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ABSTRACT

In this paper, we present algorithms for dealing with variability and
mismatch in speech recognition due to environmental conditions and
non-native speaker populations. The proposed algorithms cover a
broad spectrum of ideas including robust feature extraction, fea-
ture compensation and speech enhancement. Specifically the fol-
lowing algorithms are presented and evaluated: beamforming for
multi-microphone speech recognition, robust modulation and frac-
tal features, Teager energy cepstrum coefficients, parametric feature
equalization, speech enhancement, and acoustic modeling for non-
native speech recognition. Also the problem of feature fusion and
voice activity detection are discussed. Evaluation results on the AU-
RORA databases under the auspices of the HIWIRE project show
that significant gains can be achieved under adverse or mismatched
conditions using these algorithms. Relative error rate reduction of
up to 50% was shown for multi-microphone speech recognition, ro-
bust feature combination and speech enhancement. 30-40% reduc-
tion was shown for parametric feature equalization and non-native
acoustic models.

1. INTRODUCTION

Despite recent progress in the area of automatic speech recognition
(ASR) performance in adverse conditions is still not satisfactory for
many real-life application. In this paper, we present recent research
achievements in the area of robust ASR dealing especially with ad-
verse environments and speaker variability. A variety of algorithms
for improving the performance of speech recognition system under
adverse conditions is investigated, namely: incorporating additional
information (multi-microphone processing), robust feature extrac-
tion, speech enhancement, feature equalization and voice-activity
detection. In addition, algorithms for dealing with speaker variabil-
ity, especially non-native speech are presented.

Distant-talking ASR is not yet a mature technology as several
complications contribute to lower recognition performance when
compared to an equivalent system operating with a close-talk input.
Multi-microphone processing [4] can be used to obtain an enhanced
version of the desired speech signal, by means of spatial filtering and
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selective acquisition of the speaker. In this paper, we present results
of various beamforming approaches as a function of the number of
microphones in the array.

Robust features can significantly improve the performance of a
speech recognition system in noisy conditions. In this paper, three
robust front-end features are proposed and evaluated. The proposed
features are related to modulations phenomena in speech resonances,
Teager-Kaiser energy measurements, dynamical systems and frac-
tal theory. Some of these features are combined (fused) with tradi-
tional mel cepstrum coefficients (MFCC) using a multi-stream hid-
den Markov model (HMM) framework.

The problem of feature fusion in the context of multi-stream
HMMs is an important problem. In the speech recognition literature,
multi-stream recognizers have been used to combine feature streams
of different reliability [18] or different information content [6, 24].
The problem of supervised stream weight computation is well stud-
ied: minimum error (discriminative) training can be used to select
the best combination of stream weights during model training [23].
Recently there has been interest in investigating unsupervised algo-
rithms for estimating stream weights during recognition [29]. In this
paper, we present analytical results [22] for the selection of stream
weights.

Feature normalization is a promising approach when mismatch
exists between the conditions under which the acoustic model was
trained and the conditions in the field. In this paper, an extension
of the histogram equalization (HEQ) approach is proposed namely:
parametric nonlinear equalization. Parametric equalization improves
on HEQ by imposing constraints on the type of histogram transfor-
mation that can be applied between the testing and the training data.

Currently, there are technology barriers inhibiting speech recog-
nition systems that work in extremely noisy conditions from meet-
ing the demands of modern applications. These systems often re-
quire a noise reduction system in combination with a precise voice
activity detector (VAD). In this paper, two novel VAD algorithms
are presented one using bispectrum likelihood ratio test and another
employing support vector machines for voice-silence classification.
VAD algorithms can be combined with speech enhancement algo-
rithms to further improve speech recognition accuracy and robust-
ness to noisy conditions. In this paper, soft-decision gain modifi-
cation for speech enhancement [5] is applied to speech recognition.
The proposed method builds on the work in [8] and is evaluated on
noisy speech recognition tasks.
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The drastic drop in performance for ASR systems when con-
fronted with non-native speech is a well known problem. The main
source of variability in non-native speech is pronunciation variation.
In this paper, we improve ASR performance by incorporating prior
knowledge and making the speech recognizer tolerant to pronuncia-
tion variants. Various approaches are used to extract this knowledge
and integrate it into an existing ASR system [17].

The organization of the paper is as follows. In Section 2, al-
gorithms related to environmental robustness in ASR are presented.
Algorithms related to speaker variability and non-native speech are
presented in Section 3. Experimental results for all the proposed al-
gorithms are presented in Section 4 and the paper is concluded in
Section 5.

