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Abstract. Images of high geometrical complexity are found in 
various applications in the fields of image processing and computer 
vision. In this paper we utilize general processing techniques, mainly 
based on image morphology. We focus on Kirlian images, which due 
to their high complexity, comprise of features appearing in many 
biomedical images. In this paper, a first approach is given on the 
extraction of specific features dealing with the size and geometrical 
structure of Kirlian images. The extraction is implemented with the 
use of tools provided by the broader field of computer vision, thus 
providing a multi-faceted description of the images. Furthermore, this 
paper provides and promotes the use of automatically extracted 
information. Finally, efficient algorithms for obtaining the 
information on the size and structure of Kirlian images are presented 
and a number of conclusions are drawn and discussed that provide an 
insight on the underlying information within a highly complex image 
such as Kirlian images. 
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1. Introduction 

One of the key factors of image analysis is the extraction 
of sufficient information that leads to a compact description of 
an examined image. The extracted image descriptors are used 
in various applications of image and video analysis, such as 
compression and content-based retrieval. In the case of highly 
textured biomedical images such as Kirlian images [7], this 
description could lead to the extraction of information 
considering the medical condition of the subject under study. 
In this paper the use of Kirlian images was favored due to their 
highly complex geometrical structure and their detailed nature.  

Kirlian images were named after the Russian scientists, 
Semion and Valentina Kirlian [2] who extended the research 
done by Nikolai Tesla [10], and constructed a camera-type 
machine, which captures the subtle electromagnetic field that 
surrounds all material things, living or not. This study utilizes 
Kirlian images that depict fingers from different subjects as 
shown in Fig.1. According to the existing literature [2], the 
regions of interest (ROIs) are specified as: (i) ``inner aura'': a 
high intensity ring that surrounds the object appearing as 
flames and, (ii) ``outer aura'', a medium intensity ring that 
surrounds both the object and inner aura appearing as a cloud 
extending from the object, as shown in Fig. 1(b). Furthermore, 
the total (inner and outer) aura in humans, is dynamic, 

interactive and multicolored.  The electro-magnetic field 
appears egg shaped surrounding the object.  According to 
existing theories, its most important feature is symmetry and 
homogeneity.  

 

  
Figure 1: Kirlian Image of (a) finger and (b) ROIs 

Moreover, the nature of the reception of the image allows 
the appearance of noise in a large ratio; this noise along with 
the highly complex geometrical structure of Kirlian images 
demands an appropriate filtering of the image. Diagnoses 
based on Kirlian images occur whereupon a specialized 
individual ``translates'' the images. As such, we must 
minimize the interference caused by image processing 
techniques in order to avoid the removal of small but 
important features that might otherwise be treated as noise. 

In this paper, a first approach is given to overcome the 
above discrepancy. We proceed by choosing a feature-set that 
can give a multi-faceted description of the images, enabling 
both their accurate comparison and retrieval.  

The remainder of this paper is organized as follows: In 
Sections 1 and 2, we provide the theoretical background as 
well as the extraction of crucial mathematical parameters 
which correspond to the basic characteristics of the ROIs. 
Section 3 explains the specific feature extraction methods.  In 
Section 4 we present the experimental results and finally, in 
Section 5, we discuss the concept and the usage of the results 
and we provide specific conclusions fused with the existing 
theories on Kirlian images. 
 
2. Structure of Kirlian Images and Problems 

Having as a guide the theoretical view of Kirlian images, it 
is evident that the ROIs have the following distinguishing 
characteristics: 
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(a) The size, area and number of pixels that the inner and outer 
aura compromise with respect to the area of the whole image. 
Areas have the advantage in that they do not require the 
approximation of the shape of ROIs.  In order to eliminate 
comparisons that favor large numbers, we use fractions and 
ratios.  Furthermore, we use the number of connected 
components that appear in the regions of interest. This is 
representative of both size and geometrical structure.  
Additionally, as the images have a strict number of ROIs, this 
feature provides information on the symmetry and 
homogeneity of the images. 

