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ABSTRACT

We propose a unified framework to recover articulation fram a
diovisual speech. The nonlinear audiovisual-to-artimria map-
ping is modeled by means of a switching linear dynamicalesyst
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(SOMs) analysis. Articulatory trajectories are deterrdity ex-
tended Kalman smoothing.

A stochastic piecewise-linear approximation of the audio-
articulatory relation is also presented in [9]. Each phoaésrmod-

Switching is governed by a state sequence determined viala Hi €/€d by a context-dependent Hidden Markov Model (HMM) and a
den Markov Model alignment process. Mel Frequency CepstrapeParate linear regression mapping is trained at each HNke st

Coefficients are extracted from audio while visual analysiger-
formed using Active Appearance Models. The articulatogtest
is represented by the coordinates of points on importaituat
tors, e.g., tongue and lips. To evaluate our inversion agaroin-
stead of just using the conventional correlation coeffisieimd root
mean squared errors, we introduce a novel evaluation sctreris
more specific to the inversion problem. Prediction erroth@&posi-
tions of the articulators are weighted differently depegddn their
relevant importance in the production of the correspondiognd.
The applied weights are determined by an articulatory flaason
analysis using Support Vector Machines with a radial basistion
kernel. Experiments are conducted in the audiovisuatidgiory
MOCHA database.

1. INTRODUCTION

Audiovisual speech inversion refers to the problem of recoyg
properties of the speech production system, namely aspétite
vocal tract shape and dynamics, given audiovisual spedaimia-
tion, i.e., the audio speech signal and visual informatiomfthe
speaker’s face. Apart from its theoretical importance, latsm
to this problem could allow devising efficient represeratasi of the
audio and visual aspects of speech by means of the undevigoay
tract configuration. This can be beneficial to important @gagions
such as speech synthesis [1], speech recognition [2], smeeing
[3] and language tutoring [4]. In the current paper, we psapa
scheme to add dynamical constraints to audiovisual spewe-i
sion and we also introduce a novel method to evaluate irorersi
results.

1.1 PreviousWork

Speech inversion has been traditionally considered asetezrdi-
nation of the vocal tract shape from the audio speech signlgl o
[5, 6, 7, 8, 9]. For example, in [5] codebooks are optimizedeto
cover vocal tract shapes from formants while the inversireme
in [6] builds on neural network techniques to recover aftitary
coordinates from audio Mel-scale filterbank coefficients.[4] a
Gaussian Mixture Model based mapping is proposed for immers
from Mel Frequency Cepstral Coefficients (MFCCs).

between the observed MFCCs and the corresponding articylat
parameters. Given the observed audio parameters an opstiatel
sequence is determined and the hidden articulatory tmajestare
obtained by Maximum A Posteriori estimation.

An inherent shortcoming of audio-only inversion approacise
that the mapping from the acoustic to articulatory domasnsnie-
to-many, in the sense that there is a large number of vocet tra
configurations which can produce the same speech acoustids,
thus the inversion problem is significantly under-deteedin In-
corporation of the visual modality in the speech inversioocpss
can significantly improve inversion accuracy. Importaticatators
such as the lips, jaw, teeth, and tongue are to a certaintexten
ible. Therefore, visual cues can significantly narrow thieitson
space and ameliorate the ill-posedness of the inversiarepso In-
deed, a number of studies have shown that the speaker’s figce a
the motion of important vocal tract articulators such asttrgue
are significantly correlated [10, 11, 12, 13].

Motivated by such observations, in [14] we present a uni-
fied framework to automatically extract visual featuresrirthe
speaker’'s face, integrate them with audio features ando#xpl
this bimodal information to recover articulation from aodsual
speech. Visual features are efficiently extracted from thee f
by means of Active Appearance Models (AAMs). In this way,
we explicitly take into consideration both facial shape ap
pearance variations, which is the main advantage compared t
transform-based approaches as the Independent Componeaht A
ysis scheme of [13]. The nonlinear mapping between audiovi-
sual and articulatory features is approximated by a piesz\in-
ear model, governed by a Markov switching process; switchig
tween the segmental linear mappings is determined basedtatea
sequence identified via an HMM alignment process, simil@r[Q].

