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ABSTRACT
We introduce a new framework to build human-computer
interfaces that provide online automatic audio-gestural com-
mand recognition. The overall system allows the construc-
tion of a multimodal interface that recognizes user input ex-
pressed naturally as audio commands and manual gestures,
captured by sensors such as Kinect. It includes a compo-
nent for acquiring multimodal user data which is used as in-
put to a module responsible for training audio-gestural mod-
els. These models are employed by the automatic recogni-
tion component, which supports online recognition of audio-
visual modalities. The overall framework is exemplified by
a working system use case. This demonstrates the poten-
tial of the overall software platform, which can be employed
to build other new human-computer interaction systems.
Moreover, users may populate libraries of models and/or
data that can be shared in the network. In this way users
may reuse or extend existing systems.

1. INTRODUCTION
Gestures and speech are the natural way, we humans, com-

municate. Inspired by this, research in human-computer in-
teraction (HCI) and interfaces is continuously evolving to in-
corporate natural human communication features, which are
more intuitive, perceptive and familiar [16]. Interfaces may
incorporate audio/visual information via gesture, speech recog-
nition and natural language processing, as well as physical
information and haptics [13]. At the same time scientific and
technological advances in speech, vision and machine learn-
ing along with sensors such as Kinect, natural interfaces
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such as Apple’s Siri and datasets of challenging recognition
tasks e.g. [23, 10, 12], signify the emerging trend of machine
learning applied on natural multimodal HCI. Apart from
commercial systems, we observe a steady effort since [18,
24] e.g. a crisis management system of [8], that continues
to our days [15, 20, 14, 25] e.g. on natural gesture inter-
action [27], and multimodal recognition challenges [9, 11,
17].

Next, we present not only a software for multimodal au-
tomatic recognition. We rather introduce a complete frame-
work for constructing new human-computer interfaces from
scratch, that work online and support automatic speech/ges-
ture recognition. To our knowledge, there is no such plat-
form, that allows building complete task-specific multimodal
recognition systems with natural interaction. Moreover we
also prompt the users to upload, share and reuse the building
blocks and developed models. The core software component
(Sec. 2.3) performs automatic recognition of audio phrases
and hand gestures from video/audio streams coming from
common or depth cameras (e.g. Kinect) and microphones.
It fuses recognition results from the two modalities to en-
hance performance. Audio-visual processing is carried out
in an online fashion with real-time performance. This can
be employed for multimodal audio-gestural recognition out
of the box, since we provide pre-trained models for a spe-
cific task, as a use case. Particularly, our use case concerns
human-robot interaction via a set of commands that are
mapped to audio phrases and gestures. In addition, we pro-
vide a pipeline of components whereby users may construct
new multimodal recognition systems. It includes software
components for data acquisition and audio-visual training
(Sec. 2.1, 2.2). The newly constructed interface system may
contain new sets of concepts based on another dataset, and
may employ alternative sub-components to the ones we al-
ready include; e.g. one may incorporate a different feature
extraction method. Moreover, we present an actual working
example. For this, we briefly show results in two alterna-
tive datasets that correspond to a specific task (Sec. 3) on
which we have built our use case, evaluating the system’s
performance. In previous work [22, 21, 17, 19] one may find
details on the datasets, acquisition and the related scientific
concepts.
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Figure 1: Conceptual block diagram of our over-
all framework. The three components included are:
audio-visual data acquisition, training and online
recognition of audio-gestural commands.

2. OVERALL SYSTEM DESCRIPTION
The overall framework is based on the Robot Operating

System (ROS) and comprises three individual components
depicted in Fig. 1, that allow users to implement their own
audio-gestural interface. The data acquisition system (Sec. 2.1)
assists and guides task-specific audio and video recordings.
The acquired data may be employed as input to the train-
ing component (Sec. 2.2) to build audio and visual gesture
models. Trained models can be used for online multi-modal
recognition (Sec. 2.3). Recognition output may be directly
used or further processed in multiple ways according to the
developer’s needs. The overall pipeline provides the software
tools to develop custom user interfaces that enable them to
interact with a system in new natural ways.

2.1 Multimodal data acquisition component
The data acquisition component provides the functional-

ity of acquiring audio/video data for training and develop-
ing task-specific models and recognizers. The component
has a remotely controlled GUI that assists a) the supervisor
to guide the subject and annotate on-the-fly the temporal
boundaries of the recorded audio-gestural commands and
b) the subject to perform the audio/gestural commands by
appropriate video prompts shown on the screen. The web
interface allows parameterisation of the recordings and data
organisation. The recorded data are streamed from the sen-
sors to specific ROS data streams (topics) and finally stored
as ROS-bag files along with the accompanying annotations.
Both the annotation file format and the input data streams
are customizable.

