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ABSTRACT

In this paper, generalized granulometric size distributions and size
histograms (a.k.a ‘pattern spectra’) are developed using generalized
multiscale lattice operators of the opening and closing type. The
generalized size histograms are applied to granulometric analysis
of soilsection images. An interesting structure is obtained when
the histogram is based on area openings. Furthermore, a fast im-
plementation of the generalized size histograms is presented using
threshold analysis-synthesis. Comparisons with size distributions
based on conventional morphological operators indicate that the
generalized histograms provide a more direct and informative de-
scription of the image content in objects with scale-dependent geo-
metric attributes. Applications are also developed for studying the
structure of soilsection images.

1. INTRODUCTION

Nonlinear multiscale image analysis has recently emerged as a use-
ful tool for many applications in image processing and computer
vision, where it performs better than linear (Gaussian) scale-space.
Examples include geometry-based filtering with better edge preser-
vation, motion tracking, efficient image segmentation, shape anal-
ysis, measurements and modeling of fractal signals and granulo-
metric image analysis (size distributions).

The classic morphological multiscale analysis with openings
and closings [5, 7] provides us with useful descriptors such as
the size distributions and their corresponding size densities (his-
tograms), called ‘pattern spectrum’ in [3], which can detect critical
scales of image objects and quantify the multiscale shape-size con-
tent of an image. These tools have been applied successfully to a
variety of image analysis tasks, such as feature extraction, texture
characterization, shape-size analysis, object recognition both for bi-
nary and grayscale images [5, 7, 3, 1]. Application domains include
the fields of geological, biomedical, and document image analysis.
Traditionally, the size distributions are formed by computing the
areas or volumes of standard morphological openings and closings
(i.e. compositions of Minkowski erosions and dilations) by con-
vex structuring elements (e.g. disks or lines) at multiple scales.
However, this conventional approach has weak points because the
standard openings do not retain the contours of image objects, can-
not directly localize important image information such as the area
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of its connected components, and are not oriented toward object-
based analysis. Furthermore, the information they provide about
the image shape-size content is spread among different scales and
hence is not directly useful for object-oriented analysis.

In this paper, the aforementioned difficulties are addressed by
using size distributions and corresponding size histograms based
on generalized multiscale openings. These can be formalized using
the theory of image operators on complete lattices [2]. One class
of generalized openings we use are the reconstruction openings
[8, 6] which can reconstruct whole objects (marked by some seed)
with extract preservation of their contour; in this reconstruction
process they simplify the original image by completely eliminating
all objects inside which the marker cannot fit. Another interesting
class of generalized operators are the area openings [9] which filter
connected components of an image according to their area. Both
the reconstruction and the area openings are connected operators;
hence they are suitable for object-oriented size analysis.

In this paper we present a generalized granulometric image
analysis based on multiscale reconstruction and area openings and
closings. We study some theoretical properties of these generalized
size histograms and apply them to studying the multiscale struc-
ture of soilsections based on their images. Analysis of this kind
of images is important since it helps ecologists and biologists to
measure various aspects of ground quality and understand the type
and degree of changes that a terrestrial ecosystem has undergone.

2. GENERALIZED MULTISCALE OPERATORS

Consider the complete latticeLof real-valued image signals equipped
with the partial orderingf ≤ g [f(x) ≤ g(x) ∀x], the supre-
mum

∨
and the infimum

∧
. Let αs andβs denote families of

multiscale operators onL of the opening and closing type, respec-
tively, which depend on a scale parameters ≥ 0. For αs to be
a latticeopening, it should satisfy three properties:increasing:
f ≤ g =⇒ αs(f) ≤ αs(g), antiextensive: αs(f) ≤ f , andidem-
potent: αs(αs(f)) = αs(f), for any image signalf and any scale
s. Similarly, βs is a latticeclosing if it is increasing, idempotent
and extensive. The last property means thatβs(f) ≥ f .

