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ABSTRACT

We present a novel video representation for human action recog-
nition by considering temporal sequences of visual words. Based on
state-of-the-art dense trajectories, we introduce temporal bundles of
dominant, that is most frequent, visual words. These are employed
to construct a complementary action representation of ordered dom-
inant visual word sequences, that additionally incorporates fine
grained temporal information. We exploit the introduced temporal
information by applying local sub-sequence alignment that quanti-
fies the similarity between sequences. This facilitates the fusion of
our representation with the bag-of-visual-words (BoVW) represen-
tation. Our approach incorporates sequential temporal structure and
results in a low-dimensional representation compared to the BoVW,
while still yielding a descent result when combined with it. Ex-
periments on the KTH, Hollywood2 and the challenging HMDB51
datasets show that the proposed framework is complementary to the
BoVW representation, which discards temporal order.

Index Terms— visual human action recognition, bag-of-visual-
words, video representation, temporal sequences, local sub-sequence
alignment.

1. INTRODUCTION

Since the Bag-of-Visual-Words (BoVW) [1] was introduced, its
combinations with variants of spatio-temporal feature descriptors [2]
have become popular for visual human action recognition [3], and
still draw attention [4, 5]. Despite its effectiveness, there are several
issues that are not dealt with, opening the way for supplementary
advancements: these issues are related to the spatio-temporal infor-
mation [6] that is disregarded at the encoding stage, where features
are quantized and statistics over their distribution are aggregated
into vector representations. Motivated by the lack of temporal in-
formation, we add temporal structure to action sub-sequences, that
enriches the actions’ description in an intuitive way and is fur-
ther shown to increase performance. After all, temporal structure
is inherent to many cases of everyday human actions included in
competitive action video datasets [7].

Actions which are roughly symmetric in time, such as stand-up
versus sit-down, are expected to have similar statistics, but different
dynamics. Thus, temporal context is essential for action recognition
which consist of similar sub-actions, but in different order. Such
an example is shown in Fig. 1, where actions “stand” (first row)
and “sit” (second row) are depicted along with their correspond-
ing BoVW histograms. The BoVW representation aggregates the
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Fig. 1. Sample HMDB51 [7] sequences from actions “stand” (first
row) and “sit” (second row) along with their respective bag-of-
visual-words representation. BoVW ignores essential temporal in-
formation. Third and fourth row: sequential representation of the
two actions by employing the proposed scheme, providing enriched
temporal information.

occurrence frequency of each visual word in a single histogram, dis-
carding temporal information. As a consequence, actions with simi-
lar visual words’ frequency but different distribution of these words
across time would be incorrectly classified to the same class. Instead
the proposed approach retains the visual words’ temporal order.

In this work, we face the above by introducing a new approach
that incorporates temporal sequential structure. We encode dense
trajectories features [8] as a sequence of most frequently occurring
visual words. Each video is short-time processed using a sliding win-
dow, yielding visual word bundles. Visual words within each bundle
are temporally ordered and the most dominant ones, in terms of fre-
quency, are retained (Sec. 3.1). The concatenation of these visual
word subsequences results in a Sequence of Dominant Visual Words
(SoDVW) representing the video. We introduce temporal informa-
tion at two levels: First, these dominant visual word subsequences
carry by construction fine-grained temporal information. Second, by
concatenating them we incorporate the temporal subsequence order
into the global action representation. Pairwise similarity of tempo-
ral sequences is measured by employing local alignment of action
sub-sequences taking into consideration quantitative metrics of the
feature space (Sec.3.2). The pairwise alignment similarity scores are
incorporated at the the support vector machine kernel (Sec. 3.3). The
overall framework is evaluated on the KTH [9], Hollywood2 [10]
and HMDB51 [7] datasets, leading to consistent relative improve-
ments of up to 5% (Sec. 4).
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Fig. 2. Overview block diagram of the proposed approach.

