
Overlapped Sound Event Classification via
Multi-Channel Sound Separation Network

Panagiotis Giannoulis1, Gerasimos Potamianos2, and Petros Maragos1
1School of ECE, National Technical University of Athens, 15773 Athens, Greece

2Department of ECE, University of Thessaly, 38221 Volos, Greece
pangian@cs.ntua.gr, gpotam@ieee.org, maragos@cs.ntua.gr

Abstract—Overlapped sound event classification (SEC) can be
a challenging task, especially in scenarios where the number
of possible event classes or the number of simultaneous events
occurring (polyphony level) are large. In such cases, the effective
training of a multi-label SEC neural network can be challenging,
as enough and diverse data need to be available for each of
the combinatorially many possible event sets. To alleviate this
problem, we examine in this paper the combination and joint
training of a multi-channel sound source separation network with
a multi-label SEC network. With the separation module acting
as a pre-processing step, the task can be approximately reduced
to isolated SEC, therefore avoiding the training complexity of
overlapped scenarios. In addition, we introduce a multi-channel
polyphony detection module that is trained to selectively apply
the separation network only in overlapping instances during
testing. We evaluate our approaches on a multi-channel dataset
of overlapping sound events originating from 50 different classes.
Under moderate reverberation conditions, the proposed method
achieves up to 7.7% absolute improvement in terms of Fscore
in the overlapped scenarios, compared to the baseline approach
with traditional multi-label training.

Index Terms—Sound event classification, multi-channel, over-
lapping events, universal sound separation

I. INTRODUCTION

Sound event classification (SEC) is a rapidly growing re-
search area with many applications, including smart-home
environments [1], [2], monitoring for healthcare [3], multi-
media indexing and retrieval [4], and surveillance [5], [6]. In
recent years, SEC has been the subject of multiple evaluation
campaigns in the literature, including the well-established
DCASE Challenges [7]. In the context of these challenges,
several tasks related to SEC have been studied, including
isolated and overlapped scenarios in single or multi-channel
setups, joint SEC and localization, audio tagging, etc.

In this paper we focus on the task of overlapped SEC in
a multi-channel setup. This problem has attracted significant
interest in the literature, with several deep-learning based
methods successfully proposed, including deep neural net-
works [8], convolutional neural networks (CNNs) [9], convo-
lutional recurrent neural networks [10], and transformers [11].
The standard training approach for overlapped SEC in deep
learning-based systems is to feed a multi-label neural network
with overlapped instances that either exist in training or are
artificially generated from the available isolated instances.
However, the number of possible event combinations that
need to be modeled grows rapidly as the number of event

classes or the polyphony level increase. In such cases, efficient
training of the network can be problematic, as it depends on
the existence or generation of sufficient overlapped data, thus
rendering this approach not scalable.

An alternative approach that mitigates this issue is to employ
a sound source separation network as a pre-processing step
to SEC, aiming in this way to approximately transform the
overlapped task into the isolated one. Significant progress has
been made in the domain of sound source separation in recent
years, including mostly works on speech separation [12]–
[15], and lately also on universal sound separation [16],
[17]. Based on the above, some works employ such systems,
reporting improved results for the single-channel overlapped
SEC task [18], [19]. Also in [20], in a multi-channel setup,
the authors train their network using beamformed signals from
various directions of arrival with respect to the microphone
array.

In our work, we propose for the first time the combination
of a multi-channel sound separation network with a multi-
label SEC system for addressing the overlapped SEC task
when the number of different event classes is large. In such a
scenario, we examine how the proposed approach can reduce
the performance gap of a SEC system between the isolated
and the more challenging overlapped cases. In particular,
we employ a state-of-the-art multi-channel sound separation
network in order to exploit, additionally to spectral content,
the spatial discrimination of the events present in a mixture
clip, while for the SEC module we employ a CNN-based
architecture suitable for SEC. For the resulting pipeline, we
examine both sequential and end-to-end joint re-training of the
two modules, with the latter achieving the best performance.
In addition, we propose the incorporation of a polyphony
detection network, which can selectively apply the proposed
system only to the overlapped instances during testing. Al-
though our system is scalable to an arbitrary polyphony level,
in this study, we examine the case of overlap with up to
2 simultaneous events. For our experiments we employ the
ESC50 data collection [21], as it provides balanced data from
a large variety of different event classes (50), and in order
to design a multi-channel dataset, we combine it with real
impulse responses from the DIRHA smart-home dataset [22].
Our results show that in this challenging overlapped scenario,
and under moderate reverberation conditions, the proposed
system can provide significant improvements over a baseline
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CNN-based SEC network trained with the standard multi-label
training approach.