Furthermore, as the scales varies, we require from these fam-
ilies of multiscale openings and closings to be monotonic:

s < r ⇒
{
αs(f) ≥ αr(f)
βs(f) ≤ βr(f) (1)

Note that, at scales = 0, both the opening and the closing become
the identity operator; i.e.,α0(f) = β0(f) = f . Property (1)
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indicates that, as the scale increases, the output of the generalized
multiscale opening (closing) does not increase (decrease). Based
on the above, we can unify large classes of operators that share a few
fundamental properties as generalized multiscale open-closings. In
the following, some interesting special cases are presented.

2.1. Conventional Multiscale Open-Closing Operators

The conventional multiscale opening and closing operators are gen-
erated by compositions of Minkowski erosions and dilations of the
signalf by a flat scale-parametric structuring elementsB:

αs(f) = (f 	 sB) ⊕ sB
βs(f) = (f ⊕ sB) 	 sB

where⊕ and	 denote the Minkowski morphological dilation and
erosion, respectively. In the continuous case (images defined on
R

2), the above multiscale open-closings satisfy the monotonicity
property (1) ifB is a compact convex set andsB = {sb : b ∈ B};
typically, sB is a disk of radiuss. In this case, the scale is defined
by the size (radius)s of the structuring element. In the discrete
case (images defined onZ2), the multiscale open-closings satisfy
(1) if sB is obtained by dilating the unit-sizeB with itself s times.

2.2. Multiscale Open-Closing by Reconstruction

The reconstruction opening (closing) reconstructs the parts from the
foreground (background) of an imagef that are hit by a marker sig-
nalm. For the reconstruction opening (closing) we must havem ≤
f (m ≥ f ). To produce multiscale openings/closings by recon-
struction we make the marker signals to be scale-dependent. The
simplest way (adopted in this paper) is to use as marker for the re-
construction opening the multiscale Minkowski erosionm−

s (f) =
f 	 sB of the original imagef . Similarly, as marker for the multi-
scale reconstruction closing we use the multiscale dilation off by
a disk:m+

s (f) = f ⊕ sB.
Consider the conditional dilation and erosion of the markers

ms(f) by the unit diskB with reference the signalf :

δB(m−
s (f)|f) = (m−

s (f) ⊕B) ∧ f
εB(m+

s (f)|f) = (m+
s (f) 	B) ∨ f

Then, one algorithm to obtain the multiscale reconstruction opening
(closing) off from the corresponding markerms is by iterating the
above conditional dilation (erosion):

αs(f) = lim
n→∞

δn
B(m−

s (f)|f) =
∨
n≥1

δn
B(m−

s (f)|f)

βs(f) = lim
n→∞

εn
B(m+

s (f)|f) =
∧
n≥1

εn
B(m+

s (f)|f)

whereψn denotes then-fold composition of an operatorψ with
itself. Since the reconstruction opening and closing are increasing
with respect to the marker, they satisfy property (1).

2.3. Multiscale Area Open-Closing

The area open-closing is another class of generalized morpholog-
ical operators. These filters suppress arbitrarily-shaped connected
components in an image whose areas (number of pixels) are smaller
than a given threshold (scale)s. Therefore, in this case, the scale is
directly related to an object property, which provides a more physi-
cal interpretation of the image content. The area opening can easily

be implemented in binary images: let the setX =
⊔

i Ci represent a
binary image, whereCi represent the connected components ofX.
The area opening output isαs(X) =

⊔
j Cj with area(Cj) ≥ s,

∀j. Any increasing binary operator can be extended to graylevel
images via threshold superposition [4]. Consider a graylevel image
f and its threshold binary signalsfh(x) whereh ranges over all
gray levels. The value offh(x) is 1 if f(x) ≥ h and 0 otherwise.
Then, the graylevel area opening is defined via threshold superpo-
sition [9] asαs(f)(x) = sup{h : αs(fh)(x) = 1}. If the image
f takes only nonnegative integer values{0, 1, ...,m}, then

αs(f) =
m∑

h=1

αs(fh) (2)

Similarly, we can define the area closing off by duality asβs(f) =
m− αs(m− f). Since the area of a set is an increasing operator,
the area opening and closing satisfy property (1).