2. ROBUSTNESS TO ENVIRONMENTAL CONDITIONS

In this section, we present algorithms for ASR that deal with ad-
verse environmental conditions namely: beamforming for multi-
microphone ASR, robust feature extraction, feature fusion, paramet-
ric feature equalization, voice activity detection and speech enhance-
ment.

2.1. Multi-microphone Beamforming

A lot of literature has appeared in the last decades about techniques
aiming at improving the quality of the desired speech and increas-
ing the corresponding signal-to-noise ratio (SNR). The simplest -
and effective - method is the “delay-and-sum beamforming”, which
is based on the temporal re-alignment of all the signals in order to
compensate for the inter-channel delays due to the different distances
between the desired source and the sensors. The effect of this ap-
proach is that any interfering signal is recombined out of phase and
therefore attenuated.

One critical issue is the “time delay estimation” for the speech
component in all the channels. It is the first step in many localization
algorithms and turns out to be very critical for an accurate beam-
forming. The reference algorithm is based on the technique known
as “Cross Power Spectrum Phase analysis” (CSP) [19] and relies on
the detection of a maximum peak in the inverse Fourier transform of
a normalized cross-spectrum between microphone pairs.

A method to speed up the delay estimation and to give further
robustness exploits the assumption of fixed source (although in un-
known position). This hypothesis suggests to enhance the estimation
based on a single-frame basis by averaging the CSP over multiple
frames. The idea derives from the observation that the sum of the
DFT obtained from different frames, thanks to the linearity of the
transform, is equivalent to a single DFT of a wrapped versionxw(n)
of the input signalx(n) obtained by accumulation of the signal over
the analysis window:

xw(n) =

K∑
k=1

x(n + kL), (1)

wherek is the frame index andL is the number of points of the
window. A single CSP computation, after having accumulated the
two signals, is then sufficient to estimate the required delay.

Once obtained a set of mutual delays between the channels, a
beamformed input is derived by the delay-and-sum method. We ap-
plied this procedure to assess its impact on recognition performance.
A more sophisticated beamforming can produce higher SNR gain
but at the expense of introducing a partial distortion of the desired
speech component.

Another important issue regarding environmental acoustics and
multi-microphone processing is the possibility to mimic in realistic
way a given environment by means of proper measurements of char-
acteristic parameters as impulse responses and background noises
[16]. This allows in principle on one hand to predict the recognizer
behavior without specific data and on the other hand to reduce the
acoustic mismatch by training effective models tailored on the tar-
get environment. We adopted this framework to test the sensitiv-
ity of ASR performance to the environmental variabilities (see Sec-
tion 4.1).

2.2. Robust Features

There has been strong experimental and theoretical evidence for
the existence of important nonlinear aerodynamic phenomena in the
vocal tract during speech production [15]; these indicate the exis-
tence ofmodulationsandturbulencewhich may be generated during
phonation. However, the state of the art in acoustic processing for
ASR systems employs features like MFCCs that are based on the
linear source-filter model. Further, even though several ASR sys-
tems have attained satisfactory performance, their efficacy degrades
significantly when speech is contaminated with noise [13].

2.2.1. AM-FM Features

A speech resonance can be modeled by an AM-FM signal and the to-
tal speech signal as a superposition of a small number of such AM-
FM signals [6]. Such a model suggests that the formant frequen-
cies are not constant during a single pitch period. These variations
are partly captured by theFrequency Modulation Percentages(FMP)
features defined asFMPi = Bi/Fi for each speech resonancei; Bi

is the mean bandwidth andFi is the weighted mean frequency value
of resonancei. Another frequency-related feature is the short-time
weighted mean of the instantaneous frequency (IF) signal (IF-Mean)
providing information about the speech formant fine structure. The
fine structure of the amplitude envelope signal is measured with the
mean of theInstantaneous Amplitude(IA) features (IA-Mean), as
the short-time mean of the IA for each speech resonance.

2.2.2. TECC Features

The short-time average of the signal squared is widely used as an
ad-hoc approximation of the energy of the signal’s source. For res-
onance signals, theTeager-Kaiser Energy(TKE) provides a good
estimation of the source energy. Herein, we employ a front-end that
combines an auditory-motivated filter-bank with the TKE estimation
method; these features are labeledauditory Teager Energy Cepstrum
Coefficients(TECCs) [7] and their main differences with the MFCCs
are the auditory filter-bank and the short-time TKE computation. In
detail, we utilize a Gammatone filter-bank; its filters are smoother
and broader than the ones of the MFCC triangular filter-bank, are
denser in frequency and spaced according to the bark-scale. The log-
arithm of the short-time average of the TKE operator is computed for
each band-passed signal and then the inverse discrete Fourier trans-
form is applied to obtain the TECCs.