Our approach is evaluated in the Qualisys-Movetrack ausliey-
articulatory database and promising results are demaedtra

Quantitative evaluation of audio/audiovisual speechrisien is
typically performed by estimating the error between theljoted
and the measured/true articulatory parameters. Howeatéer dif-
ferent articulatory parameters tend to be able to produvestithe
same audio/audiovisual parameters [6]. This is due to ttiettiat
for certain phonemes, some articulatory features are nmoper-

The same speech representation, i.e. MFCCs, is used in [8}ant than others and some are of little importance. For el@rip

where an adaptive extended Kalman filtering scheme is piexém
pose phonological and dynamical constraints to the inwarpro-
cess. Intheir work, speech is segmented into so-calleddoption
units, roughly related to diphones, via a maximum-liketiigoro-

the phoneme /p/, the closure of the lips is the most imporiant
ticulatory feature, while the positions of the other aritars are
irrelevant.

The audio/audiovisual-to-articulatory estimator heneeds to

cess. Each such unit is modeled by a dynamical system with-a nobe more accurate about the positions of some articulatoeswit

linear observation equation, which is piecewise linearizased on
the corresponding training acoustic-articulatory vegars. Clus-
tering into linear regions is performed via a Self-OrgargsMaps

tering certain phonemes, while it could be allowed to makgea
errors for estimating the positions of other articulatoffie most
commonly used non-regenerative evaluation measures iouhe



rent literature, Pearson’s correlation coefficient andmeMS er-
ror [10, 11, 15] do not take these accuracy constraints iotownt.
Hence, these measures do not necessarily demonstrateatity qu
of the inversion, since they do not differentiate betweerial and
irrelevant errors.

In [16] it is suggested that an articulatory classifier coléd
used to give a better picture of how successful an inversietiaod
is for each phoneme. The articulatory classifier relies onotop
type articulation for each phoneme to find the closest pyptoin
each frame. The evaluation is less exact than a correlatiores
or an error compared to estimated parameters, but it doesimgiv
formation about whether important articulatory featunesarrect,

and if not, the type of error made. This method, however, does

not give a single measurable quantity to find whether a pdatic
technique is better than another, especially if their perémces are
comparable for certain phoneme classes, while they vargtfoer
phoneme classes. It is hence a qualitative analysis todirfding
the strengths and weaknesses of an inversion method, thtrer
a quantitative measurement of the reliability of an invemsiech-
nique.

1.2 Proposed Method

In this context, our contribution in the current paper iseesislly
twofold.

Dynamical Articulatory Constraints Firstly, to better handle ar-

This representation could be either direct, including epeamordi-
nates of real articulators, or indirect, describing a filiarticula-
tory model for example. The audiovisual parameter vegtofm
elements), comprising acoustic and visual paramet@rand yy,
should ideally contain all the vocal-tract related infotioa that
can be extracted from the acoustic signal on the one handhend t
speaker’s face on the other. Formant values, linear speies
or MFCCs have been applied as acoustic parameterizatiorth&o
face, space coordinates of key-points, e.g. around thelhmooitild
be used or alternatively parameters based on a more scpltésti
face model (e.g., AAM). If we assume that:

Xt = Axt_1+ Wt
yi=Cx¢+ vy

(©)
4)

wherew ~ N(0,Q) andv ~ N(O,R) independent noise processes
and furtherxg ~ N(Hg, Vo), then the maximum a posteriori solution
to this problem is given by the Kalman filter [17].

Intuitively, in the case of continuous speech, we expectithe
ear approximation of Eq. (4) to only be valid as an observatigua-
tion for limited time intervals corresponding to a specifimpeme,
or even a part of the phoneme, i.e., transition or steade.sfite
same holds for the state space equation governing the lattcy
dynamics. It is thus expected that using different, phonepezific
(or inter-phoneme specific as in [8]) observation and ssptee

ticulatory dynamics and pose continuity and smoothness corduations will be more appropriate than using a global linka
straints, we suggest an audiovisual speech inversion sehenfiamical system. The proposed switching linear dynamicstiesy

based on switching linear dynamical modeling.
work in audio-only inversion [8, 9] and building on our previ

ous work we introduce a combined HMM and Kalman filtering

framework to predict the hidden articulatory state givea db-
served sequence of audiovisual cues.

