the right side of Eq. (6) are zero mean, the mean
value of the TK-energy Ψ [ymk(t)] is

E [Ψ [ymk(t)]] =a2
k(t)ω2

k(t) |Gk [ωk(t)]|2

+ 2ω2
k(t) |Gk [ωk(t)]|2 Γmk︸ ︷︷ ︸

Error Term

(14)

The last term at the right side of Eq. (14) is an ‘error’ term
due to the presence of noise. Therefore, the estimation of the
mean value of the TK-energy of the passband source signal con-
tains an additional term that corresponds to the mean TK-energy
of the noise component that contaminates the specific subband.

4. Band selection based on Minimum Mean
Teager-Kaiser Energy

It is simple to show that we should minimize the E [Ψ [ymk(t)]]
quantity, which is closely related to the noise power within the
passband of the filter, to minimize the error term of Eq. (14). It
is, also, straightforward to conclude that the least affected, by
noise, passband signal is the one corresponding to the minimum
mean TK-energy. Due to the M sensors of the microphone ar-
ray, M signals are available. So, we can choose among these M
signals and their N bandpassed signal components those that
appear to have the minimum mean TK-energy, one for each
frequency band. For example, selecting the least affected kth

bandpass signal, where k = 0, 1, . . . , N−1, we should estimate
the mean TK-energy of all the (m, k), m = 0, 1, . . . , M − 1
bandpass signals and choose that one with the minimum value.
This is explained by the fact that the mean TK-energy of the
source speech signal’s content, in a certain frequency band, is
the same across all sensors. The only term varying in the noisy
mean TK-energy estimation, E [Ψ [ymk(t)]], is the error term in
Eq. (14) due to different amounts of noise reaching the various
sensors of the array. Thus, selecting the signals ymk(t) with the
minimum mean TK-Energies, we, in fact, select those passband
signals that are less affected by noise.

Based on this analysis, we propose the following feature
extraction algorithm:

i. Time-alignment of the M recorded signals,

ii. Filtering the time-aligned signals through an auditory-
inspired filterbank with N filters, similarly to the process
mentioned in Section 2, and thus creating MxN band-
pass signals,

iii. Framing these MxN signals and computation of their
mean TK-energy coefficients,

iv. Selection among each M subband components the one
that appears to have the minimum mean TK-energy co-
efficient,

v. Estimation of the TECC coefficients considering only
the selected subband mean TK-Energies, as in Section 2.

Having selected those subbands with the minimum mean TK-
energy quantity Multi-Band, Multi-Sensor Cepstral Coefficients
(MBSC-Min), a single output vector is obtained where all its co-
efficients are the least affected by noise. The estimating feature
algorithm is formulated, as

TK-Coefficientk(τ) = min
M

E [Ψ [ymk(t)]] (15)

where τ is time (in frames), ymk(t) is the subband signal pro-
duced as the output of the kth filter of the filterbank and the
mth sensor of the array. The rest are the same as in Section 2.

A second approach was examined setting the TK-energy
coefficients as the mean values of the mean subband TK-
Energies (MBSC-Mean)

TK-Coefficientk(τ) =
1

M

M−1∑
m=0

E [Ψ [ymk(t)]] (16)

Some additional features have been examined based on dif-
ferent selection criteria, such as the median value or the A-
Trimmed mean values of the sorted vector of the corresponding
subbands TK-energies. The experimental results on ASR tasks
have shown some improvements when compared to the orig-
inal noisy speech task. Though, the best results are obtained
when the minimum TK-energy coefficients (MBSC-Min) are
selected, as presented in Table 1.

5. ASR Experiments and Results
The speech data set, used for the experiments, is a subset of the
TIDIGITS database recorded in a room with diffuse noise. This
data set contains about 10 recordings from each one of 52 male
and 52 female adult speakers. These recordings are collected by
a linear microphone array consisting of 16 sensors with a 2 cm
spacing between adjacent sensors. The desired speech source is
positioned directly in front of the array at a distance of 1.3 m
from its center. The diffuse noise field is created by several
loudspeakers emitting noise with average SNR = 0 dB. All
of the recordings are sampled at 16 kHz.

