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ABSTRACT

We propose an alternative interpretation of Bayesian surprise in the
spatial domain, to account for saliency arising from contrast in im-
age context. Our saliency formulation is integrated in three differ-
ent application scenaria, with considerable improvements in per-
formance: 1) visual attention prediction, validated using eye- and
mouse-tracking data, 2) region of interest detection, to improve scale
selection and localization, 3) image quality assessment to achieve
better agreement with subjective human evaluations.

Index Terms— Image saliency, Bayesian surprise, visual atten-
tion, region detection, image quality assessment.

1. INTRODUCTION

The human visual attention system has been for long a subject of re-
search in psychophysics and cognitive sciences, due to its prominent
role in biological vision. Significant efforts have also been made
in computer vision to construct a computational model of this sys-
tem, due to the potential for efficient, application-specific and per-
ceptual resource allocation. Attention in this context has been used
to achieve critical improvements in applications as diverse as ob-
ject recognition [1], video summarization and image quality assess-
ment [2–5] among others.

Saliency-based methods have arguably been the most popular in
these modeling efforts. Early such methods drew inspiration from
biological models of the human visual sensory system [6]. Later
approaches have proposed calculating saliency based on a Bayesian
framework [7], using the notion of region similarity [8] or natural
image statistics [7]. Other models have relied on perceptual coher-
ence theory [1] to make object-based saliency characterizations.

Binding intuition to modeling, several information theoretic mea-
sures have been used to quantify saliency, based on ideas stemming
from information theory [9–12]. In [9], saliency is measured us-
ing the entropy of local feature distributions, under the intuitive no-
tion that high entropy regions exhibit high complexity, and there-
fore are unpredictable and likely to be fixated by an observer. Self-
information, as resulting from a prior local model for each region,
is proposed as an alternative measure of unpredictability in [7, 10],
where it is argued that high self-information indicates a region un-
likely to occur and thus interesting. In [11], saliency is identified by
the discriminative power of features with respect to center and sur-
round regions, which in turn is quantified as the mutual information
between the features and each region class.

An alternative measure relates to the notion of Bayesian surprise
[12]. The surprise caused by an observation is defined in a Bayesian
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sense as the change it brings to an observer’s prior beliefs with re-
spect to the phenomenon under consideration. Bayesian surprise is
closely related to self-information and mutual information [10, 11],
as they all describe different aspects of the contrast of observations
to their context, expressed by some prior beliefs. In [12], it was
shown that surprise can be used as a measure for saliency induced by
changes in the temporal dimension, for example, in video streams.
Although surprise is used also as a measure of spatial significance
within each frame, saliency only arises due to changes in the tempo-
ral neighborhood. Spatial instead of temporal contrast was exploited
in [10, 11]. The performance of these models was compared to that
of [6], however due to the use of different feature sets (a basis of
independent components for the former, a gabor filterbank for the
latter), it is unclear to what extent the improvement can be attributed
to the information theoretic setting. In this paper, we propose that
surprise can also be employed to explain saliency arising from spa-
tial contrast in static images.

In detail, we adopt an information-theoretic approach to study
bottom-up spatial saliency. We show how Bayesian surprise [12]
can be interpreted to explain spatial saliency, and we adapt the model
of Itti-Koch [6] for the validation of our hypothesis, using the same
features to avoid ambiguities rising from differences in performance.
Further, we use surprise to modify the region detector of Kadir-
Brady [9] and achieve better localization and scale selection. We also
validate our method in the context of image quality assessment, by
exploring possible methods for integration with the Structural Simi-
larity Index Metric (SSIM) [13].

2. SPATIAL INTERPRETATION OF BAYESIAN SURPRISE

The mathematical formulation of the notion of surprise was intro-
duced in [12], where it was defined as follows: given a prior dis-
tribution P (M) over a (discrete) space of models M describing a
phenomenon observed, and the posterior distribution P (M |D) after
new data D is obtained for this phenomenon through an observation,
then the surprise incurred by D relative to the space M is given by
the Kullback-Leibler divergence K (· ‖ · ) of the prior from the pos-
terior distribution,

S (D,M) = K (P (M) ‖P (M |D))

=
∑

M∈M

P (M) log
P (M)

P (M |D)
. (1)

