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Abstract

This paper presents a correspondence method to determin-
ing motion displacement fields in sequences of intensity im-
ages where the motion tokens to be matched between con-
secutive image frames are 2-D regions. These regions con-
tain perceptually important image features. The computa-
tion of the 2-D image velocity field is done in three stages:
region extraction, region matching, and velocity smooth-
ing. Overall, the proposed region-based methods for com-
puting image velocities are simple, efficient, less computa-
tionally complex than intensity correlation methods, and
(as our experiments on real images indicate) more robust
than iterative gradient methods especially for medium or
long-range motion.

1. Introduction

This paper presents a correspondence approach to
measuring the 2-D image velocity field by using re-
gions as the simple tokens to extract from each image
frame and track over time. In recent research con-
siderable attention has been given to edges (e.g., zero-
crossings of the Laplacian of a Gaussian) as being per-
haps the most desirable features to match in binocu-
lar stereopsis or motion analysis. However, without
doubting the general usefulness of edges as impor-
tant image features, we view the region matching as
more robust than edge matching, because noise per-
turbs the coherence of a region less than its bound-
aries (edges). This was demonstrated by Nishihara [4]
who solved the correspondence problem for binocu-
lar stereo by cross-correlating the binary regions (sign
areas) bounded from the zero-crossing contours of the
band-pass filtered images V2G*I. (V2 is the operator
8% /8x2 +82/0y?, G(z,y) = exp[— (22 +y?)/202]/2n0?
is a Gaussian function with standard deviation (scale
parameter) o, and * denotes 2-D convolution.) May-
hew and Frisby [2] have also found that intensity edges
cannot by themselves disambiguate some correspon-
dences in binocular stereopsis unless they are supple-
mented by region features such as intensity peaks and
valleys. Additional strong evidence for the possible ef-
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fectiveness of blob-like regions is provided by the psy-
chophysical experiments of Ramachandran and Anstis
[5], which demonstrated that the human visual system
during its first short-term phase of perceiving appar-
ent motion is more likely to detect correspondences
between regions of similar brightness or texture be-
fore it detects sharp outlines or edges.

2. Region-Based Approaches

Motivated by all the above evidences, in this paper we
study and compare several region-based approaches
[1] to motion correspondence. The common proce-
dure in all our approaches consists of three stages:
(I) Region Eztraction: This part carries the main em-
phasis of our paper, deals with pre-cleaning the im-
age, extracting the regions, and cleaning these re-
gions. We study four different approaches to extract-
ing regions: sign representation of the image convolu-
tion with V2G, morphological peak/valley detectors
[3], morphological image segmentation by watersheds
[7], and watershed segmentation of distance functions
of binarized regions resulting from segmentation of
graylevel images. Although the sign of the convo-
lution with V2G offers reasonably effective regions.
the operators and algorithms of mathematical mor-
phology for feature extraction and segmentation have
the advantage of providing multiscale region features
without blurring their boundaries. Thus, our prefer-
anceé for using morphological feature extraction and
segmentation approaches to extract regions is based
on the inherent ability of morphological operators to
easily relate to shape and hence to provide regions
that may correspond to more easily identifiable sub-
parts of the moving object. II) Region Matching where
Ullman’s general correspondence theory [6] is applied
to region tokens by using several similarity criteria
for matching. These criteria are based on a more ex-
tended set of region features than the affinity mea-
sure used by Ullman. After the region matching, ve-
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locity estimates are then identified as the spatial dis-
placements among centroids of corresponding regions.
III) Velocity Smoothing where the 2-D velocity data
are smoothed with a spatio-temporal vector median
filter.

2.1. Region Extraction

2.1.1. Sign Representation of V2G « [

Regions are the complementary representation of
edges. Hence, they can be obtained from edge opera-
tors. Specifically, the edge detection operation V2GxI
is applied to each image frame I. Binary edge infor-
mation is obtained by the zero-crossing contours of
the operator’s output. For each image frame, the re-
gions are identified as the connected subsets of the im-
age plane whose boundaries are these edge contours.
Thus, the set of image pixels at which this edge signal
has a positive sign identifies the collection of positive
regions, and its set complement yields the negative re-
gions. There is a trade-off in selecting a value for the
scale parameter 0. For large o, the regions are large,
and their number per frame is small. To achieve dense
velocity estimates, small values of & are preferred. On
the other hand, to achieve a matching that is more
robust and less susceptible to noise, a larger o is pre-
ferred. In our experiments we implemented the V2G
as the difference of two Gaussians, one (the excita-
tory) with ¢ = 2.25 and another (the inhibitory) with
o = 0.75; the size of the convolution kernel was 9 x 9
pixels.