Weighted Evaluation Secondly, to evaluate our approach we pro-

Inspired by!S:

®)
(6)

Essentially, there is a separate linear dynamical systeresyond-

xt = A cXt—1+A2,cXt—2 + Beuc + wi
yt = Cext +vi

pose a novel technique based on a weighted root mean squagy to each class. For each such class, motivated by physiological
(W-RMS) error, which uses Support Vector Machines (SVM) considerations, the articulatory configuration is modededh sec-

to estimate the importance, i.e. the weights, of differetitia-
lators in different phonemic contexts. It obtains the atttory

ond order autoregressive process, as in [8]. It is furthesidered
thatBe = | — (A1 c+ A2 ) so that the mean value of the articulatory

parameter weights for each phoneme, based on each parametefonfiguration at each state would be Noise covariance§c, Re

importance in discriminating the phoneme from the rest ef th
phonemes in the language. An articulatory classificatich-te
nique is used, and more importance is given to those artanyla
features which help in the classification. In this way, itpdes
a single measurable quantity, which evaluates the perfocea
of the inversion technique, while taking into account, tigmi-
icance of the articulatory parameters for the productioaaath
phoneme in the language.
Experiments are conducted in the audiovisual-articWadtt® CHA
database and results are presented and discussed. Ogenisaly
the first study to exploit the video recordings of this databa

2. SWITCHING LINEAR DYNAMIC
AUDIOVISUAL-TO-ARTICULATORY MODELING

In the Bayesian framework, audiovisual-to-articulatopgach in-
version at a specific timemay be viewed as the articulatory con-
figurationx; that maximizes the posterior probability of the articu-
latory parameters given the available audiovisual infaromaup to
timet,i.e., Yt ={y1,...,yt}:

yi|xe)p(xt| Y1)
p(yt|Yi-1)

We have assumed that the observagpat timet is dependent only
upon the current configuratiaty. We may further have:

p(oa Y1) = 2L

. 1)

p(xt[Yi_1) = / P(xtxe_1)p(xi_1[Yi_)dx1  (2)

by marginalizing out the previous state 1. The parameter vector
xt (n elements) provides a proper representation of the voaet. t

are also dependent on the state

Inference and learning in this switching linear dynamicaldm
eling framework can be handled via variational approxiovsias
described in [18]. In our current work, for simplicity, wecapt
that segmentation of the audiovisual-articulatory data sepa-
rate classes can be separately determined and is roughkedel
to phonemic properties. Phoneme-dependent audiovisuhleri
Markov Models (HMMs) are used for this purpose, as in [14clEa
HMM state corresponds to a separate linear dynamical magel a
described by Egs. (5) and (6). The HMMs are trainable in the
conventional way, by maximum likelihood, given the seqent
phoneme-labeled training audiovisual data. After a forstate
alignment procedure of the audiovisual data, the occupgtioba-
bilities at each state/clagsare estimated and so the training data
corresponding to each linear dynamical model can be gathere
The state-space equation of each dynamical model is icehtify
maximume-likelihood given the training articulatory verto The
parameters of the observation equations are determinedelyisn
of reduced-rank Canonical Correlation Analysis, as in [19]

In this setting, inversion requires finding the optimal stae-
guence given the observations (sequences of audio, visual-0
diovisual features), effectively determining switchingtieen the
separate models. For each state-aligned observatiornryéeaor-
responding articulatory vector is estimated via the ssagific lin-
ear dynamical system by Kalman filtering.

3. WEIGHTED EVALUATION

One part of estimating the importance of different artitala for
a particular phoneme, is finding out which of the articulatoelp
in distinguishing the phoneme from the rest of the phonemes i
the language. Keeping this in mind, it is possible to comsteu



LS-SVM for 2 classes, RBF kernel

+ Clusters of the remaining phone classes
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o o5 ' Figure 2: On the left, a sample image of the MOCHA fsewO
Chafiel L, LowsrLip O3 speaker’s face. The black dots are landmarks that have hten a
matically localized by Active Appearance Modeling. On tight,
a figure showing the placement of the EMA coils that have been

Figure 1. Non-linear separation boundary for sampled patte tracked for MOCHA, i.e., on the lips, upper and lower incisan
from phoneme @/’ against sampled patterns from the remaining the tongue tip, dorsum, and blade and on the velum. The coils o
phoneme classes. In this case, Channel 1 is the x-coordiofitee  the upper incisor and on the nose bridge are used to compeefosat
lower lip and Channel 2 is the x-coordinates of the tongue tip head movement.