2. RELATED WORK

Human action recognition is an active research area. A variety of
demanding datasets [11, 7], feature descriptors [12, 13, 8] and en-
coding methods [14, 15, 16] have been introduced in an attempt to
face several challenges [17]. Approaches span several directions,
such as “deep” architectures [18, 19, 20] and the famous Bag-of-
Visual-Words (BoVW) paradigm [21, 2, 3], as well as, one of the top
performing approaches, the dense trajectories [4, 8]. Apart from the
efficacy of the above, important aspects are ignored, such as spatio-
temporal information at the level of the video representations [6, 22].

Other attempts deal with temporal information within BoVW.
Spatio-temporal pyramids [12] integrate spatial-temporal informa-
tion by decomposing the whole video into spatio-temporal sub-
volumes and computing a BoVW in each. Glaser et al. [23] consider
time-enriched feature vectors introduced by [24] to form visual
word sequences and build “video parts” by aggregating visual words
(VW) at consecutive frames. Cheng et al. [25] model temporal
relations between action parts using a subset of Allen’s relations.
Agustı́ et al. [5] implicitly integrate temporal relations within the
BoVW model, by encoding VWs co-occurrences for several time
displacements. Others [26] use correlograms to model the lo-
cal spatio-temporal relations between pairs of VW by computing
histograms of locally co-occuring words. Bettadapura et al. [27]
augment BoVW with histograms of n-grams to describe relations
between temporally overlapping events. More recently, Nagel et
al. [28] model the temporal relationship among frames using a
HMM and a Fisher vector variant. Fernando et al. [29] model the
action evolution in time by learning the frames’ temporal order us-
ing ranking machines. Finally, others incorporate hidden Markov
models [30, 31, 32]. As opposed to our work, most of the above
enrich the BoVW in several aspects, e.g. computing statistics among
VWs or exploiting video parts.

The work of [33] bears similarity to ours. They use SIFT fea-
tures and compute a separate BoVW histogram on each frame.
These histograms are concatenated into a high-dimensional repre-
sentation. Pairwise similarity scores between videos are computed
using global alignment. In contrast, we employ state-of-the-art
features, use a sliding window and select the most dominant visual
words occurring in each interval. Videos are represented as se-
quences of these visual words. We employ pairwise local alignment
finding similar regions of dominant visual word sequences, while
considering metrics on the underlying feature space. Finally, we
conduct supplementary experiments on complex datasets [7]. Our
experiments show that despite its low dimensionality compared to
BoVW, SoDVW retains its discriminative power.

3. METHODOLOGY

Our implementation relies on the state-of-the-art dense trajecto-
ries [8] and descriptors (Trajectory, HOG, HOF and MBH) that
capture shape and motion. We employ a sliding window and en-
code temporal information as illustrated next (see Fig. 2): 1. For
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Fig. 3. (a) Visual words across time before retaining the dominant
ones, in terms of BoVW frequencies in (b). Retained visual words
distributions for two instances of Stand (c,d) and Sit actions (e,f).

each window label trajectories by assigning them to their closest
codebook centroid-visual word (VW). 2. Collect these VW at each
window into sets, temporal bundles. 3. Retain the most dominant, in
terms of occurrence frequency VWs in each temporal bundle. 4. Or-
der retained VWs within each bundle, based on the average relative
temporal location of the trajectories assigned to them. 5. Con-
catenate the resulting subsequences from each window into a final
temporally ordered sequence of dominant visual words (SoDVW).

3.1. Temporal Sequence of Dominant Visual Words

Let {xn} be the set of trajectories of length L extracted from a video
and D the dictionary of K visual words w1, . . . , wK . Each video is
processed using a non-overlapping window of 15 frames. Trajec-
tories which have at least dL

2
e overlap with a window are assigned

to it. Each window is represented by a set of VW labels occurring
within the corresponding time interval. We also retain the relative
temporal location tloc of every VW, defined as the mean temporal
location of all trajectories assigned to this specific VW.

