GENERALIZED MULTISCALE CONNECTED OPERATORS WITH APPLICATIONS TO
GRANULOMETRIC IMAGE ANALYSIS

Anastasios Doulamis, Nikolaos Doulamis, and Petros Maragos

National Technical University of Athens,
Dept. of Electrical and Computer Engineering, Athens 15773, Greece
Email: [adoulam,ndoulam,maragos]@cs.ntua.gr

ABSTRACT of its connected components, and are not oriented toward object-

. . o o .__based analysis. Furthermore, the information they provide about
Ir? this paper, gen?rallzed granulo,metrlc Siz€ dlstrlbqtlons and SIZ€he image shape-size content is spread among different scales and
hlstqgrams (a.lk.a pattern spectra’) are dgveloped using generalizeq,ance is not directly useful for object-oriented analysis.
multiscale lattice operators of the opening and closing type. The | this paper, the aforementioned difficulties are addressed by
generalized size histograms are applied to granulometric analysisysing size distributions and corresponding size histograms based
of soilsection images. An interesting structure is obtained when on generalized multiscale openings. These can be formalized using
the histogram is based on area openings. Furthermore, a fast imthe theory of image operators on complete lattices [2]. One class
plementation of the generalized size histograms is presented usin@f generalized openings we use are the reconstruction openings
threshold analysis-synthesis. Comparisons with size distributions[8, 6] which can reconstruct whole objects (marked by some seed)
based on conventional morphological operators indicate that thewith extract preservation of their contour; in this reconstruction
generalized histograms provide a more direct and informative de-process they simplify the original image by completely eliminating
scription of the image content in objects with scale-dependent geo-all objects inside which the marker cannot fit. Another interesting

metric attributes. Applications are also developed for studying the class of generalized operators are the area openings [9] which filter
structure of soilsection images. connected components of an image according to their area. Both

the reconstruction and the area openings are connected operators;
hence they are suitable for object-oriented size analysis.

In this paper we present a generalized granulometric image
. . . . analysis based on multiscale reconstruction and area openings and
Nonlinear multiscale image analysis has recently emerged as a Us€g|gings. We study some theoretical properties of these generalized

ful tool for many applications in image processing and Computer ;o histograms and apply them to studying the multiscale struc-
vision, where it performs better than linear (Gaussian) scale-spacey, . of soilsections based on their images. Analysis of this kind

Examples include geometry-based filtering with better edge preser-q¢ images is important since it helps ecologists and biologists to

va.tlon, motion tracking, efficient Image segmeqtaﬂon, shape anal'measure various aspects of ground quality and understand the type
ysis, measurements and modeling of fractal signals and granulo-

L L Co Y and degree of changes that a terrestrial ecosystem has undergone.
metric image analysis (size distributions).

The classic morphological multiscale analysis with openings
and closings [5, 7] provides us with useful descriptors such as 2. GENERALIZED MULTISCALE OPERATORS
the size distributions and their corresponding size densities (his- . ) ) ) )
tograms), called ‘pattern spectrum’in [3], which can detect critical COnsiderthe complete latticzofreal-valuedimage signals equipped
scales of image objects and quantify the multiscale shape-size conWith the partial orderingf < g [f(z) < g(z) Vz], the supre-
tent of an image. These tools have been applied successfully to g"UM V and the infimum/\. Let o; and 5, denote families of
variety of image analysis tasks, such as feature extraction, texturénultiscale operators of of the opening and closing type, respec-
characterization, shape-size analysis, object recognition both for bi-t'Velyz which qepend ona SC&]£‘ parameier 0. .F(.)r Qs to. be
nary and grayscale images[5, 7, 3, 1]. Application domains include & latticeopening it should satisfy three propertiesncreasing
the fields of geological, biomedical, and document image analysis./ < 9 = @s(f) < as(g), antiextensivea,(f) < f, andidem-
Traditionally, the size distributions are formed by computing the POtent as(as(f)) = as(f), for any image signaf and any scale
areas or volumes of standard morphological openings and closings’: Similarly, 5; is a latticeclosingif it is increasing, idempotent
(i.e. compositions of Minkowski erosions and dilations) by con- and extensive. The last property means thayf) > f.
vex structuring elements (e.g. disks or lines) at multiple scales. = Furthermore, as the scalevaries, we require from these fam-
However, this conventional approach has weak points because thdi€s of multiscale openings and closings to be monotonic:
standard openings do not retain the contours of image objects, can-
not directly localize important image information such as the area s<r= { as(f) = ar(f) (1)

Bs(f) < B:(f)
This research work was supported by the Greek Secretariat for Research
and Technology and by the European Union under the progfBNMEA — Note that, at scale = 0, both the opening and the closing become
99 with Grant # 99\ 164. the identity operator; i.eqo(f) = Bo(f) = f. Property (1)

1. INTRODUCTION
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indicates that, as the scale increases, the output of the generalizeleimplemented in binaryimages: letthe&et= | |, C; representa
multiscale opening (closing) does not increase (decrease). Basedbinary image, wheré’; represent the connected componentX of
onthe above, we can unify large classes of operators that share afewWhe area opening output s (X) = | ]; C; with area(C;) > s,
fundamental properties as generalized multiscale open-closings. Invj. Any increasing binary operator can be extended to graylevel

the following, some interesting special cases are presented. images via threshold superposition [4]. Consider a graylevel image
f and its threshold binary signas, () whereh ranges over all
2.1. Conventional Multiscale Open-Closing Operators gray levels. The value of,(z) is 1 if f(z) > h and O otherwise.