3.2 Preprocessing of Kirlian Images 
Preprocessing is a standard procedure for almost all image 

analysis. Specifically, we utilized a morphological filter 
known as an Alternating Sequential Filter (ASF) [4],[9], which 
smoothes and enhances the original image. ASFs are defined 
in Eq. 2 with structure element B, that has an increasing scale r 
= 1,2… n. 

fsm = (((f○B)●B)… ○nB) ●nB)   (2) 
where f is the original image.  ASFs preserve the edges of the 
image while remaining robust across varying applications. 
3.3 Pre-Segmentation Methods for Feature Extraction (b) The geometrical structure of the ROIs. The nature of the 

images led us to study their texture through the computation of 
the fractal dimension. In this work we estimated the fractal 
dimension from different regions of both the inner and outer 
aura and we used the mean average as a criterion.  

We are ready to implement specific methods for the 
extraction of the features. 
3.3.1 Edge Extraction 

For edge extraction, we utilized the morphological gradient 
of the smoothed, gray-level image of Eq. 3: (c) Using basic characteristics of curve evolution, we decided 

to study the curvature of the contours. Specifically, we 
decided to study the curvature of the external contours of the 
inner and outer aura. As a descriptive criterion we provide the 
number of zero crossings of the function of curvature of the 
above-mentioned contours, obtaining information on the 
symmetry of Kirlian images. 

Grad(fsm) = f’
sm =( fsm⊕ B) - ( fsm Ө B) (3) 

3.3.2 Blob Extraction 
In order to extract the blobs of the image, we utilized the 

morphological Top-Hat transformation [4], [9], which yields 
the peaks of the image as defined in Eq. 4:  

Peak(f) = fsm – (fsm○B)   (4) In this paper we propose the set of nine criteria, which we 
believe can provide a basic yet detailed description on the 
images. These criteria are presented in a generalized vector of 
characteristics as follows: 

The above information can be used either as guide for 
optimal marker extraction or as a marker for the segmentation 
process provided that we have knowledge of the original 
image f inserted in the system. xT = [Ain/ Aob, Aout/ Aob, Ain-Aout/ Atot, Ain-Aout/ Aob, Cin, Cout, FD, 

Zin, Zout]                 (1) 3.3.3 Texture Analysis in Kirlian Images 
In digital image processing, one of the ways to 

approximate texture complexity is through the use of fractal 
dimension. Fractals are mathematical sets with a high level of 
geometrical complexity; formally, their Hausdorff  dimension 
[9] is larger than their topological dimension.  

Ain, Aout, Aob, Atot refer to the inner aura, outer aura, object, 
and total aura area respectively. Cin, Cout, refer to the number 
of connected components appearing in the inner and outer aura 
respectively. FD, refers to the mean average fractal dimension 
and Zin, Zout, refer to the number of zero-crossings of the 
curvature of the external contours of the inner and outer aura 
respectively. 

There exist many methods for estimating the fractal 
dimension FD of the surface of a set F⊂ℜ. The most widely 
used is the covering method or Minkowski-Bouligand [3], [4], 
[9] dimension, which is based on  finding the area of irregular 
sets by dilating them with spheres of radius r, finding the 
volume V(r), and setting its area to limr 0 V(r) /2r. 

 
3. Feature Extraction and Analysis Methods  

The analysis is divided into four steps: (i) preprocessing, 
(ii) pre-segmentation feature extraction, (iii) segmentation and 
(iv) post-segmentation feature extraction. We also provide a 
brief explanation of the basic morphological operators.  

Using morphological operators allows us to implement the 
above idea using 2D multiscale signal dilations/erosions of f 
by disks rB, and measureing the volumes V(r) by: 3.1 Morphological Flat Image Operators 
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The four basic morphological transformations of a gray 

level image function f(x) by a compact window-set B are: 
Dilation: (f ⊕ B)(x) = supy∈B f(x-y) 
Erosion: (f  Ө B)(x) = infy∈B f(x+y) 
Opening: (f ○ B)(x) = (f Ө B) ⊕ B 
Closing: (f ● B)(x) = (f ⊕  B) Ө B  

The fractal dimension is estimated by least squares fitting 
a straight line to a log-log plot of V(r). 
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These operations are composition of local max/min operations 
within the moving window B. They are nonlinear and 
translation-invariant operators. We refer the reader to [4],[9] 
for details on the rich properties, generalizations, and 
extensive applications of these operators in image analysis. 