The remainder of the paper is organized as follows: Sec-
tion II provides the description of the several modules em-
ployed in our approaches; Section III describes the database
and experimental framework used and reports our results; and,
finally, Section IV concludes the paper.

II. SYSTEM DESCRIPTION

A. Baseline SEC network

The architecture of the baseline SEC network is depicted in
Fig. 1. Given an input audio signal s ∈ RN (with N denoting
the number of signal samples), the feature extraction stage
computes 64-band Log-Mel filter-bank energies (logFBE) and
their Deltas using 0.4 sec Hanning windows with 0.2 sec
shift, producing the feature matrix X(s) ∈ R128×T , where T
is the number of resulting time frames. The feature matrix
X(s) is fed to the network which is comprised of a 5-layer
CNN block, followed by 2 fully-connected linear layers. The
output y ∈ RC has dimension equal to the number C of event
classes and is expected to have high values at the indexes
of activated events. For the multi-label training we employ
the binary cross-entropy loss function. During testing, active
sources are decided by applying a threshold on the output.

B. Multi-channel separation network

In our work we employ a multi-channel separation network
originally proposed for speech separation in [23]. In this
method the authors essentially improve their previous work on
FaSNet [24], which is a multi-channel filter-and-sum neural
beamforming network operating in the time domain. The
improvements include (a) the incorporation of a transform-
average-concatenate (TAC) module that makes the network
invariant to the permutation and the number of microphones,
and (b) the transition to a single-stage architecture where the
filters for all channels are jointly estimated.

The network takes as input time-domain mixture signals
from M microphones and outputs K time-domain separated
signals. Regarding the loss function, similarly to [24], we use
the mean squared error (MSE) between the FBE represen-
tations of the original sources, as captured by a reference
microphone, and the reconstructed sources at the output of
the network. In our case, as reference microphone we con-
sider the central microphone of a 3-channel linear array (see
Section III-A).

C. Proposed system

The proposed system, as shown in Fig. 2, combines the
separation and the SEC networks in a cascade. In particular,
we employ the separation network as a pre-processing step
which provides the SEC network with K separated signals in
place of the original mixture. The idea is that given a well-
performing separation network, the overlapped task can be
approximately reduced to classification of a set of isolated
instances, therefore improving the performance of the system.

Fig. 1. Single-channel baseline architecture for sound event classification.

The SEC network used in the proposed system applies a
SEC module with identical architecture with the baseline sys-
tem for each of the K separated inputs ŝk, k = 1, . . . ,K, and
then averages their output vectors. For training the proposed
pipeline, we examine two approaches:

• Sequential training
In this case, we first train the separation network with
mixtures that are artificially generated by the available
isolated instances as described in Section III-B. Then we
train the SEC network on the separated signals that result
from the output of the separation network for the various
mixtures.

• Joint training
In this case the training consists of two stages. The first
stage is the same with the sequential training, except that
the SEC network is trained on ground-truth separated
signals. In the second stage, the two networks are jointly
re-trained, using as input the mixture signals from the
microphone array and as loss function the binary cross-
entropy on the final output. In this way, the parameters
of both networks can be fine-tuned towards the final
objective of event classification.

Finally, we also examine the ensemble of the baseline SEC
network with the proposed system, by performing linear late
fusion on their outputs, followed by thresholding.

D. Polyphony network

The proposed method is designed to operate on audio
segments with overlapped events. In order to evaluate it in a
realistic scenario with both isolated and overlapped instances,
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Fig. 2. Pipeline of the proposed system for overlapped sound event classification.

we need a module able to detect the polyphony level and
selectively apply it only in the overlapped cases.

Polyphony classification modules based on deep learning
have been recently employed with success in the literature
[25], [26]. In our work, we implement a polyphony classifica-
tion network that exploits both the spectral and the spatial
information by using logFBE features in conjunction with
Generalized Cross Correlation (GCC-PHAT) based features,
computed for different pairs of microphones of the array.
Similarly with [27], we consider the GCC-PHAT features as
GCC spectrograms which are concatenated with the logFBEs
to form the final feature matrix. In our case that we use a 3-
microphone array, the network takes as input the feature matrix[
X(s0);GCC(s0,s1);GCC(s0,s2)

]
∈ R384×T , where s0 is the

signal captured by the central microphone m0, and outputs a
P -dimensional vector y ∈ RP , where P denotes the maximum
possible degree of polyphony (in this study, P = 2). For the
polyphony network, we use the same architecture with the
baseline SEC network (just changed the output dimension of
the last linear layer), and the cross-entropy as loss function.