One problem is that the number of instances (frames) for-a sin
gle phoneme is much smaller than that of the remaining phesem
and the SVM is always biased towards the class with higher-num
ber of patterns. Another problem is the presence of outhehnich
could cause the orientation of the hyperplane to change guoit-
siderably. To avoid these two problems, the data in bothseks
(one phoneme versus the rest) are clustered using K-meaastsrel
ing. The SVM is applied on the K cluster-centroids from edelss.
Thus, outliers are filtered out and the number of patterns ach
class remains constant. The MATLAB package LS-SVM [21] was
used with an RBF kernel for this work. A typical separatingéns
¥)Iane in a dimension higher than the data is shown in figure 1.

In this way, we get a phoneme-weight matki, with elements

"for 1 < k < C, whereC is the number of channels, ane&In < P,

problem, to find the weights to be given to the articulatonsoii-
der to provide the best classification of the phonemes. IthEan
looked at as a parameter selection problem, where you shlect
best parameters that help the classification. There aresdeneth-
ods for dimension/parameter reduction in the literatuoe param-
eter weighting using SVM is elegant and simple, and additign
provides individual weights for every parameter. Theresaeeral
methods of feature selection using SVM, as discussed in [20]
the current work we are using the SVM-Projection Recurreza-F
ture Elimination (SVM-Projection RFE) algorithm.

The SVM finds a hyperplane which separates the articulator
space into two classes, separating a phoneme from all othkile
allowing for maximum possible error. The hyperplane canrba i
higher dimension than the data, as used in Radial Basis iBusct whereP is the number of phoneme classes in the language
ﬂ—é? Eé (l)irngglryinnomgl dli(rirgr?é?(')nTQ;Sﬂ:geggtsaj[h.?%Lh; ﬁet%aer%ne'asg se For the trug articulatory parametéf@nd estlmgted parameters
arating hyperplane is obtained between a phoneme and thefres Y We can obtain the W-RMS errdewms, for N testing samples as
the phonemes in the language, it will orient itself so as taerthe  0lloWs o
maximum angle with the most discriminating dimension. Bgt-so \/Z((Yi —Y)TDY - )

E _Kk

ing the angles made by the hyperplane with each of the aatimyl

dimensions, we know which articulator is the most importamt < (20)

the particular phone. N
The algorithm is described in detail in [20]. where
SVM-Projection RFE algorithm: For every phone class Dy = diag(W="<%) (11)

versus the rest of the phoneme classes, ) o ) ]
Matrix D can be called the weighting matrix. The most infor-

mative features can probably correspond to a nonlinear t@nb
tion, with contributions of more than one articulatory fgat This
could be linearly approximated by a non-diagonal weightiragrix
D. However, in this study we ignore the correlation amongfiest
and use a diagonal weighting matix

1. Train the SVM to get the separating hyperplg(¥é). Here,Y
are the data points from the two classes.

2. Compute the gradiengg(Y)VY € SV (support vectors)

va(Y) :%vaiyi Vv K(Y,Y) @) 4. EXPERIMENTSAND DISCUSSION
le
Audiovisual speech inversion experiments were perfornmethé
Here K is the Kernel function and are the coefficients of the audiovisual-articulatory MOCHA database.

Lagrange multipliers from which the hyperplane is condtrdc o
4.1 Database Description

3. Computep; The MOCHA database [22] is a data-rich and widely used pub-
- vaY)] Vie sy 8 licly available articulatory dataset, featuring audio, ENElectro-
pi= o9t 2’ e (8)  magnetic Articulography) and EPG (Electropalatographgisure-

ments of speakers uttering 460 British TIMIT utteranceshds
been collected mainly for research in speech recognitipioging
speech production knowledge. EMA recordings are at 500 ldz an
have been downsampled to 60 Hz. For the purpose of our experi-
ments we have also obtained the video footage of the spedkeg
w= Pi 9 that was recorded during the original data acquisition ggecand

ic had been so far unused. Ours is thus the first study to expleit t

4. Compute the weights for the phoneme chlass



Table 1: Weights obtained for some typical vowels Table 2: Weights obtained for some typical consonants