Each window i = 1 . . . T is represented by a temporal bundle,
i.e. a set of VW labels. Consequently, each video is represented by
a collection of temporal bundles:

VWSeti = {wj | fi(wj) 6= 0} , i = 1, . . . T, j = 1, . . . ,K

where fi(wj) is the j-th element of local BoVW vector.
Figure 3 depicts VWs occurring within several videos. How-

ever, only a few of the VWs occurring in a window are dominant,
in terms of occurrence frequency. Therefore, we compute a vi-
sual words’ occurrence frequency histogram within each temporal
window, to retain only the Nd most frequent VWs in the tem-
poral bundle. The resulting temporal evolution of Nd = 5 VWs
illustrated in Fig. 3 reveals well-formed patterns, which are used
as additional information. We further process temporal bundles
by sorting the retained VWs according to their relative temporal
location tloc. In this way, we add temporal information within
each temporal bundle, creating subsequences of VWs: VWSeqi =
[wi1, wi2, . . . , wiNd ], where tloci(wi1) ≤ tloci(wi2) ≤ . . . ≤
tloci(wiNd) i = 1 . . . T. By concatenating these VWs subse-
quences we get a temporally ordered sequence of dominant ones:
SoDVW = [VWSeq1, V WSeq2, . . . , V WSeqT ].
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Fig. 4. Pairwise local alignment of dominant visual word sequences.
Upper: aligned sequences belonging to the same class; bottom: to
different classes. Vertical color strips encode the similarities of
aligned visual words. Top: high values (yellow in the colorbar) cor-
respond to visual words that are close. Bottom: much less similarity,
i.e. mid ranges of values (green in the colorbar).

3.2. Local Alignment of Visual Action Subsequences

To use the above representation in a SVM, we define the distance
between two SoDVWs. We propose determining the similarity be-
tween two sequences using the Smith-Waterman (S-W) local se-
quence alignment algorithm [34]. This has the property of finding
the region of highest similarity between sequences, by comparing
possible sub-segments and determining the optimal score. Thus, it
detects similarities which often are highly divergent due to variations
in action execution, duration, and occlusions. This measure is also
robust to action-location-within-the-video variability, resulting from
loose trimming of original videos to video segments containing a
single action. Sequence regions with high dissimilarity are ignored
and do not affect the final similarity score.

Given an alphabet Σ, of the K VWs of the dictionary, and two
sequences A : wi1wi2 . . . wim and B : wj1wj2 . . . wjn, the al-
gorithm returns the score of their local alignment. Additional pa-
rameters are the gap penalty p and the similarity matrix S, whose
(i, j)-th entry indicates the similarity between the symbols wi, wj .
Herein we propose a similarity matrix which captures the correlation
between VWs:

S(wi, wj) = −2 ∗ d(wi, wj)

max
k,l=1...K

d(wk, wl)
+ 1,

where d(wi, wj) is the Euclidean distance.
Next, the S-W algorithm builds a matrix H , where H(i, j)

is the maximum similarity score of two segments of the input
sequences. For a detailed description, see [34]. The similarity be-
tween two sequences is the maximum element of this matrix. Each
score is further normalized so that the similarity lies within [0, 1],
allowing us to define the distance D(SoDVW1, SoDVW2) =
1−Similarity(SoDVW1, SoDVW2). See an example of aligned
sequences in Fig. 4.

3.3. Fusion of Temporal Sequence Similarities

For classifying a video via its SoDVW representation using SVMs,

we define the kernel: K(Seq1, Seq2) = e−
D(Seq1,Seq2)

A , where A
is the average pairwise distance between videos. For the BoVW and
SoDVW we employ two different measures of similarity i.e. differ-
ent kernels. The integration with different base kernels is achieved
by computing a linear combination of kernels (LCK) within a single
SVM. In this work, we experiment with different positive, weight
vectors θ for the combination of SW -kernel (K1) and RBF-χ2 (K2)
kernel for SoDVW and BoVW representations, respectively: K =
θ1 ∗K1 + θ2 ∗K2.