III. EXPERIMENTS

A. Database

For our experiments we employ the environmental sound
classification (ESC50) dataset [21]. ESC50 contains 2000
5 sec-long audio clips from 50 different event classes, belong-
ing to various sound categories such as animal sounds, natural
soundscapes, human (non-speech) sounds, domestic sounds,
and urban noises.

In order to create a multi-channel dataset, we convolve the
audio clips with real room impulse responses (RIRs) from
the DIRHA smart-home dataset [22]. In particular, we use a
linear microphone array with 3 omni-directional microphones
(spaced 15 cm apart) placed inside the living room of the
DIRHA smart home, and 12 different locations with 2 possible
orientations each for the event sound sources. With respect to
the central microphone, the T60 reverberation times for the
different source locations range from 0.58 to 0.83 sec, while
their distances from 0.72 to 3.2 m.

B. Experimental setup

At first, all audio clips from ESC50 and RIRs from DIRHA
are downsampled to 16 kHz. Before the convolution with the

DIRHA RIRs, we pre-process the weakly-labeled audio clips
of ESC50 as follows: similarly to [28], we first remove silent
areas using an energy thresholding criterion, and then we split
them to 1-sec segments with 80% overlap, thus producing
about 34k clips in total. In this way, we obtain more samples
to train our network, and also our system can operate at a
finer temporal resolution. These audio clips are then split into
training, validation, and test sets at a 8:1:1 ratio. In the split we
ensure that different sets do not contain clips from the same
recording.

In order to simulate a realistic scenario, we assume that
for each set, 50% of their clips are observed as isolated
instances and 50% as parts of overlapped instances. The
audio clips are then convolved with RIRs to produce 1.5-
sec long segments (by truncating longer parts). In the case
of overlapped instances, we randomly choose a location and
orientation for each event and mix them at SNRs between
-2 and 2 dB. Overall, we end up with approximately 13.5k
isolated and 6.5k overlapped instances in the training set, and
1.8k isolated and 0.8k overlapped for each of the validation
and test sets. Also, by following the standard data augmen-
tation paradigm, we further generate artificial mixtures from
the observed isolated instances of each set by superposition.
In this way, we also generate 30k overlapped instances for the
training set (resulting in 36.5k total), and 2.2k for each of the
validation and test sets (3k total each).

Regarding the evaluation metrics, for the multi-label SEC
task we employ the Fscore metric, while for the performance
of the polyphony network we use the classification accuracy.

C. Network training details

For training the networks, the Adam optimizer is used [29],
with initial learning rate set to 0.001 and decreased to half
every 30 epochs. All the networks are trained for 100 epochs,
except the joint network that is re-trained for 30 epochs. In
the end, the epoch with best performance on the validation
set is kept. The batch size for the separation network is
set equal to 20, while for the SEC networks is set to 150.
Finally, the separation network is trained on the set of 30k
generated mixtures where separated ground-truth signals can
be considered as known, and for the overlapped task the SEC
baseline network is trained on both 30k and 6.5k overlapped
instances of the training set.
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Fig. 3. Performance of the SEC baseline network for isolated and overlapped
tasks for event sets of various numbers of classes.

Fig. 4. Performance of the SEC baseline network for isolated and overlapped
tasks for various sizes of the training set.

Fig. 5. Performance of the SEC network of Fig. 2 in the overlapped task (blue)
for various levels of separation quality (measured in dB). The red dashed line
corresponds to the performance of the baseline SEC network on the isolated
task, which can be considered as an upper limit.

D. Results

In Fig. 3, we compare the performance of the baseline SEC
network for the overlapped and isolated tasks as the number
of event classes considered increases. While the performance
clearly degrades in both tasks, their gap progressively increases
as the number of events adds complexity to the overlapped
task. Given a well-performing separation network, our pro-
posed pipeline aims to reduce this gap.