4. Segmentation: The Watershed Method 
In order to extract the areas of the ROIs in Kirlian images, 

we segment the original image using the watershed 
transformation. The Watershed method [1], considers the 



image as a topographical surface. The method is based on the 
idea of catchment basins associated to a local minimum M: the 
set of points such that a drop of water falling on them 
eventually reaches the same local minimum M.  The union of 
the boundaries of the different cathcment basins of the image 
constitutes its watershed.  

Having redefined the cathment basins through the use of 
the topographical distance we compute the watershed pixels 
based on Meyer [5].  

4.1 Marker Extraction 
In order to ease segmentation, the watershed 

transformation is usually applied to the gradient of the image 
as computed in Eq.3. To eliminate poor results we use 
markers, sets of connected points inside a region, which are 
then imposed as the only minima of the gradient. In this paper, 
we used markers provided by the extraction of the generalized 
regional maxima, RegMax, and minima (domes/basins) of the 
image, which is based on morphological reconstruction. 

Consequently, in this framework the construction of the 
cathment basins and the computation of the watershed pixels 
becomes a shortest path problem; finding the path between a 
marker and an image point that corresponds to the minimum 
weighted distance, which is equivalent to the computation of 
the gray-weighted distance transform (GWDT) of the image.  
4.3 Post-Segmentation Methods for Feature Extraction 

The process of segmentation has provided us the binary 
image on which we implement the following methods in order 
to extract more diagnostic features, representative of size and 
geometrical structure. 
4.4 Connected Components 

For the domes, we subtract an arbitrary constant/height h 
from the original image f: 

We compute the number of the connected components of 
the images. In digital binary images a region is “connected” if 
for two pixels p, q in this region there exists a path of 
``neighboring'' pixels (p0, p1,…,pn) that connects them. The 
connected components are defined as the maximal connected 
subsets of the image's foreground and dually of the image's 
background. Several algorithms can be found in [8]. 
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 We then perform a grayscale reconstruction opening of f 

from g = f-h with a structuring element B:  
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4.5 Curvature in Kirlian Images 
As mentioned previously, one of the most important 

features in Kirlian images is their geometrical structure and 
especially that of the contours of the ROIs. The contours, 
which are closed curves, can be uniquely defined by the 
function of curvature: 

Finally, we obtain the domes, J from: 
)|( fgfJ −−= ρ  (10) 

By duality we have: 
basins(f) = domes(-f) (11) 
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From J the binary image is obtained by keeping each dome 

which has at least one pixel with value greater than a given 
constant h’=h/2. We also used a background marker provided 
by the straightforward implementation of the watershed 
transformation on the gradient of the image. 

where X(t)=[x(t),y(t)] is the parameterized position vector 
of the curve,  is the first derivative/velocity 

vector and  is the acceleration vector. 
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In computing the watershed lines of an image we 

followed the direct approach by locating the watershed pixels. 
Before applying the watershed transformation on the extracted 
modified gradient, we need to transform it into a lower 
complete image according to the chosen connectivity, which 
for this work was 4-connected. 

However, the function of curvature [6] is not a compact 
criterion that can be easily used for an automated description, 
which led us to the computation of the zero crossings, Eq. 14.  

Zerocrossing(K(t)) = {t: d2K(t)/dt2=0}  (14) 
The above methods yielded the basic multi-sided 

description of Kirlian images where an emphasis was given in 
the use of morphological operands. 

The direct computation of the watershed pixels requires a 
redefinition of the catchment basins via the use of the 
topographical distance Tf (p,q) [5] defined by: 5. Experimental Results  
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Where the weight costf(p,q) represents the slope that 
corresponds to the height between two neighboring pixels p 
and q and P = (p1, p2,..pn ) is any path from p to q. 

Table 1 presents the extracted parameters with the use of 
the methods explained in section 3. The images used are of 
fingers of human subjects, while the description for the images 
is known. 

 
Human Fingers - Table 1 

Ain/Aob 0.64 0.46 0.83 1.06 
Aout/Aob 0.65 0.78 0.39 0.17 
Atot/Aob 1.28 1.24 1.22 1.23 

Ain-out/Atot -0.01 -0.26 0.36 0.73 
Ain-out/Aob -0.01 -0.33 0.44 0.89 

Definition: We call cathment basin CB(M) of a regional 
minimum m the set of pixels which are closer to m than to any 
other regional minimum with respect to the topographical 
distance. 