2.2 Multimodal training components

2.2.1 Training for audio commands’ recognition
This component implements acoustic model adaptation

leveraging off-the-shelf tools such as HTK [28, 2] allowing
the developer to use other speech processing and modeling
tools as well. The basic function is to adapt a set of pre-
trained subword HMMs to the conditions of the targeted
environment and potentially to the voice of a specific user
when building systems with user profiles. The developer can
find publicly available training recipes and resources [7] for
a variety of languages and recognition engines. Adaptation

Figure 2: Multimodal command recognition system
overview.

can be realized on a small dataset of transcribed utterances
recorded in the targeted environment which can be easily ac-
quired by using the proposed interface. The recorded ROS-
bags and annotations are converted to HTK format and then
provided to the HTK binary “HERest” for MLLR adapta-
tion.

2.2.2 Training for gesture commands’ recognition
The system for training on the visual gesture data follows

a pipeline often employed in the field of action recognition.
The main steps include feature extraction, feature encod-
ing and Support Vector Machine (SVM) training. We em-
ploy the popular Dense Trajectory features with the MBH
descriptor [26]. Features are encoded with Bag-of-Visual-
Words using a visual codebook of K = 4000 centres con-
structed with K-means. Encoded features are used to train
one-versus-all SVM classifiers with the χ2 kernel. The out-
put of the training phase includes the codebook, encoded
features, a kernel normalization factor and SVM models and
is used at runtime for testing.

2.3 Online recognition component

2.3.1 Interprocess communication
The on-line recognition system relies on ROS to provide

the main software layer for interprocess communication. Com-
ponents are implemented as ROS nodes; communication,
synchronization and data exchange is accomplished by mes-
sage passing. In addition, input data from sensors are ac-
quired at runtime as ROS message streams.

Our overall system comprises two separate sub-systems:
(a) The spoken command recognizer, is a single node (SPK
node) that performs always-listening speech recognition of
specific user-defined command phrases that accompany the
gestures. (b) The gesture recognizer consists of two nodes:
the activity detector (AD node) that performs temporal lo-
calization of segments that contain visual activity and the
gesture classifier (GC node) that assigns each detected ac-
tivity segment to one of the pre-defined classes. The output
from both sub-systems are combined at the Fusion node pro-
ducing a single result. These interconnections between the
ROS nodes are illustrated in Fig. 2. Synchronization issues
are handled by an auxiliary node, which receives the final
recognized command. All nodes are automatically launched
by a single ROS launch file (Listing 1).



1 <launch>
2 < !−− launch Kinect −−>
3 <i n c lude f i l e=”$ ( f i nd openni launch ) / launch/

openni . launch ” />
4 < !−− load con f i gu r a t i on −−>
5 <rosparam command=”load ” f i l e=”$ ( f i nd cv sp h r i ) /

c on f i g / g e s tu r e s . yaml ” />
6 <rosparam command=”load ” f i l e=”$ ( f i nd cv sp h r i ) /

c on f i g / f u s i on . yaml ” />
7 < !−− launch ROS nodes−−>
8 <node name=”GC node” pkg=”cv sp h r i ” type=”

DenseTrack ” output=”sc reen ” requ i r ed=”true ”/
>

9 <node name=”AC node” pkg=”cv sp h r i ” type=”
a c t i v i t y d e t e c t i o n . py” output=”sc reen ”
requ i r ed=”true ”/>

10 <node name=”audio f eedback ” pkg=”cv sp h r i ” type=
”soundplay . py” output=”sc reen ” requ i r ed=”
true ”/>

11 <node name=”SPK node” pkg=”cv sp h r i ” type=”s c r .
py” output=”sc reen ” requ i r ed=”true ”/>

12 <node name=”sync ” pkg=”cv sp h r i ” type=”c lock . py”
output=”sc reen ” requ i r ed=”true ”/>

13 <node name=”fus i on node ” pkg=”cv sp h r i ” type=”
audioGestCmdRec . py” output=”sc r een ” requ i r ed
=”true ”/>

14 </ launch>

Listing 1: ROS launch file used to start separate
nodes of the online multimodal recognition system.