2.2.3. Fractal Features

The fractal dimension can be interpreted as an approximate quanti-
tative characteristic feature that corresponds to the amount of tur-
bulence that may reside in a speech waveform. Extending pre-
vious work [15], we present acombinationof dynamical filtering
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on embedded noisy speech signals followed by correlation dimen-
sion measurements (Filtered Dynamics – Correlation Dimension,
FDCD). In addition we incorporate the multi-scale fractal dimen-
sion (MFD) [15] in all experiments. The embedding vector defines
a motion in a reconstructed multi-dimensional space; if the unfold-
ing is successful the resulting system has common invariants with
the original one [21]. In theunfoldedphase-space we measure the
correlation dimension (CD) and form a feature vector comprising its
statistics [20]. Prior to the CD measurements we employ a denoising
method in the unfolded phase-space [21] by iteratively decomposing
the local neighborhoods to a set of eigenvectors and projecting on
the subspace spanned by the largest principal components.

2.3. Feature Fusion

A common practice for combining information sources in a statisti-
cal classification framework is the use of “feature streams”. In this
section, we investigate the problem of unsupervised stream weights
computation. Analytical results for the selection of stream weights
as a function of single-stream estimation and misclassification errors
for the two class problem are presented next. Two cases are investi-
gated (see [22] for details):

• Equal Bayes classification error: We assume that each of
the single-stream classifiers have the same Bayes classifi-
cation error but different estimation errors. In this case,
we also make the assumption that in the decision region
p(x1|w1)≈p(x2|w1), provided that the featuresx1, x2 fol-
low a similar parametric distribution (e.g., Gaussian) for
the two classesw1, w2, and are variance-normalized. The
weightssj that minimize the estimation error are given by:

s1

s2
=

∑2
i=1 σ2

i,2∑2
i=1 σ2

i,1

=
σ2

S2

σ2
S1

(2)

whereσ2
S1 andσ2

S2 are the single stream estimation variance,
i.e., the stream weights are inversely proportional to the vari-
ance of the PDF estimation error for each stream. If the
PDF estimation error variance in the two stream is equal then
stream weights are equal, i.e., no stream weights should be
used.

• Equal PDF estimation error variance: We assume that the
(stand-alone) single-stream classifiers have the same PDF es-
timation error variance, but different classification errors, i.e.,
σS1 = σS2. In this case

s1

s2
≈ p(x2|w1)

p(x1|w1)
for 0.5 ≤ p(x1|w1)

p(x2|w1)
≤ 1.5 (3)

i.e., in the region of interestthe stream weights should be in-
versely proportional to the classification error of the single-
stream classifiers. Note that ifp(x2|w1)/p(x1|w1) ≥ 2.72
the estimation error is minimized by setting one of the two
stream weights to zero, i.e., ifp(x2|w1) >> p(x1|w1)) then
s1 = 1 ands2 = 0.

From the equations above it is easy to see that stream weights may
reduce estimation error only when either the PDF estimation errors
of the single-stream (stand-alone) classifiers are different, i.e.,one
feature stream is more reliable than the rest, and/or the Bayes errors
of the single-stream classifiers are different, i.e.,one stream con-
tains more information pertinent to the classification problem than
the rest. These results agree with our intuition and the results from

experiments using supervised discriminative algorithm for estimat-
ing stream weights.

The theoretical results presented here can be used to obtain esti-
mates of single-stream classification error from test data to address
the unsupervised stream weight estimation problem. More work is
underway to help us better understand the applicability of the opti-
mal stream weight results to multi-stream recognition using HMM
models.