Phoneme lal n U/ Phoneme Ip/ It K/
Lower incisor (x) | 0.02 | 0.07 | 0.05 Lower incisor (x) | 0.05[ 0.09 [ 0.05
Upper lip () 0.09 | 0.08 | 0.07 Upper lip () 0.02 | 0.03 | 0.00
Lower lip (X) 0.07 | 0.00 | 0.13 Lower lip (X) 0.04 | 0.07 | 0.03
Tongue tip () 0.04 | 0.02 | 0.02 Tongue tip (X) 0.03| 0.04 | 0.01
Tongue blade (x) | 0.01| 0.08 | 0.13 Tongue blade (x) | 0.04 | 0.02 | 0.02
Tongue dorsum (x), 0.00 | 0.10 | 0.13 Tongue dorsum (x)] 0.02 | 0.10 | 0.06
Velum (x) 0.01| 0.11 | 0.04 Velum (x) 0.11| 0.10 | 0.10
Lower incisor (y) | 0.16 | 0.01 | 0.04 Lower incisor (y) | 0.00 | 0.10 | 0.02
Upper lip (y) 0.00 | 0.04 | 0.06 Upper lip (y) 0.34 | 0.06 | 0.07
Lower lip (y) 0.22 | 0.13 | 0.10 Lower lip (y) 0.07 | 0.02 | 0.07
Tongue tip (y) 0.14| 0.02 | 0.03 Tongue tip (y) 0.04| 0.17 | 0.02
Tongue blade (y) | 0.11 | 0.17 | 0.07 Tongue blade (y) | 0.09 | 0.02 | 0.13
Tongue dorsum (y)| 0.05| 0.05 | 0.07 Tongue dorsum (y) 0.05| 0.04 | 0.34
Velum (y) 0.04 | 0.08 | 0.04 Velum (y) 0.08 | 0.09 | 0.07
Mean Correlation Coefficient between predicted and measured articulatory trajectories
visual aspect of the MOCHA data. Currently, we have accels on ’ ‘ (MMglobal Kalman fiter_Jriv BProposed Method
to the video recordings of the female subject ‘fsew0’, Fig. 2 e — 1

A practical issue we faced with the MOCHA corpus was the o7 T
lack of labeling for the video data. We successfully restltias
problem by exploiting the already existing transcriptifmsthe au-
dio data and automatically matching the segmented audgovaitt
audio tracks extracted from the unprocessed raw video files ex-
tracted visual features were upsampled to 60 Hz to matchih& E
frame rate.

Correlation Coefficient
© o o o o
P9

o
s
T

o

4.2 Audioand Visual Front-Ends

To represent the speech signal we use 16 Mel Frequency @kepsti
g:%eef#iilizrr:ts é@%fgﬁg S;ﬁ];)i(gg (\:Atliendd(f):z;nd ?rSarrr?(’asst)rfe tk?én g;’g Figure 3: Audio, visual and audiovisual inversion evaloatiising
60 Hz, to match the frame rate at which the visual and EMA data a the mean correlation coefficient between the measured anurén
recorded. The 0-th MFCC coefficient is excluded. For the fater  dicted articulatory trajectories. Three cases are givemdmpari-
active apperance modeling as described in [14], we haveedil5  SON I-€., using a global linear dynamical system, using BitIMs
features representing shape and 26 representing appearangl  OF the proposed switching linear dynamical model

AAM parameters in total, corresponding to 95% of the tragnset

variance.