Bayesian surprise can be used for images to explain the saliency
of regions that, compared to the rest of the image, exhibit irregular
characteristics. Images demonstrate a consistency of characteristics
between spatially neighboring regions, unless a significant change
occurs in the content of these regions, such as the sudden appearance
of an object of different visual features not present in other regions.
Due to this, before actually observing a region, an observer expects it
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Fig. 1: Spatial interpretation of surprise for two regions (yellow cir-
cles) and their respective context (rings between red and yellow cir-
cles). Intensity distributions are shown for the interior (red) and con-
text (blue) of regions 1 (surprise = 0.14) and 2 (surprise = 2.99).

to most likely be of the same characteristics as the rest of the image.
Thus, the spatial context of the region allows the observer to create a
prior model about its actual content. Such a prior model will be inad-
equate for regions where events occur, hence the observer will need
to compensate for them by creating a posterior model significantly
different from the prior. The observation of these regions evokes
surprise to the observer, both intuitively and formally as previously
defined. Under this intuition, it is appealing to define as salient the
regions that are surprising with regards to their context.

The bottom-up, visual cues of each region can be described in
terms of image features, and beliefs about them in terms of distri-
butions over all possible feature values. To formulate this notion
using the formal definition of Bayesian surprise, the phenomenon
observed are the feature values inside the region under examination,
and the model space is the set M of all possible values for that fea-
ture. The visual context of the region implies a prior distribution
P (M) over the model space before the region is observed. After
the region is observed, a posterior distribution P (M |D) is formed,
where D is the data acquired from the observation of the region. The
surprise incurred by D relative to the space M is then given by (1).
This alternative interpretation is demonstrated in Fig. 1, where the
periphery of a circular region serves as its context.

Under this formulation, our proposed saliency measure resembles
that of [11], which under some assumptions takes the form of an
average of the divergence between the feature distribution in each
of the surround and center regions from the distribution in their
union. The similarity stems from the fact that we do not explic-
itly use Bayes’ rule to update from the prior to the posterior, instead
we directly identify them with the distributions in the surround and
center regions respectively. However, the two metrics are concep-
tually different: mutual information assumes that observations carry
information about deciding between two different classes, whereas
surprise suggests that observations provide information on how an
observer should adjust his prior belief. This distinction would have
been clearer if we adopted a parametric model for the feature dis-
tributions, which would allow the use of Bayes’ rule, but here we
preferred to make no assumptions about the form of distributions.

3. VISUAL ATTENTION USING SURPRISE

In order to validate our proposed framework, we augment the visual
attention model of [6] using surprise. In this model, feature maps
are formed for intensity, color and local orientation, and fused into
a final saliency map using center-surround differences and a process
for the amplification of isolated peak responses. A winner-take-all
neural network then produces fixations to the most salient regions.

To integrate surprise in this architecture, we use the feature maps
to calculate surprise values for each spatial location and calculate
surprise for circular regions by considering their periphery as the re-
gion’s visual context, following center-surround, early vision strate-
gies. The posterior and prior distributions are then estimated from

Metric
Dataset 1 (40 images, Dataset 2 (120 images,
mouse-tracking data) eye-tracking data)

[6] Surprise [10] [6] Surprise [10]
correlation 0.1382 0.2627 0.2410 0.1861 0.2687 0.3116

1−Hausdorff 0.4628 0.5075 0.4380 0.4596 0.4852 0.2543
overlap 0.1991 0.2282 - 0.2046 0.2397 -

Table 1: Average values of the three evaluation metrics over images
of datasets 1 and 2 for different saliency models.

the normalized histograms of the corresponding feature values in the
two regions, respectively, as shown in Fig. 1. The radii of the cen-
ter and surround regions are chosen adaptively as a fraction of the
dimensions of the input image. The surprise maps thus formed for
each feature are then used by the rest of the processing scheme.

Calculating surprise values for each feature map separately is, in
this case, an approximation we make for computational efficiency.
This approximation is exact if each feature channel Di, i = 1, . . . n
is assumed to be independent of the others. Then, ifD is the n− dim
feature vector and M the n−D discrete space of models, it can be
easily proven that S (D,M) =

∑
n

i=1
S (Di,Mi). The alternative

would be to use high-dimensional histograms to estimate the joint
distribution of values for all features, which would be expensive and
produce poor estimates due to the curse of dimensionality. Although
the assumption of independence does not generally hold, we can ex-
pect the selected features to be significantly non-redundant. Infor-
mal experimentation with the two approaches, using only the color
channels, has shown that the difference in performance is minimal,
whereas the improvement in computational efficiency is substantial.