Then, the graylevel area opening is defined via threshold superpo-
The conventional multiscale opening and closing operators are gen-sition [9] asas(f)(z) = sup{h : as(fr)(z) = 1}. If the image
erated by compositions of Minkowski erosions and dilations of the £ takes only nonnegative integer valugs 1, ..., m}, then
signal f by a flat scale-parametric structuring elemeBt

m

as(f) = (fosB)@sB as(f) = as(fn) )
Bs(f) = (f@sB)osB h=1

where® ando denote the Minkowski morphological dilation and ~ Similarly, we can define the area closingfdfy duality as3, (f) =
erosion, respectively. In the continuous case (images defined onm — a(m — f). Since the area of a set is an increasing operator,
RR?), the above multiscale open-closings satisfy the monotonicity the area opening and closing satisfy property (1).

property (1) if B is a compact convex setar® = {sb : b € B}; The threshold decomposition scheme enabled us to develop a
typically, s B is a disk of radius. In this case, the scale is defined more efficient and fast implementation of the multiscale area open-
by the size (radius} of the structuring element. In the discrete closing compared to the (single-scale) method of [9]. This is due
case (images defined @), the multiscale open-closings satisfy  to the fact that the image threshold decomposition and the area of

(1) if sB is obtained by dilating the unit-siz8 with itself s times. the connected components are estimated only once. Then, at each
scale, a simple comparison of the area of the connected components
2.2. Multiscale Open-Closing by Reconstruction to the scales is performed. Instead, the method of [9] needs re-

) ] ) estimation of the area operator at every scale.
The reconstruction opening (closing) reconstructs the parts fromthe

foreground (background) of an imagiehat are hit by a marker sig-
nalm. For the reconstruction opening (closing) we must have
f (m > f). To produce multiscale openings/closings by recon- By applying a generalized opening or closing operator to an image
struction we make the marker signals to be scale-dependent. Thef for all different scales we can create thgranulometry(which
simplest way (adopted in this paper) is to use as marker for the re-is closely related to a size distribution)
construction opening the multiscale Minkowski erosiof (f) =
f © sB ofthe original imagef. Similarly, as marker for the multi- Gi(s) = { Vol(as(f)), s>0 3)
scale reconstruction closing we use the multiscale dilatiohmf 8= Vol(B-s(f)), s<0
adisk:m?(f) = f © sB.

Consider the conditional dilation and erosion of the markers whereVol(f) = [ f(z)dz is volume under the surface ¢f Due

2.4. Generalized Size Histogram (Pattern Spectrum)

ms(f) by the unit diskB with reference the signaf: to (1), the granulometrgs s (s) decreases asncreasess < r =
Gy(r) < Gy(s). Further, it can be shown that [3], for images
dp(ms (HIf) =(ms (e B)Af f with a compact support, there is a scalg;, < 0 such that
es(mT(H|f) = mI(HeB) Vv f B=s(f) = B=syin(f) Vs < Smin. Similarly, there is a scale

_ ] ) ) _ Smaz > 0such thaiw,(f) = 0 Vs > sma.. Therefore, the nor-
Then, one algorithm to obtain the multiscale reconstruction opening malized negated granulometiy;(s) = 1 — G(s)/G s (Smin)
(closing) of f from the corresponding market is by iteratingthe  pehaves like theize distributiorof a random variable whose value

above conditional dilation (erosion): is related to the size content ¢f The derivative of this distribu-
) o, o tion yields a size density which behaves like the probality density
as(f) = lim d5(ms (FIf) = \V 85(ms ()1f) function of this random variable. Ignoring in this size density, for
nzl notational simplicity, the normalizing fact@® s (smi») yields a
Bs(f) = lim ex(md(HIf) = N\ esmd (HIf) nonnegative function
" Py(s) = —dGy(s)/ds (4)

wherey™ denotes the:-fold composition of an operatap with _ ) . o
itself. Since the reconstruction opening and closing are increasingThis unnormalized size density is also called ‘pattern spectrum’due

with respect to the marker, they satisfy property (1). to its ability to quantify the shape-size content of images [3]. Since
the granulometry decreases monotonically(s) > 0, Vs.