2.3.2 Audio commands’ recognition
The SPK node is designed to detect and recognize the

commands provided by the user freely, at any time, among
other speech and non-speech events possibly affected by en-
vironmental noise and reverberation. We enhance robust-
ness through a) denoising of the far-field signals, b) adapta-
tion of the acoustic models, and c) combined command de-
tection/recognition by performing traditional ASR in over-
lapping windows with rejection mechanisms of non-speech
and generic speech segments.
As depicted in Fig. 3, a sliding window of 2.5 sec duration

slides every 0.6 sec in which we enforce recognition of one of
the pre-defined command sentences against other phrases of
various lengths included in the employed finite state gram-
mar to catch any speech or non-speech cases different than
the expected commands. Moreover, rejection of background
events is feasible by thresholding their low-likelihoods. For
robustness, the node outputs a recognition result only in
case the same result is found in two successive overlapping
windows.
The node is implemented as a multithreaded Python class

with separate threads dedicated to recording and recogni-
tion. The recording thread streams multichannel audio from
the audio card to an allocated buffer in memory where the
signals are accessed,segmented and processed by the recogni-
tion thread. Processing includes delay-and-sum beamform-
ing for denoising with the implemented dsb class and extrac-
tion of standard MFCCs-plus-derivatives features utilizing
HTK’s “HCopy”. Finally, N-Best, grammar-based recogni-
tion is realized with “HVite”.

2.3.3 Gesture commands’ recognition
The AD node processes the RGB stream in a frame-by-

frame basis and determines whether there is any visual ac-
tivity in the scene, based on an activity ”score”, whose value
is thresholded. When a transition from non-activity (ac-
tivity) to activity (non-activity) is detected, a START (END)
signal is sent to the GC node, along with the timestamp

Figure 3: SPK node timeline: Sliding window based
spoken command processing and recognition.

Figure 4: Fusion node: Handling and synchronizing
outputs from the individual recognizers. If outputs
from both modalities are available they are fused to
form a single recognition result.

of the corresponding frame. Small segments of activity are
rejected (a REJECT signal instead of an END signal is sent to
the GC node) to ensure that small spontaneous movements
of the user are not processed.

The Gesture Classifier node processes video segments and
assigns them to one of the pre-defined categories. The clas-
sification pipeline includes feature extraction, feature encod-
ing and SVM classification. The segments’ temporal bound-
aries are indicated by the AD node as described previously.
In particular, the GC node caches input frames from the
camera. When a START signal is received, feature extraction
begins immediately, starting from the indicated timestamp,
until an END signal is received. Subsequently, features are ex-
tracted from the remaining frames of the activity segment,
the classification pipeline continues and the result is broad-
cast to the Fusion node.

2.3.4 Multimodal post-processing and fusion
We combine the individual multi-class results using a late

fusion scheme that encodes inter-modality agreement de-
scribed simply with the following ranking rule: “if the best
speech recognition hypothesis is among the 2-best gesture
hypotheses, then it is announced as the multi-modal re-
sult”. We found it quite effective and fast among other
approaches like the N-best hypothesis rescoring we have pro-
posed in [22]. Nevertheless, the developer is allowed to in-
corporate any other rules and fusion schemes.

The implemented Fusion node of Fig. 4 receives the N-best
results announced by the individual recognizers. It checks
for available results every 0.5 secs by receiving periodically
messages from the clock node Sync in order to synchronize
the recognizers. A waiting period T is also defined, during
which the node waits to combine the incoming messages. If
this period expires, it is assumed that one modality either
was not activated by the user, or failed to detect the given
input. In such cases, the node announces single-modality
results.



Figure 5: Multimodal command recognition exam-
ple. The user gestures and utters audio commands.
Activity segments are detected by the AD node
based on an “activity” score (second row). These
are processed by the GC node (top row; dense tra-
jectories superimposed to RGB frames). The third
row depicts the respective audio waveforms.

3. CASE STUDY: AN HRI SYSTEM
Based on the above described software platform, we pro-

vide a specific audio-gestural interface. This is a working
human-robot interaction (HRI) system developed with the
presented platform in the context of the MOBOT project [4].
This application concerns elderly people communicating with
a robotic platform in order to get assistance. Our audio-
gestural vocabulary includes 19 verbal commands along with
the corresponding gestures for concepts like “Come here”,
“Help me”, “I want to stand up” etc. The robot reacts ei-
ther providing audio responses or moving in order to assist
the elderly user. The system was trained on the data ac-
quired in [21] using the acquisition system described briefly
in Sec. 2.1. To reduce the total processing time we down-
sample RGB frames both in space and time by a factor of 2.
This results to an average processing rate of 20 fps. The SPK
node supports close to real time spoken command recogni-
tion in German, English, and Greek. Figure 5 illustrates
visual processing aspects of online recognition.
Our online recognition system is tested on MOBOT-6a

task [22] and is currently being evaluated on the multimodal
gesture dataset acquired in [21]. All experiments are carried
out with the leave-one-out scheme, i.e. testing on one sub-
ject, while the rest of the subjects are used for training; this
is repeated for all subjects. We report average recognition
accuracy across all subjects.
The MOBOT-6a includes 8 different gestural and German

verbal commands performed by 8 elderly subjects. These
are developed to accommodate their communication with
the robotic platform. Patients are sitting in front of the rol-
lator, placed at a distance of 2.5 meters. Each command is
performed 3−6 times by each patient. We obtained 84.13%,
56.98%, and 90.15% accuracy for the audio, visual modality,
and their fusion respectively. The dataset described in [21]
includes 13 subjects performing the 19 gestural and Greek
audio commands 4 − 5 times under different settings, e.g.
sitting, standing, with viewpoint change. Preliminary eval-
uation yields 66.15% and 82.46% accuracy for the audio and
visual modality respectively. Note that the designed Greek
verbal commands were not as discriminative as the German
ones, yielding lower results.