One way to improve performance in overlapped scenarios is
to increase the training size. In Fig. 4, the performance of the
SEC baseline network for both isolated and overlapped tasks
is depicted for different sizes of their training sets. As we can
see, the performance in the overlapped scenario improves as
we add more data to the training set, but at a decreased rate
compared to the isolated scenario. Although we can artificially
generate infinite overlapped examples, the contribution of the
augmented data saturates at some point, as the diversity of
produced mixtures from a given set is limited. On the other

TABLE I
PERFORMANCE OF THE VARIOUS SYSTEMS FOR THE OVERLAPPED-EVENT

SCENARIO, IN TERMS OF FSCORE.

System
Fscore (%)

T 60=0.61s T 60=0.80s

(A) Baseline (1 channel) 41.26 39.05
(B) Baseline (3 channels) 41.45 39.33
(C) Proposed - Sequential 44.72 38.41
(D) Proposed - Joint 47.46 38.75

Late Fusion (B+C) 46.20 41.52
Late Fusion (B+D) 48.95 41.95

hand, in the isolated task higher Fscore values are achieved
for quite smaller training set sizes.

In Fig. 5, in an oracle experiment, we examine the perfor-
mance of the SEC network of Fig. 2 in the overlapped task
(using 10k training samples and sequential training), in relation
to several hypothetical levels of separation quality provided
by the separation network. To simulate the outputs of the
separation network, we artificially mix the isolated sources at
different SNRs. While this experiment ignores the possible
distortion artifacts that can be inserted by the separation
network, it provides evidence that even when residuals of the
undesired source are present in each separated input signal, the
separation module can significantly boost the performance of
the SEC network, provided that its separation quality exceeds
a certain level (∼10 dB). Indeed, it can be seen that as the
separation quality increases, the overlapped task performance
(in blue) approximates the isolated task performance (in red)
of the baseline network.

Table I shows the performance of the various approaches
for the overlapped task in terms of Fscore for two different
reverberation scenarios. In particular, the locations and ori-
entations of the event sources are selected such as the mean
reverberation time is 0.61s and 0.80s respectively. As a multi-
channel extension of the baseline SEC network, we perform
decision level fusion on the outputs of the three single-channel
networks. In both scenarios, we observe that this multi-channel
version of the baseline is only slightly better than the single-
channel one, as the logFBE features are expected to be similar
in adjacent microphones. For the lower reverberation case, we
observe that both of the proposed methods outperform the
baseline, with the jointly trained variant achieving the best
performance (47.46%). Further improvements are observed
with the fusion schemes (46.20% and 48.95%), which indi-
cates that the SEC networks trained on the mixture signal
and on the separated signals learn complementary information.
This corresponds to 7.7% absolute improvement compared to
the baseline (A). On the contrary, in the higher reverberation
case, the proposed system (D) fails to improve the baseline,
due to inadequate performance of the separation network.
This is in agreement with the results of recent works on the
performance of separation networks under high reverberation
conditions [30] and also with our results in Fig. 5 which
indicate that separation needs to exceed a certain quality
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TABLE II
PERFORMANCE OF THE POLYPHONY CLASSIFICATION NETWORK FOR

DIFFERENT FEATURE SETS, IN TERMS OF ACCURACY.

Features Notation Accuracy (%)

logFBE [X(s0)] 95.59
GCC [GCC(s0,s1);GCC(s0,s2)] 98.68

logFBE + GCC [X(s0);GCC(s0,s1);GCC(s0,s2)] 99.27

to boost the overall performance. Nevertheless, the fusion
schemes still achieve improvements over the baseline.

Table II provides the polyphony level classification accuracy
of the proposed polyphony network for various choices of
feature sets. We observe that while all feature sets achieve
good performance, the best option is to combine the logFBE
features with the GCC-based ones, leading to 99.27% clas-
sification accuracy. With such performance, it is guaranteed
that our pipeline will be applied almost only on overlapped
instances during testing.

IV. CONCLUSIONS

In this paper, we examined the combination of sound source
separation with overlapped sound event classification in a
multi-channel setup with a large variety of event classes.
Our results showcase the potential of incorporating separation
methods in SEC systems, albeit high reverberation scenarios
can be a limiting factor for the performance of the proposed
pipeline. In future work, we plan to explore scenarios with
polyphony of higher degree (≥ 3 simultaneous events). Also
we will investigate the perspective of sound separation via
a distributed microphone network, which could potentially
further improve the separation quality.
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