For discreteimagesf, we use integer scales= 0, the gran-
ulometry G (s) is obtained as above by definingl(f) as the
The area open-closing is another class of generalized morpholog-sum of values of, and the size densiti; (s) is obtained by using
ical operators. These filters suppress arbitrarily-shaped connectedlifferences instead of derivative®y (s) = Gf(s) — Gy(s + 1).
components in animage whose areas (number of pixels) are smallein the discrete case, we cdfl(s) asize histogram
than a given threshold (scale) Therefore, in this case, the scale is Both the standard openings used in this paper as well as the
directly related to an object property, which provides a more physi- reconstruction and area openings (and the corresponding closings)
cal interpretation of the image content. The area opening can easilyare flat operators that obey the threshold superposition. As shownin

2.3. Multiscale Area Open-Closing
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[3] for the case of standard openings, the pattern spectrum inheritsnformative and simply decreases with scale; the slope of this de-
this property. The proof of this property easily extends to the case crease might be of some importance since it is related to the Mi-
of the reconstruction and area openings. Thus, if a discrete imageknowski fractal dimension of the image surface.

f assumes only nonnegative integer val{@sl, ..., m}, then Figure 2 illustrates the size distribution and histogram based
on openings/closings by reconstruction for the soilsection image of
Fig. 1(a). As can be seen, a much better localization of the object
size is obtained, in the sense that the histogram presents abrupt
peaks, especially at the scales where large connected objects are
wheref; is the threshold binary image obtained frghiby thresh- localized. Figure 3 shows the results of the granulometric analysis
olding it at leveli. The above property allowed us to develop a fast for the image of Fig. 1(a) based on area closings. As observed,
algorithm for measuring the generalized size histograms, becausehe size histogram presents a highly localized behavior (there are
the size histograms based on reconstruction and area openings bdets of isolated spikes, especially at large areas), while its values
come extremely fast when applied to binary images since we es-increase proportionally to the area. Azoom in Fig. 3(c) reveals that,
sentially need just to label the connected components of the binaryall peaks of the area-normalized histogram have integer values and
image and count their areas. Then the total size histogram resultsnost of them are equal to one. Likewise in Fig. 4 for another
as the sum of the histograms of all the threshold binary images. soilsection image. This experimentally confirms the theoretical
property mentioned in Sec. 2.5.

In conclusion, the generalized size histograms based on recon-
struction and area openings/closings yield a clearer (locally more
concentrated) spike distribution and hence are more informative
than histograms based on conventional openings. Thus, spikes in
the generalized size histograms directly correspond with the ex-

Pr(s) = Pr(s) 5)

2.5. A Property of Area Size Histogram

Assume first thaf is a binary image. Then, it is straightforward to
show that its size histogram based on area openings is

P(s) =sN(s), N(s)=4#ofconn. components with area

For graylevel images we have shown that their area size histogra

has the form

istence of connected image components with a specific geometric

mproperty (i.e., radius of maximum inscribable disk or area), whereas

the contribution of one component to the conventional histogram is
usually spread out. Area size histograms can even count the num-
ber of distinct components with a specific area. In general, size
histograms are useful for analyzing size content in images with a

large number of components in the foreground and/or background.

(or a crossection of whose area became larger than the previ- SCilsection images are a such a typical class where granulometric
ous higher crossection) and its highest neighbor around the bound2nalysis yields very useful information. Specifically, it can provide
ary of this plateau, andV(s) is the number of such plateaus with estimates of: 1) the average size of grains and pores, 2) glewatlon
areas. For an imagef with integer values, the above property faround_ the mean or other moments, 3) th_e percent of gralns/pore_s
of the area size histogram implies that, the area-normalized his-I" localized scale zones, 4) the coarse-to-fine ratio, 5) the geometri-
togram P (s)/s has integer values which count the number of cal _complexny o_f gr_aln/pore size dlStrlbUtan, 6) all the gbove with
connected components (for binary images) or of regional maxima Various alternatlye interpretations of ‘scale baged on different geo-
(for graylevel images) with area This theoretical property allows metrical pr_opertles (e.g., smallest or largest diameter, area, degree
us to detect the presence of connected components of any specifief connectivity).

area, or zone of area scales, inanimage. Instead, the contribution of
one connected component to the conventional pattern spectrum is
usually spread out, which does not facilitate its accurate detection.
This property of the area histogram is verified in Figs. 3, 4.

whereh;(s) is the height difference between a regional maximum
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Fig. 1. Conventional size histograms for a soil section image. (a) Original image (405x479 pixels, 20.3x17.2mm). (b) Size histogram based
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Fig. 2. Granulometric analysis for the image of Figure 1(a) based on opening-closing by reconstruction. (a) Size distribution. (b) Size
histogram. (c) A zoom of the size histogram.
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Fig. 3. Granulometric analysis using area closings on the image of Fig. 1(a). (a)

normalized per area.

Fig. 4. (a) Original image (584x447 pixels, 18.9x24.7mm). (b) Normalized size histogram based on area openings. (c) Normalized size

histogram based on area closings.
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