3.1 Practical issues and dependencies
Other employed software: Our training and recognition

components have been developed mainly in Python and C.
In addidion, we use publicly available 3rd party software.
Specifically, spoken command recognition is based on the
HTK 3.4 toolkit [2] which can be downloaded upon regis-
tration. Regarding the gesture recognizer: a) dense tra-
jectories [26] are extracted using an custom version of the
publicly available code [1], b) optical flow for activity de-
tection is estimated by using the openCV library [5], c) the
VLFeat library [6] is utilized for encoding and other opera-
tions and finally d) SVM training and classification is based
on LIBSVM [3].

Sensors: We have successfully tested our system with a
linear 8-channel MEMS array and a Kinect camera, though
conventional microphones and cameras supported by Linux
have been tested and can be used as well. Note that distant
speech recognition performance depends on the quality of
the audio signals and our system takes advantage of the
configuration of a microphone array’s channels internally.
Nevertheless, the user is free to use any external or built-in
microphone.

3.2 Building new interfaces and models
Apart from reusing the provided models to perform on-

line audio-gestural command recognition and mapping the
recognition results to specific user or system defined actions,
the overall framework allows the design and implementation
of various multimodal audio-gestural automatic recognition
interfaces. This is accomplished by setting basic parame-
ters such as the task, the concepts, and other configuration
variables or metadata information. Guided by the acquisi-
tion software one may record data with multiple subjects
performing gestures and uttering audio prompts according
to the task definition. The training pipeline is responsible
to produce the appropriate models using the acquired data,
or reusing models which can be found on the web. Finally,
given the available or new models built from scratch, the
online system is ready to be used.

4. CONCLUSIONS
We presented a complete software platform for the de-

velopment of multimodal interface systems that offer audio-
gestural commands’ automatic recognition. We also briefly
describe a specific system that has been constructed as a
use case, tested and employed for human-robot interaction.
Moreover, we have provided experimental evidence on the
performance of the employed methods. These are only in-
stances related to the current use case and users may employ
other algorithms for the included components. Considering
the emergent fields of human-computer interaction and mul-
timodal human action, gesture, speech recognition we think
that the introduced software platform, as well as the sharing
and reusability of data/models opens new perspectives for
human-computer natural interaction.

5. ACKNOWLEDGMENTS
This research work was supported by the EU under the

projects MOBOT with grant FP7-ICT-2011.2.1-600796 and
I-SUPPORT with grant H2020-643666.



6. REFERENCES
[1] Dense trajectories. https:

//lear.inrialpes.fr/people/wang/dense trajectories.
Accessed: 20/5/2016.

[2] Htk. http://htk.eng.cam.ac.uk/. Accessed: 20/5/2016.

[3] libsvm. https://www.csie.ntu.edu.tw/ cjlin/libsvm/.
Accessed: 20/5/2016.

[4] MOBOT project. http://www.mobot-project.eu/.

[5] Open cv. http://opencv.org/. Accessed: 20/5/2016.

[6] Vlfeat. http://www.vlfeat.org/. Accessed: 20/5/2016.

[7] Voxforge. http://www.voxforge.org/. Accessed:
20/5/2016.

[8] P. Agrawal, I. Rauschert, K. Inochanon, L. Bolelli,
S. Fuhrmann, I. Brewer, G. Cai, A. MacEachren, and
R. Sharma. Multimodal interface platform for
geographical information systems (geomip) in crisis
management. In Proceedings of the 6th international
conference on Multimodal interfaces, pages 339–340.
ACM, 2004.

[9] I. Bayer and T. Silbermann. A multi modal approach
to gesture recognition from audio and video data. In
Proceedings of the 15th ACM on International
conference on multimodal interaction, pages 461–466.
ACM, 2013.

[10] C. Chen, R. Jafari, and N. Kehtarnavaz. Utd-mhad: a
multimodal dataset for human action recognition
utilizing a depth camera and a wearable inertial
sensor. In Image Processing (ICIP), 2015 IEEE
International Conference on, pages 168–172. IEEE,
2015.
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