The threshold decomposition scheme enabled us to develop a
more efficient and fast implementation of the multiscale area open-
closing compared to the (single-scale) method of [9]. This is due
to the fact that the image threshold decomposition and the area of
the connected components are estimated only once. Then, at each
scale, a simple comparison of the area of the connected components
to the scales is performed. Instead, the method of [9] needs re-
estimation of the area operator at every scale.

2.4. Generalized Size Histogram (Pattern Spectrum)

By applying a generalized opening or closing operator to an image
f for all different scaless we can create thegranulometry(which
is closely related to a size distribution)

Gf (s) =
{

Vol(αs(f)), s ≥ 0
Vol(β−s(f)), s < 0 (3)

whereVol(f) =
∫
f(x)dx is volume under the surface off . Due

to (1), the granulometryGf (s) decreases ass increases:s < r =⇒
Gf (r) ≤ Gf (s). Further, it can be shown that [3], for images
f with a compact support, there is a scalesmin < 0 such that
β−s(f) = β−smin(f) ∀s < smin. Similarly, there is a scale
smax > 0 such thatαs(f) = 0 ∀s > smax. Therefore, the nor-
malized negated granulometryDf (s) = 1 − Gf (s)/Gf (smin)
behaves like thesize distributionof a random variable whose value
is related to the size content off . The derivative of this distribu-
tion yields a size density which behaves like the probality density
function of this random variable. Ignoring in this size density, for
notational simplicity, the normalizing factorGf (smin) yields a
nonnegative function

Pf (s) = −dGf (s)/ds (4)

This unnormalized size density is also called ‘pattern spectrum’due
to its ability to quantify the shape-size content of images [3]. Since
the granulometry decreases monotonically,Pf (s) ≥ 0, ∀s.

For discreteimagesf , we use integer scaless = 0, the gran-
ulometryGf (s) is obtained as above by definingVol(f) as the
sum of values off , and the size densityPf (s) is obtained by using
differences instead of derivatives:Pf (s) = Gf (s) − Gf (s + 1).
In the discrete case, we callPf (s) asize histogram.

Both the standard openings used in this paper as well as the
reconstruction and area openings (and the corresponding closings)
are flat operators that obey the threshold superposition. As shown in
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[3] for the case of standard openings, the pattern spectrum inherits
this property. The proof of this property easily extends to the case
of the reconstruction and area openings. Thus, if a discrete image
f assumes only nonnegative integer values{0, 1, ...,m}, then

Pf (s) =
m∑

i=1

Pfi(s) (5)

wherefi is the threshold binary image obtained fromf by thresh-
olding it at leveli. The above property allowed us to develop a fast
algorithm for measuring the generalized size histograms, because
the size histograms based on reconstruction and area openings be-
come extremely fast when applied to binary images since we es-
sentially need just to label the connected components of the binary
image and count their areas. Then the total size histogram results
as the sum of the histograms of all the threshold binary images.

2.5. A Property of Area Size Histogram

Assume first thatf is a binary image. Then, it is straightforward to
show that its size histogram based on area openings is

Pf (s) = sN(s), N(s) = # of conn. components with areas

For graylevel images we have shown that their area size histogram
has the form

Pf (s) = s

N(s)∑
i=1

hi(s)

wherehi(s) is the height difference between a regional maximum
(or a crossection off whose area became larger than the previ-
ous higher crossection) and its highest neighbor around the bound-
ary of this plateau, andN(s) is the number of such plateaus with
areas. For an imagef with integer values, the above property
of the area size histogram implies that, the area-normalized his-
togramPf (s)/s has integer values which count the number of
connected components (for binary images) or of regional maxima
(for graylevel images) with areas. This theoretical property allows
us to detect the presence of connected components of any specific
area, or zone of area scales, in an image. Instead, the contribution of
one connected component to the conventional pattern spectrum is
usually spread out, which does not facilitate its accurate detection.
This property of the area histogram is verified in Figs. 3, 4.