2.4. Parametric Nonlinear Equalization

A new front-end normalization algorithm that uses a parametric non-
linear transformation of the voice features has been proposed and
implemented [9]. This method improves the histogram equaliza-
tion technique (HEQ) [30], by finding a simple and computation-
ally inexpensive parametric expression of the nonlinear transforma-
tion done by HEQ. This new parametric approach relies on a two
Gaussian model for the probability distribution of the features: a
Gaussian model for the speech frames and a Gaussian model for the
non-speech frames. A simple Gaussian classifier is used to label the
input frames as belonging to one or the other class. For each class,
the parametric linear transformation is defined to map the clean and
noisy representation spaces, as described in the equations bellow:

x̂ = µn,x + (y − µn,y)
(

Σn,x

Σn,y

)1/2

if y is non-speech

x̂ = µs,x + (y − µs,y)
(

Σs,x

Σs,y

)1/2

if y is speech
(4)

whereµn,x, Σn,x, µs,x andΣs,x correspond to the Gaussians mod-
eling clean non-speech and speech frames, respectively, andµn,y,
Σn,y, µs,y andΣs,y correspond to the Gaussians modeling noisy
non-speech and speech frames being equalized. With these defini-
tions of the linear transformations, the noisy meansµn,y andµs,y

are transformed into the clean meansµn,x andµs,x, and the noisy
covariance matricesΣn,y andΣs,y are transformed into the clean
covariance matricesΣn,x andΣs,x (for both, the non-speech and
speech models). The clean Gaussians for speech and non-speech
frames can be estimated from the training database, while the noisy
Gaussians should be estimated from the utterance to be equalized.

The result is a more robust equalization that improves 2 draw-
backs of histogram equalization. The first drawback faced, is the fact
that in most cases HEQ is based on estimations that count on a re-
duced number of observations belonging to the utterance in process
of equalization. Using the parametric models, with little free param-
eters a smoother estimation is achieved. The second drawback faced
is the dependence on the amount of non-speech frames of each utter-
ance when estimating the CDF. The variable number of non-speech
frames introduces an unwanted variability in the estimated CDF. The
proposed algorithm creates separate modes for non-speech frames
and speech frames eliminating with this the undesired random vari-
ation.

2.5. Voice Activity Detection

This section summarizes the different methods that are being ana-
lyzed for robust VAD.

2.5.1. Integrated bispectrum likelihood ratio tests

One of the most important disadvantages of VAD methods based on
power spectrum divergence measures is that noa priori information
about the statistical properties of the signals is used. Higher order
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statistics methods rely on ana priori knowledge of the input pro-
cesses and have been considered for VAD since they can distinguish
between Gaussian signals (which has a vanishing bispectrum) from
non-Gaussian signals. However, the main limitations of bispectrum-
based techniques are that they are computationally expensive and
the variance of the bispectrum estimators is much higher than that
of power spectral estimators for identical data record size. We have
developed different approaches for effective VAD based on contex-
tual likelihood ratio tests defined on the integrated bispectrum of the
noisy speech that has reported significant benefits in robust speech
recognition applications [12, 25]. It inherits the ability of higher or-
der statistics to detect signals in noise with many other additional
advantages:i) its computation as a cross spectrum leads to signifi-
cant computational savings, andii ) the variance of the estimator is
of the same order as that of the power spectrum estimator.

The problem is then formulated in terms of a classical binary
hypothesis testing framework. Given an observation vectorŷ to be
classified, the problem is reduced to selecting the class(H0 or H1)
with the largest posterior probabilityP (Hi|ŷ). Thus, a statistical
LRT is defined as:

L(ŷ) =
py|H1(ŷ|H1)

py|H0(ŷ|H0)
(5)

and the observation vector̂y is classified asH1 if L(ŷ) is greater
thanP (H0)/P (H1) otherwise it is classified asH0. Assuming the
integrated bispectrum{Syx(ω) : ω} as the feature vector̂y and to be
independent zero-mean Gaussian variables in presence and absence
of speech, the evaluation of the test only requires to estimate the in-
tegrated bispectrum of the noisy signal and its variance. A careful
evaluation of the proposed method [12, 25] shows clear improve-
ments in detection accuracy and speech recognition over standard-
ized VADs and over a representative set of recently published VAD
algorithms.

2.5.2. Support vector machines

Since their introduction in the late seventies, support vector ma-
chines (SVMs) marked the beginning of a new era in the learning
from examples paradigm. Detecting the presence of speech in a
noisy signal is a two-class classification problem requiring a rule,
which, based on external observations, assigns an object to one of
the classes. A possible formalization of this task is by means of
SVMs that enable building a functionf : RN −→ {±1} using
training data that is,N-dimensional patternsxi and class labelsyi.
SVM enables to redefine the classification problem into some other
potentially much higher dimensional feature space via a nonlinear
transformationΦ:

f(x) = sign{
∑̀
i=1

νiΦ(xi) · Φ(x) + b} (6)

where the dot product is efficiently computed according to the Mer-
cer’s theorem by means of kernels defined to bek(x, y) = Φ(x) ·
Φ(y), and the weightsνi are the solution of a dual optimization prob-
lem. Once the SVM model is trained, the speech featuresx consist-
ing on a contextual representation of wideband SNRs are classified
according to the SVM decision function [26].