Validation: We test our system with respect to its ability to pre-
dict human eye movements, using two different datasets. The first set
(denoted as Dataset 1) includes mouse-tracking data collected from
21 to 31 naive observers for each of 40 images using the interface
of ValidAttention1 [14]. Saliency maps were created from this data
by averaging the responses of all observers and applying gaussian
smoothing. The second set (Dataset 2) is the eye fixation data used
in [10], which is publicly available2.

Our modification to the visual attention system of Itti-Koch [6] is
evaluated against the original3 and the system proposed by Bruce-
Tsotsos [10]. Performance is measured by examining the similarity
between the estimated saliency maps and those from the ground-
truth data. As similarity metrics, we use the sample correlation,
which takes values in the interval [−1, 1], and the 1-complement of
the normalized to [0, 1] grayscale Hausdorff distance. We also ex-
amine the matching of eye fixations between regions produced by
the computational and the ground-truth saliency map, measuring the
normalized overlap area. We only consider the first six fixations
of each sequence, as later fixations in the ground-truth would be in-
creasingly influenced by top-down attentive mechanisms, e.g. Fig. 2.

In Table 1, we show the average value of each of the above met-
rics over the two image datasets, for the three models under con-
sideration. Higher values indicate better performance. Note that,
the third metric is not used for the comparison with model [10], as
this does not produce fixations. It can be seen that our modification
consistently outperforms the original model [6]. This is evident in
the presence of strong texture features, e.g. in the two examples of
Fig. 2(f),(g), where our surprise-based model correctly identifies the
most salient object of the scene, without being distracted to regions
of high feature variation. This can be understood if we consider that

1http://tcts.fpms.ac.be/∼mousetrack
2http://www-sop.inria.fr/members/Neil.Bruce
3http://www.saliencytoolbox.net
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(a) intensity (b) color (c) orientation (d) saliency map (e) fixations
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Fig. 2: First row: surprise features, saliency map and fixations for a natural image. Second row: fixations for two textured images by [6] (left)
and surprise (right). The fixation in green is the first, and the red lines connect consecutive fixations. Best seen in color.

surprise uses the statistics of feature values and not the local val-
ues individually when calculating saliency, and therefore succeeds
in characterizing regions as non salient where these statistics do not
change. Compared to the model of [10], our method performs bet-
ter for both metrics in Dataset 1, but only with respect to Hausdorff
distance in Dataset 2. Although solid conclusions regarding the per-
formance compared to [10] cannot be drawn, the improvement of
performance over the model [6] confirms the hypothesis that surprise
interpreted in the spatial domain can be used to quantify saliency.

4. SURPRISE-BASED REGION DETECTION

Saliency has been previously related to the task of region detection,
i.e. the identification of points of interest, to be used in subsequent
stages of processing, for example for object recognition, scene clas-
sification, image matching and retrieval [15]. A well-known ap-
proach for the combination of the two paradigms is the salient re-
gion detector proposed by Kadir-Brady in [9]. There, saliency is
equivalent to rarity and for its measurement, a two-fold criterion is
used that considers separately the spatial and scale dimensions. For
spatial saliency, complexity is considered an indication of rarity, and
therefore the entropy HD of the local distribution for a feature D

is used for its measurement (see also Sec. 2). For saliency across
different scales, the rarity of the characteristics exhibited at a certain
scale is identified with the statistical dissimilarity between the local
distributions of D at different scales. Dissimilarity between distribu-
tions at different scales at each point of the image is quantified using
the inter-scale saliency measure (for the discrete case)

WD (s) =
s2

2s− 1

∑

d∈D

|PD (d|s)− PD (d|s− 1)| , (2)

where PD (d|s) is the local distribution of feature D at scale s. For
both measures, intensity is used as feature D, and local distributions
at different scales are estimated using the normalized histograms in
circular regions of varying radius. Then, regions of interest are se-
lected at the local maxima of HD , and the corresponding scale is
selected by maximizing the product HD · WD , thus simultaneously
achieving automatic spatial localization and scale selection.

We propose the use of surprise instead of entropy as a measure
of spatial saliency, thus identifying saliency with contrast to context
instead of complexity. In addition to the arguments of Sec. 2, which
we validated experimentally, in the particular setting of the salient
region detector, the use of surprise is also motivated by its relation

(a) entropy (b) surprise

Fig. 4: Regions detected in a natural and a synthetic image.

to the inter-scale saliency measure WD . By comparing (2) with (1),
we see that the scale selection criterion is, in fact, a measure of the
surprise incurred by the observation of a region at scale s, given a
prior from the context at scale s − 1, with the L1 distance between
two distributions being used as a measure of dissimilarity instead of
their Kullback-Leibler divergence. Therefore, the use of surprise as a
saliency measure allows for the consistent interpretation of both the
spatial localization and scale selection operations of the algorithm
within the same theoretical treatment of saliency. Calculation of a
surprise-based measure SD can be done as in Sec. 3, using only
intensity as feature D.