Audio Audiovisual

Visual
Used Modalities

used for the experiments are phoneme-based 1-state HMMd: Mo
4.3 Weighted Evaluation Scheme els with more states could not be sufficiently trained in our-c

By applying the scheme described in Section 3, we have estima rent setup and so their performance slightly deterioratadotal,

f : ; 46 HMMs are trained, one for each phoneme that appears in the
Eh;cvr\]/%lgthatspg{rt:(iane;Ltleclélst&rzvgarﬁn;itt%s;t?otg ;ggict:h':?iusammm' MOCHA database and two more for breath and silence. Two non-

in the 14-dimensional articulatory space, correspondirtge x and ~ €Mitting states are also incorporated in each model, ag@bing

y coordinates of the 7 points on the articulators that ackea by ~ and at the end respectively, so that the transitions betweels
EMA in MOCHA. The x direction corresponds to the horizontal €1 also be taken into consideration [23]. For the testitegances,
position, while the y direction corresponds to the vertimagition.  their phonetic content is considered to be known and foréets s

The weights obtained from the SVM-Projection RFE algorithm &ignment is performed by applying the Viterbi algorithm.eah
give a number of interesting insights. As can be seen fronieab correlation coefficient and RMS difference are estimatetsvéen

1 and 2, the critical articulatory channels are the ones witx-  the predicted and measured trajectories of articulatooydinates.
imum weights. Most often, this critical channel is in acande S IS shown in Fig. 3, accounting for articulatory dynamiositie

with our intuition. For example, for the phonemed,/the vertical ~ ProPosed switching scheme is beneficial to inversion. Thalso
position of the lower lip is most critical, while for phonentg itis ~ demonstrated in Table 3 where the corresponding mean RM&err

the tongue tip that is most crucial. However, a few obtaineigts '€ 9iven. This time, the RMS error in the case when a globaéli
don't seem intuitive. For example, the horizontal positafithe ~ dynamical system (LDS) is given for comparison. The weidhte

tongue blade seems to be the critical channel for the phorgine Versions of the RMS errors, especially for the audiovisuasec
along with the horizontal positions of the lower lip and taeglor- ~ 91V€ further evidence for the good quality of the inversichiaved.
sum. Similarly, the horizontal position of the velum and éeetical Predicted versus reference trajectories of the y-cooteinaf the

P ; P tongue tip and the lower incisor are given in Fig. 4 for a singl
position of the lower lip seem quite important for the phoeefti
from the obtained weights. MOCHA utterance.

4.4 Introducing Articulatory Dynamical Constraints 5. CONCLUSIONSAND FUTURE WORK

For our experiments, we have set aside 10% of our data fongest We have presented a framework to introduce dynamical caingsr
and used the rest for training. Our goal has been to evalbatgro-  to audiovisual speech inversion. The effectiveness of &chinig
posed approach in comparison with audiovisual inversiongua  linear dynamical modeling scheme is investigated and simmie-
global linear dynamical system or using the HMM framework-pr  sults are acquired. Switching is achieved via an audioVidiiV

posed in [14]. For reference, we also present the invergsnlts  state alignment process. Simplified learning and inferemeedis-
using the audio or visual only observations. The HMMs cutyen cussed. We further describe a novel evaluation techniqpeco-



“Each stag surely finds a big fawn"

[5] S. Ouniand Y. Laprie, “Modeling the articulatory spaceng

E audiovisual

SR N WY

[ Lower incisor y [7]
Figure 4: Predicted trajectories of the lower incisor amptee tip
y-coordinates as found using the proposed audiovisuarsive [
scheme. The corresponding measured trajectories are igso g
in light colour for reference.

[10]

Table 3: Weighted and unweighted root mean square erronsrir) (
for three different inversion techniques, i.e., using abglolin-

ear dynamical system (LDS), using HMMs or using the proposeqi1]

switching linear dynamical modeling (SLDS) approach. Thdia,
visual and audiovisual cases are given.

Root Mean SquareError
Unweighted Weighted
LDS HMM | SLDS || LDS HMM | SLDS
Audio 215 176 | 178 || 217 166 | 1.66
Visual 229 156 | 162 || 232 149 | 154
Audiovisual | 1.89 153 | 143 || 1.88 1.47 | 1.36

[12] O. Engwall,

(14]
erly weigh inversion errors depending on their importancehie
production of a specific phoneme. For the introduction ofdie
namical constraints we are currently looking into ways tttdye
train the models using limited datasets, which is the cassnvdata
is segmented into multiple phoneme or state-of-phonemeseta [15]

for each of which a linear dynamical system has to be traited.
parallel, a detailed analysis of the proposed evaluatiberse is in
progress to better assess its importance for speech iokersi
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