2.6. Speech Enhancement

A soft-decision gain modification for speech enhancement (but not
for speech recognition) has been proposed in [5]. In the proposed
method, a different soft decision gain modification is introduced and
applied to the Ephraim-Malah gain function based on Maximum

Mean Square Error Estimation (MMSE) [8] after amplitude com-
pression. Non-linear evaluations of the noise overestimation fac-
tor and spectral floor are used in the same way for the proposed
gain modification and for non-linear Spectra Subtraction (NSS) with
Wiener filter. Consistent and statistically significant ASR improve-
ments of the proposed approach with respect to NSS are observed
for different noise conditions in the Aurora-3 corpus. As the non-
linearity affects the two approaches in the same way, the result of
comparison is particularly interesting.

Let |Yk(m)|2 be thek-th frequency sample of the spectrum en-
ergy of the noisy signalY , computed in them-th time window. Let
|Xk(m)|2 and|Dk(m)|2 be thek-th spectrum energy sample, com-
puted in them-th time window, of the clean signal and the additive
noise, respectively.|Xk(m)|2 can be estimated using a Wiener filter,
whose transfer function isGk(m), to compute:

|Xk(m)|2 = Gk(m)|Yk(m)|2. (7)

In [28], it has been found that good results are obtained if the fil-
ter is used to perform a non-linear spectral subtraction to compute
|Xk(m)|2 as follows:

[|Yk(m)|2 − α(m)|Dk(m)|2]2
|Yk(m)|2 if |Yk|2 − α|Dk|2 > β

β(m)|Yk(m)|2 otherwise
(8)

whereα(m) is a noise overestimation factor, andβ(m) is a spectral
floor used to avoid negative spectrum values. These two parame-
ters vary in time as function of the Signal-to-Noise RatioSNR(m),
computed as follows:

SNR(m) = 10 log10

(∑
k |Yk(m)|2∑
k |D̂k(m)|2

)
(9)

where|D̂k(m)|2 is an estimation of thek-th noise spectral sample
at timem; α(m) andβ(m) are defined as possibility functions of
SNR(m) as shown next:

 

α(m)  

1.5 

0 10 20 SNR(m) dB 

0.001 

 

β(m)  

1.0 

0 15 20 SNR(m) dB 

0.01 

Gk(m) can also be obtained with an approach proposed in [8]. In
particular Ephraim-Malah MMSE log estimator is a short-time spec-
tral amplitude estimator that minimizes the mean-square error of the
estimated logarithms of the spectra, and it is well known that a dis-
tortion measure which operates on these logarithms is more suitable
for speech processing than measures taken on the power spectra. It
is defined as follows:

Gk =
ξk(m)

1 + ξk(m)
exp{1

2

∫ ∞

vk(m)

e−t

t
dt} (10)

where:

ξk(m) =
|Xk(m)|2

|Dk(m)|2 , γk(m) =
|Yk(m)|2

|Dk(m)|2 (11)

ξk(m) is thea priori SNR, andγk(m) is thea posterioriSNR. Also
vk(m) = [ξk(m)/(1 + ξk(m))] γ(k).
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The computation of thea priori SNR requires the knowledge of
the clean speech spectrum, which is not available. An estimation can
be obtained with adecision-directed approachas follows:

ξ̂k(m)=η(m)
|X̂k(m− 1)|2

|D̂k(m− 1)|2
+(1−η(m))max{0, γk(m)− 1}

(12)
In [1], it is shown that it is convenient for speech coding to make
η(m) dependent on the globalSNR(m) and to assign to it a high
value ifSNR(m) is low and a low value ifSNR(m) is high. This
method proposes to make the estimation of thea priori and thea
posterioriSNR dependent on the noise overestimation factorα(m)
and the spectral floorβ(m) as follows:

ξ̂′k(m) =
η(m)|X̂k(m− 1)|2

α(m)|D̂k(m− 1)|2
+(1−η(m))(γ′k(m)−1), β(m)}

(13)
and

γ′k(m) = max{ |Ŷk(m)|2

α(m)|D̂k(m)|2
− 1, β(m)}+ 1 (14)

where the noise overestimation factorα(m) and the spectral floor
β(m) varies withSNR(m) as shown above. The adopted approach
modifies the estimates ofγk and ξk while maintaining the global
shape of the gain functionGk(γk, ξk). The modified gain function
can be expressed asG′

k(γk, ξk) = Gk(γ′k, ξ′k) with γ′k, ξ′k com-
puted according to (13), (14). Noise estimation that appears in the
computation of (13), (14) is obtained by a first-order recursion in
conjunction with an energy based Voice Activity Detector (VAD)
[11].