In order to gain some insight into the effect of this change, we
show in Fig. 4 the regions detected using both the entropy and the
surprise-based detector for two characteristic images. Spatial sur-
prise becomes higher as the contrast of selected regions to their con-
text increases. Therefore, at a distinct region in the image, spatial
location is selected at its center and scale is adjusted as tight as pos-
sible around it, in order for its “distinctiveness” to be maximized.
Entropy instead maximizes complexity, and therefore selects scale
and center location so that image parts of varying characteristics are
included in the extracted region. These observations account for the
better scale selection on the blob-like features of the natural image
example when using surprise, and the selection of centers instead of
corners of distinct regions in the synthetic image example. We note
that, although surprise achieves better scale selection and localiza-
tion, the regions selected by the two detectors are otherwise similar.
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Fig. 3: Repeatability of interest points under changes of (a) scale and rotation, (b) viewpoint, (c) blur, (d) lighting, and (e) compression.

Evaluation: To compare the performance of the two detectors
with respect to the stability of the detected regions under various
transformations, we use the experimental framework of [15] 4. Theo-
retically, the modified algorithm has the same properties as the orig-
inal one, i.e. invariance under planar rotation and global intensity
shifts, whereas it demonstrates robustness to scale and viewpoint
changes and global intensity scalings [9]. In practice, errors due
to discretization and density estimation errors are expected to effect
the modified algorithm more severely, due to the more extensive cal-
culations for surprise.

The obtained repeatability scores are shown in Fig. 3. The
entropy-based detector performs better in the cases of combination
of scale and rotation and viewpoint change. This is in agreement
with our observations on the increased severity of errors when us-
ing surprise. On the other hand, our detector performs favorably for
changes in lighting conditions and blur, whereas none of the two
detectors is clearly superior in the case of JPEG compression. This
improvement can be explained if we consider that blur removes local
complexity, which is detected using entropy, but maintains the local
contrast detected by surprise. Overall, however, the performance of
the two detectors is similar.

5. APPLICATION TO IMAGE QUALITY ASSESSMENT

Saliency has been previously used to improve the performance of
image quality metrics [2–5]. It is therefore reasonable to assume
that saliency models can be compared in such a context, with better
models enabling a metric to achieve closer agreement with subjec-
tive human evaluations of quality. Due to space limitations, for our
experiments we only use the SSIM metric proposed in [13], although
other quality metrics can be considered as done in [3].

To integrate saliency into the fidelity metric, we weight the con-
tribution of each image region to the overall SSIM value based on
its perceptual importance. We consider two alternative approaches
for weighting, one where all regions are weighted according to their
saliency [3] and one where only fixated regions are assigned sig-
nificantly large weights [5]. For the former, we weight each im-
age patch using either the average or the maximum saliency value
over its support. Following the same validation procedure and on
the same database as in [5], we report in Table 2 correlation and
RMSE values after non-linear regression between DMOS scores and
scores produced by the various algorithms. Attention using surprise
performs significantly better in improving SSIM compared to the
model of [6]. Moreover, our results support the use of fixations as
in [5], over that of saliency maps in [3] for visual importance pooling
in SSIM. In the latter case, using the maximum instead of average
saliency value as a patch weight works better. This is in agreement
with the observations made in [1], where it is argued that whether an
object will be fixated is determined by the maximum saliency value
over the image region it covers.

4http://www.robots.ox.ac.uk/∼vgg/research/affine/detectors.html

Metric SSIM
SSIM + [6] SSIM + Surprise

avrg. max fixations avrg. max fixations
correlation 0.9388 0.9379 0.9378 0.9470 0.9479 0.9479 0.9497

rmse 7.9612 8.0202 8.0262 7.4265 7.3638 7.3616 7.2384

Table 2: Saliency-based quality metrics on LIVE database [5].

6. CONCLUSION

We have presented a new interpretation of Bayesian surprise in the
spatial domain, to explain the characterization of image regions that
differ from their context as salient. Surprise spatial saliency was
employed to improve the computational attention system of Itti-
Koch [6] in predicting human eye fixations. Our framework has
also been validated in applications such as image region detection
and quality assessment. Additional image results can be found at
http://cvsp.cs.ntua.gr/research/surprise.
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