2.1.2. Binarized Peak/Valley Detection
Transformations

If I is the intensity image at some time frame, two
morphological operators that can extract its intensity
peaks and valleys, respectively, are the opening and
closing residuals (known as “top-hat” transformations
and due to Meyer):

Peak(I) =
Valley(I) =

I-(IoB)>0
(I®B)—I1>0

(1)
(2)

where B is a flat convex structuring element. The
opening OB smooths I by cutting down its peaks;
hence the residual signal Peak(I) contains only the
peaks of I. The shape and size of B control the shape
and maximum size of of the binary regions of support
of these peaks. Similarly for the valleys. In our ex-
periments, we use as structuring element an octagon
S={(z,y): 22 +y> <5} of size 2;ie., B=S®S.
Note that the resulting element B has the same size
as the truncated impulse response for the V2G I op-
eration used in Section 2.1.1 so that both the linear

smoothing via the Gaussian convolution and the mor-
phological smoothing via the opening or closing refer
to the same scale.

The value of Peak(I) at a certain pixel location de-
termines the contrast (or the “strength”) of the peak
at that location. We produce binary peak regions by
thresholding at level 7, i.e., by setting all pixels (z,)
at which [Peak(I)](z,y) > T equal to 1 and O else-
where. It is not a simple task to find an optimum
T for general-purpose detection. In the approach we
used, all the nonzero values of the peak signal Peak(J)
were sorted for each frame and T was selected as the
70% percentile value. (The value 70 was experimen-
tally found to give reasonable results.) Similarly, the
binary valley regions result from thresholding the val-
ley signal Valley(I) at T'. Figures with examples from
the above peak/valley region extraction will be shown
later.

2.1.3. Watershed Segmentation

Here, we shall make use of one of the most powerful
tools provided by mathematical morphology, namely
the watershed transformation [7]. It is defined for
grayscale images via the notion of a catchment basin:
let us regard the image under study as a topographic
relief and assume it is raining on it. A drop of wa-
ter falling at a point p flows down along a steepest
slope path until it is trapped in a minimum m of the
relief. The set C(m) of the pixels such that a drop
falling on them eventually reaches m is called catch-
ment basin associated with the minimum m. The set
of the boundaries of the different catchment basins of
an image constitute its watersheds.

In other words, the watershed edges or lines are lo-
cated on the crest-lines of the image which actually
separate two different minima (the watershed elements
are always closed edges). The basic idea of watershed
segmentation consists therefore in applying this tool
to the gradient of the image I to be segmented. Note
that by gradient, we mean here a morphological gra-
dient of 7, i.e., an image where the gray-level of each
pixel is indicative of the slope in the original image.
One of the most popular gradients, often referred to in
literature as Beucher’s gradient, is obtained by taking
the algebraic difference between an elementary dila-
tion and an elementary erosion of I:

gradg(I) = (I & B) - (I & B), (3)

(with B being an elementary square or disc).
The direct application of the watershed transforma-
tion to a gradient image usually leads to poor results.
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Indeed, even after dramatic filtering of the original
image or of its gradient, the latter often exhibits far
t00 many minima, and thus far too many catchment
basins. Hence, straightforward watershed segmenta-
tion of the gradient mostly leads to oversegmented
images.

To get rid of this problem, one of the best solutions
consists in making use of markers of the regions to
be extracted. By marker of a given region, we mean
a connected component of pixels located inside this
region. The assumption used here is that it is eas-
ier to design robust methods to extract markers than
to directly extract the precise contours of the desired
regions. The method we used is sometimes called gen-
eralized maxima/minima extraction, or dome/basin
extraction [7]. For the domes, e.g., the principle is
to subtract an arbitrary constant k& from the original
image I and to perform a grayscale geodesic recon-
struction of I from I — h The grayscale reconstruc-
tion process can itself be viewed as an iteration of
elementary dilations of I — h with the constraint that
at each step, the resulting image must be smaller than
I for each pixel. The reconstructed image is then sub-
tracted from the original one, thus yielding a grayscale
image J of all the domes and crest-lines of 1. From
J, it is then easy to extract a binary picture of the
most important domes: it suffices to keep each dome
which has at least one pixel with value greater than a
given constant h'. Usually, one takes h' = h/2. This
last operation is realized via binary reconstruction of
J thresholded at level 1 from J thresholded at value
h'. The dual process can be used to extract the basins
and valleys of I. The combined dome and basin form
the marker image to modify the image gradient to im-
pose on it as new minima.

2.1.4. Watershed Segmentation Followed by
Binary Region Segmentation

One can notice that the obtained regions, though very
accurate, sometimes exhibit very strange shapes. As
we shall see later, this characteristics may have a bad
effect on the matching algorithms, which usually work
by using the centroid of the extracted regions. Fur-
thermore, when the matching is done with few regions,
the results are not as dense as one would expect, es-
pecially in comparison with the results provided by
block matching techniques. Therefore, it is interest-
ing at this point to cut the regions obtained after the
above watershed segmentation into smaller pieces.

Although several approaches may be considered to
achieve this goal, watershed-based methods seem once

again to provide the most appropriate answer. We
used here a technique which is commonly used for
binary segmentation tasks, i.e., to separate binary
shapes into their perceptually relevant components.
Its first step consists in determining the distance func-
tion of the binary image under study: each pixel be-
longing to the previously extracted regions is assigned
a gray-level corresponding to its distance to the outer
boundary of this region. Then, the maxima of such
a distance function image are called ultimate erosion
and mark the centroid of the different components in
which the regions will be decoraposed. In actuality, in
order to avoid getting too many markers, constrained
maxima are used again here. Finally, the components
are obtained by computing the catchment basins of
the negation of the distance function.