3. ROBUSTNESS TO SPEAKER VARIATION

In this section, various algorithms for dealing with pronunciation
variation in non-native speech are presented. The basic assumption
in this work is that non-native speakers tend to confuse phones in
the spoken language with phones in their native language. We also
assume that information about the phonemic space in the native lan-
guage exists, e.g., native speech recognition models.

3.1. Confusion Based Acoustic Model Modification

Non-native speakers often produce phones in the spoken language
as they would do with similar phones in their native language. By
taking into account the acoustic models of the native language, ASR
performance can be improved.

Some phones of the spoken language may not have correspond-
ing phones in the native language. For instance, the initial consonant
of the English article “the” does not exist in French. Some speak-
ers pronounce this phone like a French “z”. Furthermore, there are
no diphthongs in French. They may be uttered as a sequence of
two French phones, as stated by phonetician experts. Thus, in our
new approach, the confusion matrix involves a phone of the spoken
language and one or more phones of the native language. The confu-
sion matrix between spoken language phones and sequences of na-
tive phones is automatically extracted using the speech recognition
systems available for both the spoken and native language.

3.1.1. Confusion extraction

Both spoken language and native language ASR systems are used for
confusion extraction. For each utterance of the non-native speech

database, we carry out a phonetic alignment using the spoken lan-
guage ASR system and a phonetic recognition using the native lan-
guage ASR system. These two time-aligned transcriptions are then
compared in order to detect the sequence of native phones that was
recognized for each spoken language phone in the utterance. Given
a spoken language phoneL present in the utterance, the sequence as-
sociated withL is composed of native language phones whose time
interval has at least 50% overlapping withL’s time interval.

The next step is to extract the confusion rules from the above
phone and phone sequence associations. Having the count of appear-
ance of each association, the maximum likelihood (ML) estimate of
the confusion probability is then computed. Only the confusion rules
that have the highest probability are taken into account.

3.1.2. HMM Integration

In this step, the acoustic models of the phones of the spoken lan-
guage are modified according to the confusion rules extracted from
the previous step. For each phoneL of the spoken language, a new
state path is added to the HMM model ofL. These new state paths
correspond to the right-hand side of the rules selected according to
the previous section. Each phone sequence at the right-hand side of
a rule is transformed into a corresponding HMM by concatenating
the native phone HMMs in the sequence. Multiple confusion rules
for the same spoken language phone are combined in parallel HMM
topology.

3.2. Adding Graphemic Constraints

We claim that the pronunciation errors (or variants) a non-native
speaker produces depend on graphemes (or the writing of words).
The same phone (spoken language) may be mis-pronounced in a dif-
ferent manner depending on the graphemes corresponding to that
phone. Thus, the phonetic confusion would be more accurate if
graphemic constraints were taken into account. The aim is to auto-
matically extract the graphemes linked to the phones for each word
in the dictionary. In [27], graphemic constraints and contexts are
used; however, this phone-grapheme alignment is done manually.

3.2.1. Automatic phone-grapheme alignment

Given the writing of a word and its pronunciation, the task here is
to find to which graphemes (characters) each phone corresponds.
Even though it seems similar, this task is different from building a
“grapheme to phone” transducer. In our approach, we use a discrete
HMM system to perform this alignment. The CMU dictionary was
used to train the HMM system. In this discrete HMM system, the
characters (graphemes) are the discrete observations and the phones
are the HMMs. The HMMs are single-state discrete HMMs. The
trained discrete HMM system can be used to align the graphemes
and phones of a word using the Baum-Welch algorithm.

4. EXPERIMENTAL RESULTS

In this section, we present experimental results for the algorithms
presented above. The Aurora 2, 3 and/or 4 databases were used for
the evaluation; special databases were used for multi-microphone
ASR and non-native ASR. In all experiments, hidden Markov mod-
els and the HTK toolkit were used for acoustic modeling (with the
exception of the speech enhancement experiments where a neural
network based recognizer was used).
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Fig. 1. WACC (%) as a function of array microphones’ number.