Cin 2 7 13 1 
Cout 23 39 47 18 
FD 2.303 2.184 2.284 2.343 

Z[in,out] [84,187] [159,210] [284,263] [56,157] 

Desc. Norm. Defic. Aggres. Degen. 
 
Specifically, the tenth row provides the image's description 

defined by the subjects behavioral pattern, normal, deficiency, 
aggression, degeneration, which is known a priori. Following, 
the first nine rows provide the extracted parameters as seen in 
Eq. 1. Finally, Fig. 3 corresponds to the images referred to in 
the above Table. Specifically, the image's description in Table 
1 corresponds to the rows of Fig. 3. Besides the original 
images we provide the segmented images with the 
methodology mentioned in Section 4 as well as the functions 
of curvature K of the external contours of the inner and outer 
aura respectively. 

 

  

 

 

  

  

    
 

Figure 3: Images corresponding to Table 1 
 
6. Conclusions 

The analysis of highly structured images is a task that 
emerges in various applications of biomedical imaging. 
Kirlian images are used as a generalized example since they 
consist of similar features of interest. Having extracted the 
basic features that could provide an automated description of 

Kirlian images and according to the existing theories, we can 
draw some conclusions based on the experimental results. 

As mentioned before, the size of the ROIs is one of the 
most important characteristics. In this work it is represented by 
the fractions of the areas of the regions of interest, which tend 
to decrease when the image does not depict the full range of 
the structure. On the other hand, the number of connected 
components, which can be regarded as a descriptor of the 
apparent symmetry and homogeneity in Kirlian images, tends 
to increase at the existence of distortions in the image. 
Moreover, the mean fractal dimension that provides an 
indication of the geometrical structure of Kirlian images tends 
to increase with the complexity of the image indicating that 
the phenomenon is advancing. Lastly, the number of zero 
crossings of the function of curvature tends to increase with 
the attenuation of the phenomenon. 

Finally, it should be noted that a straightforward 
application of this work for future research, is the image 
retrieval of highly structured (medical) images from databases 
using the appropriate extracted features. 

 
7. References 
1. Beucher, S. and Meyer, F., The Morphological Approach 

to Segmentation: The Watershed Transformation, in: 
Mathematical Morphology in Image Processing, E.R. 
Doughertty, Marcel Dekker, New York, 1993. 

2. Kirlian, S.D. and Kirlian, V., Photography and Visual 
Observation by Means of High-Frequency Currents, 
Journal of Scientific and Applied Photography, 1961, vol. 
6, issue 6. 

3. Maragos, P., Fractal Signal Analysis Using Mathematical 
Morphology, Advances in Electronics and Electron 
Physics, vol. 88, P. Hawkes and B. Kazan, Academic 
Press, 1994, pp. 199-246. 

4. Maragos, P., The Digital Signal Processing Handbook - 
Chapter 74: Morphological Signal and Image Processing, 
V.K. Madisetti and D.B. Williams, CRC Press and IEEE 
Press, 1999, pp. 74.1-74.30. 

5. Meyer, F., Topographic Distance and Watershed Lines, 
Signal Processing, vol. 38, pp. 113-125, July 1994. 

6. Mokhtarian and Mackworth, Description and Recognition 
of Planar Curves, IEEE Trans. on Pattern Analysis and 
Machine Intelligence, vol. PAMI-8, no. 1, January 1996. 

7. Nestoros, J.N., Manganas, V. and Papadatos, J.D., Kirlian 
Photography Detects Levels of Somatic and/or Psychic 
Anxiety, Proceedings of the 16th European Conference on 
Psychosomatic Research, Athens-Greece, 1986. 

8. Rosenfield, A and Kak, A. C., Digital Picture Processing, 
vol. 1 & 2, Acad. Press, NY, 1982. 

9. Serra, J., Image Analysis and Mathematical Morphology, 
Academic Press, NY, 1982. 

10. Tesla, N., Experiments with Alternate Currents of High 
Potential and High Frequency, IEE Address, London, 
February 1892. 