Examples of regions resulting from the algorithms
described in the previous subsections (including the
pre- and post-smoothing) are presented in Figure 1.
As Figure 1.b shows (with white areas representing
the positive sign regions), the regions from the edge
operator convey similar information as the edges. In
contrast, the peak/valley regions in Figures l.c and
1.d (where the peaks and valleys are represented by
the white areas) correspond to intensity bright or dark
blobs. Figure 1.e shows that watershed segmentation
of the original gray-level image based on dome/basin
markers yields binary regions that are generally con-
sistent with the concept of image segmentation. Fi-
nally, as shown in Figure 1.f, watershed segmentation
of distance functions of binary regions resulting from
graylevel watershed segmentation yields the densest
region fields. (In Figures l.e,f the region boundaries
are overlapped to the original image.)

2.2. Region Matching
Our region matching algorithm is guided by Ullman’s
general correspondence principles [6], but it also has
two differences. First, the tokens Ullman used were 1-
D line segments, whereas we use 2-D regions. Second,
Ullman used affinity measures for matching, whereas
we select the best region matching pair by compar-
ing the similarities of regions based on an extended
set of region features. Specifically, let R; and R;
be two regions with areas A(R;) and A(R;), respec-
tively, extracted from two consecutive image frames
(at times ¢ = t,tk+1), and let ¢, ¢; denote their cen-
troids. Then, fixing R;, a region R; from the frame at
= tx+1 is a possible candidate to match with R; if it
successfully passes the following matching criteria:

1. Centroid Distance: For two centroids to match,
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their distance should not exceed an upper bound;
i.e., both the z- and y-components of the displace-
ment vector ¢; — ¢; should not exceed L pixels.

2. Region Identity: The sign (positive or negative)
of two regions if they resulted from the V2G x I
approach, or their peak vs. valley (respectively,
dome vs. basin) identities if they resulted from
the morphological peak/valley (respectively, wa-
tershed segmentation) approach must be identical
for allowing them to match.

3. Area Difference: The area of matching regions
should not vary too much; i.e., |A(R;)— A(R;)| <
P-A(R;) where 0 < P < 1.

4. Intensity Difference: The average intensities of
the two regions should not vary too much; i.e.,

I(:E’ Y, tk) _
A(R;)

I(z,y,tk41)
A(R;)

2

(zfy)ERi

>

(z,y)ERj

< IDpmaz.

Clearly, the fixed numbers L, P, and 1Dy, are
control parameters for the correspondence process.
Specifically, L controls the range of correspondence.
Region R; may be matched with R; only if the cen-
troid of R; lies inside a square window of (2L + 1) x
(2L + 1) pixels centered at the centroid of R;, and
their V2G + I signs or their peak/valley or dome/basin
identities are the same. P and ID,,,, determine,
respectively, the maximum percentage of area differ-
ence and the maximum average intensity difference be-
tween two regions above which a match is impossible.
The parameters we used for these screening criteria
in our experiments are L = 25 pixels, P = 0.3, and
ID, 0. = 20.

If there are no regions R; in the frame at ¢t = {341
satisfying the matching criteria, then there is no match
for the particular region R;. If more than one candi-
date regions R; pass the matching criteria, the one
having the smallest mean absolute intensity difference

Z |I($7y, tk) - I(.’I) + dmy + dyatk+l)|
(z,y)ER.-

is selected, where (d;,d,) = ¢ — ¢ is the centroid
displacement vector.

3. Experiments and Discussion

Figure 2 (a) and (b) show two “toy truck” images with
no rotation and the objects have an equal amount of
translation to the left, downward, and toward cam-
era. The lower left truck is the closest (170mm away),
the lower right truck is at middle (220mm away), and

the upper tractor truck is the farthest (360mm away).
Figure 2 (c}, (d), (e), and (f) show the vector median
smoothed velocity field generated by matching the re-
gions extracted by the four algorithms. The smoothed
velocity fields clearly show that the closest object (the
lower left truck) has the largest displacement and the
farthest object (the upper tractor truck) has the least
displacement.

Overall, the proposed region-based methods for
computing image velocities are simple, efficient, less
computationally complex than intensity correlation
methods, and (as our experiments on real images in-
dicate) more robust than iterative gradient methods
especially for medium or long-range motion.

Finally, in addition to their usefulness for motion
tracking, the developed morphological region extrac-
tion methods can also serve as efficient systems for
robust 2-D feature extraction in a variety of computer
vision tasks.
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Figure 1: (a) Image I. Regions obtained by: (b) Sign of V2G *I. (c) Peaks.
(d) Valleys. (e) Watershed segmentation. (f) Watershed and bi-
nary region segmentation.
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Figure 2: Toy truck image sequence, (a) Frame 1 (386 x 386 pizels, 8
bit/pizel) (b) Frame 2 of the image sequence. (c), (d), (e), (f)
Vector median smoothed velocity fields generated by matching the

regions extracted by the four algorithms.