4.1. Multi-microphone Evaluation

The experimental setup consists of a recognition task of 1001 con-
nected English digits sentences: the original TIDIGITS signals have
been reproduced by a loudspeaker in an acoustically treated room
(T60 is approximately 0.15 s) and acquired by means of a linear ar-
ray of 64 microphones (Mark III board), located at 1.3m from the
simulated speaker. During recordings, in this room, 12 loudspeak-
ers, randomly distributed, were diffusing typical (stationary) cockpit
noise. As a result the SNR evaluated at sensors level is about 20dB.

Fig. 1 shows the word accuracy (WACC) of multi-microphone
processing as a function of the number of sensor employed in the
beamforming using the baseline front-end: 39 MFCCs and cepstral
mean subtraction (CMS). and HMM models trained on clean signals
(the original TIDIGITS). Two other sets of HMM models have been
derived by contamination of the clean training corpus with impulse
responses measured in the same room and in another more reverber-
ant room (T60 = 0.7s), that indeed amplifies the acoustic mismatch.
Note that no information regarding the background noise is exploited
in this training phase. Overall, up to 50% relative error rate reduction
can be achieved by beamforming.

4.2. Robust Features Evaluation

The evaluation experiments are realized by use of the HTK system
on Aurora 2 [13] and Aurora 3 (Spanish) databases; (connected-digit
recognition, left-right word HMM; Aurora 2: 18-state 3 Gaussian
mixtures; Aurora 3: 14-state 16 Gaussian mixtures). The Aurora 2
database contains additive noise in various conditions and SNR. The
Aurora 3 database contains recordings from 2 different microphones,
at 3 noise conditions that are mixed to create different recognition
scenarios - Well-Matched (WM), Medium-Mismatch (MM), High-
Mismatch (HM). Apart from the TECCs, the other features are not
self-standing, but contribute as 2nd order information to the 1st order
speech structure. The input vectors are split in 2 data streams that
are assumed independent with stream weights optimized on held-
out data. All feature vectors are extended by their time derivatives.
The frame length is set equal to 30 ms, with 10ms period update.

As shown in Table 1 by combining MFCCs with AM-FM fea-
tures we achieve error reduction up to 46% on average on Aurora 3
database. The TECCs outperform the MFCCs especially on the HM
scenario on the Aurora 3 task; relative error reduction rate extends

Scenario WM MM HM Avg. Av. Rel.
Features Improv.

Aurora Front-end (WI007) 92.9 80.3 51.6 74.9 -
MFCC+CMS (Baseline) 93.7 92.7 65.2 83.9 36
MFCC+CMS+IA-Mean 93.2 91.4 71.4 85.3 41
MFCC+CMS+IF-Mean 90.7 89.5 72.4 84.2 37
MFCC+CMS+FMP 94.4 92.5 72.8 86.5 46
TECC 93.9 91.8 86.9 90.8 64

Table 1. WACC(%) for Modulation and TECC Features on the Au-
rora 3 (Spanish Task) Database.

SNR clean 20 dB 15 dB 10 dB 5 dB 0 dB
Feature

MFCC 98.7 95.7 89.0 71.4 43.5 16.7
+MFD 98.7 96.4 91.6 79.1 52.8 21.7
Improv. 0 1 3 11 22 14
+FDCD 98.58 96.3 92.7 82.9 59.0 22.3
Improv. 0 1 4 16 37 18

Table 2. WACC (%) and Relative Improvement (%) (Improv.) in all
tests of the MFCC and the augmented Fractal Features on Aurora 2
(clean training).

up to 73%. The FDCD and MFD methods (Table 2) are evaluated on
Aurora 2 showing average relative improvements of 10%, and 15%
respectively (improvement at 5 dB SNR MFD: 22%, FDCD: 37%).
Compared to the fractal evaluation results, the average performance
of the modulation features [6] is similar or slightly better on aver-
age on Aurora 2 (average improvement: overall 21%, at 5 dB SNR:
33%). However the modulation features extract different types of
nonlinear information than the fractal features.

4.3. Parametric Equalization Evaluation

Table 3 shows the average word error rate (WERR) of the 14 tests
for Aurora 4 clean training experiment. Results are deployed for the
BASELINE front end (BASE), for the histogram based equalization
(HEQ) , for the proposed parametric equalization (PEQ) and for the
ETSI advanced front-end (AFE).