3. APPLICATION TO SOILSECTION IMAGES

The aforementioned granulometric analysis based on generalized
openings is applied to the characterization and description of the
size content of soilsection images. In analyzing such images it is
of great interest to find soil characteristics or features that can be
detected or measured automatically and then coresponded with the
biochemical properties of the soil. Such a procedure can lead to an
automated system for evaluating the bioecological quality of soil
by analyzing images of soilsections.

Figure 1(a) illustrates a soilsection image; the white regions
correspond to air voids, while the dark regions to soil pedofeatures
or aggregates. Its size histogram based on conventional morpho-
logical filters is shown in Fig. 1(b). As expected, this opening-
closing histogram has a complex graph whose large spikes might
indicate the existence of objects with components at those scales.
In Fig. 1(c) we show another histogran based on multiscale ero-
sions/dilations by disks. The erosion-dilation histogram is not as

informative and simply decreases with scale; the slope of this de-
crease might be of some importance since it is related to the Mi-
knowski fractal dimension of the image surface.

Figure 2 illustrates the size distribution and histogram based
on openings/closings by reconstruction for the soilsection image of
Fig. 1(a). As can be seen, a much better localization of the object
size is obtained, in the sense that the histogram presents abrupt
peaks, especially at the scales where large connected objects are
localized. Figure 3 shows the results of the granulometric analysis
for the image of Fig. 1(a) based on area closings. As observed,
the size histogram presents a highly localized behavior (there are
lots of isolated spikes, especially at large areas), while its values
increase proportionally to the area. A zoom in Fig. 3(c) reveals that,
all peaks of the area-normalized histogram have integer values and
most of them are equal to one. Likewise in Fig. 4 for another
soilsection image. This experimentally confirms the theoretical
property mentioned in Sec. 2.5.

In conclusion, the generalized size histograms based on recon-
struction and area openings/closings yield a clearer (locally more
concentrated) spike distribution and hence are more informative
than histograms based on conventional openings. Thus, spikes in
the generalized size histograms directly correspond with the ex-
istence of connected image components with a specific geometric
property (i.e., radius of maximum inscribable disk or area), whereas
the contribution of one component to the conventional histogram is
usually spread out. Area size histograms can even count the num-
ber of distinct components with a specific area. In general, size
histograms are useful for analyzing size content in images with a
large number of components in the foreground and/or background.
Soilsection images are a such a typical class where granulometric
analysis yields very useful information. Specifically, it can provide
estimates of: 1) the average size of grains and pores, 2) deviation
around the mean or other moments, 3) the percent of grains/pores
in localized scale zones, 4) the coarse-to-fine ratio, 5) the geometri-
cal complexity of grain/pore size distribution, 6) all the above with
various alternative interpretations of ‘scale’based on different geo-
metrical properties (e.g., smallest or largest diameter, area, degree
of connectivity).
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Fig. 1. Conventional size histograms for a soil section image. (a) Original image (405x479 pixels, 20.3x17.2mm). (b) Size histogram based
on flat Minkowski openings/closings. (c) Histogram based on multiscale erosions/dilations.
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Fig. 2. Granulometric analysis for the image of Figure 1(a) based on opening-closing by reconstruction. (a) Size distribution. (b) Size
histogram. (c) A zoom of the size histogram.
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Fig. 3. Granulometric analysis using area closings on the image of Fig. 1(a). (a) Size distribution. (b) Size histogram. (c) Size histogram
normalized per area.
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Fig. 4. (a) Original image (584x447 pixels, 18.9x24.7mm). (b) Normalized size histogram based on area openings. (c) Normalized size
histogram based on area closings.

Proc. Int’l Conf. Image Processing (ICIP-2001), Thessaloniki, Greece, Oct. 2001. pp.684-687 687