Fig. 5. Sample frames from HMDB51 and KTH datasets.
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Fig. 6. Performance on (a) HMDB51 and (b) KTH by varying the
weight θ1 parameter of our approach.

4. DATASETS, EXPERIMENTS AND RESULTS

We conduct experiments on the KTH, Hollywood2 and HMDB51
datasets, keeping the original configurations [7, 9, 10] (Fig.5) 1. We
extract improved dense trajectories, using the bounding boxes pro-
vided by the authors. The trajectory length is L = 15 and we obtain
the Trajectory, HOG, HOF, and MBH descriptors. A separate code-
book is built per descriptor by clustering 100000 random training
samples to K = 4000 centers using K-means. For action classifi-
cation, we use a discriminative SVM classifier [35]. For BoVW we
employ the χ2 kernel, while in the SoDVW case we compute the
pair-wise similarity between videos as in 3.2. For multi-class clas-
sification we use a “one-vs-all” approach, selecting the higher score
class. Multiple descriptors are combined by summing their kernel
matrices, while SoDVW and BoVW encoding methods are fused
with linear kernel combination (sec. 3.3).

4.1. Experimental Results

Results are presented in Table 1. The proposed SoDVW represen-
tation achieves an average accuracy of 38.39% on the challenging
HMDB51 dataset using solely temporal information as dominant
visual word sequences. These have much smaller length than the
BoVW vectors, which in our experimental framework have a con-
stant size of 4000: e.g. the maximum lengths of SoDVW sequences
for the training/testing videos of the 1st HMDB51 split are 474 and
350 respectively, with a median value of only 50. Therefore, ac-
tion recognition results demonstrate the rich information captured in
these small sequences and their discriminating power.

The fusion of the two approaches yields better results than the
baseline. Improvements on KTH are up to 1%. On HMDB51
dataset, improvements from the baseline are greater ranging from
2% to 5%, leading to 54.05% accuracy. Similar improvement
can be observed for Hollywood2. These demonstrate the com-
plementary nature of our approach, which integrates temporal in-
formation into the BoVW framework. A side point to stress is

1We report average classification accuracy over the three splits for
HMDB51 and mean average precision (mAP) on Hollywood2. We use the
following default parameters for SoDVW representation, unless otherwise
specified: a temporal window of 15 frames, Nd = 10 dominant visual words,
Smith-Waterman gap penalty p = 0.1 and LCK weight vector [0.3, 0.7].



Method Traj. HOG HOF MBH Comb.
K

T
H

BoVW 90.85 86.67 93.4 94.67 94.09
SoDVW 83.78 80.76 86.33 87.83 87.83
BoVW+SoDVW 91.19 86.79 93.51 95.13 94.67

H
M

D
B

51 BoVW 33.47 29.13 41.26 43.55 52.16
SoDVW 23.75 18.84 30.61 25.53 38.39
BoVW+SoDVW 38.32 34.18 43.86 46.47 54.05

H
O

H
A

2 BoVW 49.82 40.66 52.15 55.35 59.85
SoDVW 34.3 32.62 40.33 38.91 44.92
BoVW+SoDVW 53.72 45.56 53.82 57.15 61.34

Table 1. Average recognition accuracy results on KTH and
HMDB51 and mean average precision (mAP) on Hollywood2.

set SoDVW BoVW R1 SoDVW+BoVW R2

train 214840 14280000 66.47 14494840 1.015
test 88862 6120000 68.87 6208862 1.015

Table 2. Data employed in SoDVW vs BoVW for HMDB51, mea-
sured as the total number of elements contained in the correspond-
ing video representations. In our case we employ 66 to 68 times
less data, as shown by the ratio R1 between the SoDVW/BoVW
quantities. We also show the R2 ratio between the BoVW and the
SoDVW+BoVW showing that the increase is negligible.

the amount of data used to compute the SVMs’ kernels. Our ap-
proach stores much less data per video; that is a vector containing
Nd × (number of windows) elements, whereas BoVW stores a
K-dimensional histogram per video. Providing more data towards
this, we pose the following question: What percentage of the total
accuracy can our representation achieve using only the most dom-
inant visual words? The answer is quite revealing: as shown in
Table 3 this is at least 71% for HMDB51. Thus, using 66 times less
data, we reach a significant percentage of the total accuracy.