Algorithm BASE HEQ PEQ AFE
Avg. WERR 45.6 37.5 31.5 31.3

Table 3. WERR (%) for the 14 test Aurora 4 clean training experi-
ment.

4.4. Speech Enhancement Evaluation

Experiments were conducted with a hybrid HMM-NN ASR [10].
The testing conditions used are the following:

• No Denoising (ND): basic Rasta PLP features (RPLP).

• Wiener baseline (WB): RPLP with noise reduction based on
standard Wiener filtering.

• Wiener modified (WM): RPLP with Wiener filtering depen-
dent on global SNR [eq. (8)].

• Ephraim-Malah baseline (EMB): RPLP with noise reduction
based on the standard Ephraim-Malah spectral attenuation
rule [Eqs. (10) (11) (12)].
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• Ephraim-Malah modified (EMM): RPLP with noise reduc-
tion based on the modified Ephraim-Malah spectral attenua-
tion rule [Eqs. (10) (13) (14)].

The experiment was performed on the Aurora-3 corpus in Italian,
Spanish and German, on the High Mismatch test set. The models
have been trained with large, domain independent, telephone cor-
pora; the Aurora-3 database was used only for testing. Relevance of
results are shown for each test set in parenthesis. Experimental re-
sults show that: (i) Ephraim-Malah gain outperforms Wiener gain in
its baseline version; this tendency is confirmed when using the mod-
ified version of the rules for Wiener gain for Ephraim-Malah gain,
and (ii) The modification introduced in the Ephraim-Malah gain pro-
duces an average error reduction of 22.9% with respect to the base-
line version.

Method Ita (1.4) Spa (1.9) Ger (1.7) Average
ND 43.3 30.1 17.5 30.3
WB 31.9 18.7 12.2 20.9
WM 25.1 13.8 10.8 16.6
EMB 30.3 18.7 10.3 19.8
EMM 24.4 12.3 9.5 15.4

Table 4. WERR (%) for various speech enhancement algorithms

4.5. Non-Native Speech Evaluation

The non-native database, recorded in the framework of European
project HIWIRE, contains 21 French speakers with 100 utterances
for each, recorded at a sampling rate of 16 kHz at 16 bits per sample.
Each speaker speaks in English. Half of this database was used for
development, the other half for testing. The vocabulary is composed
of 134 words, and the grammar is a command language. We also
used a “word-loop grammar”.

system type WACC SACC

- baseline system 93.5 87.2
- fully automated “confusion” 96.1 91.1

-
fully automated “confusion” +
graphemic confusion

95.9 90.8

word-loop grammar

- baseline system 71.1 61.1
- fully automated “confusion” 80.2 66.0

-
fully automated “confusion” +
graphemic confusion

81.6 67.16

Table 5. Results for non-native speech (WACC,SACC in %).

Table 5 shows the results of these tests, where “SACC” stands
for “sentence accuracy”. The “fully automated confusion” (FAC)
system achieves a word accuracy of 96.1%, which represents an ab-
solute improvement of 2.6% compared to the “baseline system”. The
FAC system reduced the WERR by 40% relative. No significant im-
proments were obtained by introducing the graphemic constraints
along with the phonetic confusion with constrained grammar. Nev-
ertheless, graphemic constraints allowed further significant improve-
ments when using a word-loop grammar.

5. CONCLUSIONS

A variety of algorithms for improving speech recognition perfor-
mance in adverse environments and for non-native speakers have
been investigated. The experimental results show relative ASR error
rate reduction of up to 50% when using beamforming on the signals
of multiple microphones. Robust feature extraction methods based
on modulation and fractal features improve the recognition accuracy
for noisy databases. By combining MFCCs with modulation and
fractal features an average error rate reduction of 45% was achieved.
It was also shown that the TECC features outperform the MFCCs
especially in the presence of additive noise. The proposed paramet-
ric feature equalization algorithm is shown to outperform traditional
histogram equalization and to reduce error rate by approx. 30%.
Speech enchancement is also shown to achieve up to 50% relative
error rate reduction and to improve on state-of-the-art speech en-
hancement algorithms. Finally, the proposed algorithms for dealing
with non-native speech show relative error reduction of 30-40%.

Overall, good improvements in ASR performance were achieved
under adverse conditions. Future work includes the integration of
beamforming and other denoising techniques, adaptive fusion of the
different feature streams, extension of the non-native speech models
to multiple languages, and evaluation of combinations of the pro-
posed algorithms.
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[12] J. M. Górriz, J. Raḿırez, J. C. Segura, C. G. Puntonet, and
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