Several algorithms, originally proposed for speech en-
hancement tasks, are used for the ASR feature extraction pro-
cess. These algorithms are the MVDR, Zelinski and McCowan
algorithms, as in Section 1 and [2, 4]. The extracted features are
processed by the HTK Toolkit to examine their performance in
ASR tasks. For the needs of the ASR tasks, the database is di-
vided into 2 non-overlapping sets; 700 of the recorded sentences
are used for training and the rest 300 are used for testing. The
database was recorded by broadcasting the Source Speech set
through a loudspeaker placed in the middle of the room. The
Clean Speech set consists of those recordings held without the
existence of any noise field. For the case of the Clean and Noisy
Speech feature sets, as appeared in Table 1, we keep only the

Proc. of Intern. Conf. on Speech Communication and Technology - Interspeech 2007, Antwerp, Belgium, Aug. 2007 3



center microphone recordings, ignoring the rest of the record-
ings. This way, we can apply single-microphone feature extrac-
tion algorithms to these signals. Finally, context-independent,
12-state, left-right word HMMs with 3 gaussian mixtures are
used. The grammar used is the all-pair, unweighted grammar.

The features, extracted by the speech enhancing algorithms,
are the common MFCCs plus their 1st and 2nd-order time-
derivatives (D+DD). It is, also, examined if the Cepstral Mean
Subtraction (CMS) scheme can improve their performance. The
MFCCs are extracted directly from the frequency versions of
the enhanced signals to avoid inserting additional modeling er-
rors. For the single-microphone case, the MFCCs and TECCs
have been extracted using only the center-microphone record-
ings, as described above. The Clean Signal TECCs present
improved performance when compared to the Clean Signal
MFCCs and the MBSC-Min to the Noisy Signal TECCs, cor-
respondingly. Finally, the corresponding time-derivatives and
CMS are estimated for the Multi-Band, Multi-Sensor Cepstral
Coefficients (MBSC-Mean and -Min) feature sets, too.

Correct Word Accuracies (%)
Input Signal D+DD D+DD

- Features +CMS
Source - MFCC 95.61 96.82

Single Clean - MFCC 95.48 96.37 Clean
Mic. Clean - TECC 96.50 96.63 Speech
Input Noisy - MFCC 94.02 94.98

Noisy - TECC 93.38 95.36
McCowan - MFCC 93.51 93.83 Noisy

Multi Zelinski - MFCC 94.34 95.48 Speech
Mic. MVDR - MFCC 94.78 95.67
Input MBSC-Mean 95.67 95.80

MBSC-Min 96.12 96.12

Table 1: Speech Recognition Results (Correct Word Accuracies
%) for source, clean and noisy input speech signals. The results
correspond to single- and multi-sensor speech recordings and
MFCC and TECC features.

This speech database was not originally designed for ASR
tasks so it lacks of training and testing variability in the speaker
and sentence fields. The recording conditions are considered
matched, as training/testing recording conditions are the same.

6. Discussion – Conclusions
In this paper, we are presenting a novel feature extraction algo-
rithm. We propose minimizing the noise interference over mul-
tiple bands of the speech spectrum across multisensor signals.
The application of such multisensor, multiband approach yields
improved recognition results, as presented in Table 1. The re-
sults obtained by the enhancing algorithms are far worse than
those of the clean speech results. Most of the speech enhancing
algorithms tend to create artifacts in the lower part of the speech
spectrum destroying the corresponding formant structure of the
specific band. This is the reason why these algorithms appear
to have such a poor performance in the ASR tasks. On the con-
trary, the proposed algorithm succeed in preserving the formant
structure and suppress most of the noise over multiple subbands.
In addition, the proposed features do not need any prior knowl-
edge of the noise field model. The recognition results are very
encouraging for most of the presented features (MBSC-Min and

-Mean sets). Though, further research is needed. The proposed
methodology is, also, applied to speech enhancement tasks with
comparable improvements of its performance.
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