HMDB51 KTH Hollywood2
p1 73.6 93.35 75.05
p2 71.03 92.78 73.23

Table 3. Percentage of the total accuracy that SoDVW achieves
compared to BoVW (p1) and SoDVW+BoVW (p2).

Table 4 shows the effect of the gap penalty. By retainingNd = 5
dominant visual words at each temporal bundle, we experiment with
two gap penalties, p = 0.1 and p = 2 on KTH. A value of 0.1 leads
to better performance. This is attributed to the more successful local
sequence alignment achieved with this penalty. Setting it to 2, an
alignment without gaps, i.e. insertions or deletions, entails a lower
cost in comparison to alignments with high-cost gaps. Another pa-
rameter is the weight θ1 that weights the sequence similarity kernel
(see Fig. 6). In almost all cases there is an increase to the fused re-
sult. By altering the parameter we adjust the relative contribution
of our approach, which is maximized at θ1 = 0.3, and is later on
employed based on its consistent performance.

Finally, we compare with other methods reported in the lit-
erature. In many cases, as shown in the upper part of Table 5,
our method performs better compared with other approaches ex-
plicitly modelling temporal information. As far as the rest of the

Traj. HOG HOF MBH
SoDVW (p = 2) 82.97 76.94 82.97 85.05
SoDVW (p = 0.1) 84.24 79.84 86.67 89.34

Table 4. Action recognition results with varying penalty parameter
on the KTH dataset, Nd = 5.

Work Method Year KTH HMDB51 Holly-Note wood2
[5] 2014 97.2 24.5 -
[25] 2013 89.7 - -
[24] FV 2014 - 65 -
[26] 2008 86.8 - -
[39] 2008 92.0 - -
[36] CD 2014 96.5 53.4 -
[36] CD+FV 2014 - 58.7 -
[18] SVM Fusion 2014 - 59.4 -
[16] FV 2013 - 54.8 63.3
[16] w/o FV 2013 - - 58.1
[40] iDT+FV 2015 - 63.7 -
[4] DT 2011 94.2 - 58.2
[8] iDT+BoVW 2013 - 52.1 62.2
[8] iDT+FV 2013 - 57.2 64.3
[38] VLAD 2013 - 52.3 62.5
[38] w/o VLAD 2013 - 45.6 58.5
[37] 2013 98.2 26.9 -
[41] 2014 - 47.6 -
[42] 2013 - 37.3 -
[43] 2012 - - 60
[44] 2011 93.9 - 53.3
[45] 2014 - - 59.6
Ours 95.1 54.1 61.3

Table 5. Comparison to temporal-related approaches (upper part),
and other methods from the recent state-of-the-art (lower part).

included approaches are concerned, we demonstrate increased per-
formance compared to the trajectory-based approaches, such as the
improved/dense trajectories [8], the causality descriptor [36], the
action-bank on HMDB51 [37], and Jain et al. [38]. The majority
of approaches that outperform our method employ Fisher vector,
though we reach comparable performance to [16]. Incorporating FV
within the proposed framework, which is directly applicable, we ex-
pect improved performance due to the complementary information
provided by our method. In any case, our approach achieves results
within the state-of-the-art using much lower dimensional data.

5. CONCLUSIONS

We introduced a simple yet effective approach that models the tem-
poral structure of actions, representing them as sequences of dom-
inant visual words and measuring their similarity using local se-
quence alignment. We have demonstrated that combining our rep-
resentation with BoVW improves recognition performance. There-
fore, our representation carries complementary information that cap-
tures temporal aspects of actions. In the future we plan to integrate it
with other top-performing video representations, such as the Fisher
vector, experiment on supplementary datasets and explore the effect
of alternative alignment algorithms.
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