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ABSTRACT
The COVID-19 pandemic has undoubtedly changed the standards
and affected all aspects of our lives, especially social communica-
tion. It has forced people to extensively wear medical face masks,
in order to prevent transmission. This face occlusion can strongly
irritate emotional reading from the face and urges us to incorporate
the whole body as an emotional cue. In this paper, we conduct
insightful studies about the effect of face occlusion on emotion
recognition performance, and showcase the superiority of full body
input over the plain masked face. We utilize a deep learning model
based on the Temporal Segment Network framework, and aspire
to fully overcome the face mask consequences. Although facial
and bodily features can be learned from a single input, this may
lead to irrelevant information confusion. By processing those fea-
tures separately and fusing their prediction scores, we are more
effectively taking advantage of both modalities. This framework
also naturally supports temporal modeling, by mingling informa-
tion among neighboring frames. In combination, these techniques
form an effective system capable of tackling emotion recognition
difficulties, caused by safety protocols applied in crucial areas.
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1 INTRODUCTION
The possible applications of an interface capable of assessing hu-
man emotional states are numerous. Humans generally treat com-
puter agents as they might treat other people [32]. Robots and
systems that are able to recognize, interpret and process human
affect [5], are arguably well suited to this, making the interaction
more effective and pleasant. They find fertile ground in the area of
computer-assisted education, as learning is the quintessential emo-
tional experience. A learning episode might begin with curiosity
and fascination. But as its difficulty increases, one may experience
confusion, frustration or anxiety, and thus, may abandon learn-
ing [29]. A tutoring agent, who is able to estimate the learner’s
affective state, can respond appropriately and give encouraging
suggestions. Existing work has shown that robot tutors enhance
learning, by personalizing their motivational strategies to the stu-
dent’s emotional behavior [13] [20]. Another crucial area is health
care, as mental health disorders, like depression and psychosis, are
on the rise across the world. Emotion recognition systems can be
an effective strategy for preventing and monitoring such disorders
[38].

While works based on facial expressions abound in the area,
recognizing affect from the body remains a less explored topic. A
study in neurobiology has shown that body movement and posture
contain useful features for recognizing human affect [8]. In other
experiments, it was shown that facial and bodily expressions work
complementary for visual perception of emotion, and in some cases
humans perceive bodily expressed emotional information as more
diagnostic than facial [2]. Furthermore, the visibility of facial cues
is not guaranteed. Bodily expression recognition becomes crucial
when facial features are occluded. Medical face masks, which are
extensively used nowadays due to the COVID-19 pandemic [6], are
the epitome of face occlusion. Because bodies are more expressive
than faces in those situations, social information can be detected
from the body instead.

Although there has been a considerable amount of research
on automatic emotion recognition in adults, the topic regarding
children has been understudied. Children go through a critical de-
velopment process and applications involving them require special
attention [31]. They also tend to fidget and move around more than
adults, leading to more self-occlusions and non-frontal head poses
[4]. This becomes even more challenging, considering the current
health and safety protocols that demand the use of face masks.
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Robots can no longer rely only on facial expressions to recognize
emotion, but also have to take into account body expressions that
can stay visible and detectable, even when the face is unobservable.
Children’s behavior and natural characteristics differ from adults,
so perception systems need to be specifically trained, to be able to
tackle Child-Robot Interaction (CRI) problems.

The rest of the paper is organized as follows: Section 2 discusses
related work on emotion recognition mainly from the body. Sec-
tion 3 describes the adopted deep learning-based visual emotion
recognition model in detail, as well as the tools and methods used
for the experiments. Section 4 presents the experimental results,
and lastly Section 5 provides our conclusions.

2 RELATEDWORK
In recent years, deep learning methods have been very popular due
to the massive amounts of digital data in combination with pow-
erful processing hardware. Deep extracted features have yielded
excellent results and on most cases outperformed non-deep state-of-
the-art methods for the emotion recognition task. When processing
a video with emotional expressions, an essential component is cap-
turing temporal information to complement the prediction from
still images. Two-stream Convolutional Neural Network (CNN) ar-
chitectures use multi-frame optical flow to handle complex actions
like emotional expressions [34].

The most common modality used by the research community for
identifying emotion is facial expressions [21]. Some works have pro-
posed an audiovisual approach [12], where the system takes speech
as an additional input to the face, in order to tackle occlusions and
increase robustness. In [26], they utilize 3D CNNs to extract spatio-
temporal features both from face videos and audio signals, and deep
belief nets [17] for emotion recognition. However, the COVID-19
pandemic has fostered a pervasive use of medical face masks all
around the world, making a serious impact on social communica-
tion. Several studies investigated how the presence of a face mask
affects emotion recognition accuracy and revealed that it dimin-
ishes the people’s ability to accurately categorize a facial expression
[6] [14]. On top of that, the mask impairs re-identification of the
same face by people [24], which suggests a need for mask-specific
model training. In [35], they also explored how masks influence the
perceived emotional profile of facial expressions. It was shown, that
it not only led to a decrease in perceived intensity of the intended
emotions, but it also resulted in an overall increase in the perceived
intensity of non-intended emotions. In [28], even super-recognizers,
people who are highly skilled and superior in recognition tasks,
were impaired by the face occlusion caused by the face mask. This
negative effect in emotional reading is not limited to adults, as it
also concerns interaction with children [7].

Motivated by all the above, we move towards incorporating bod-
ily expressed information as a major cue in the emotion recognition
task. An early work [15] combined handcrafted face and body fea-
tures at feature and decision-level for emotion classification. In
[10], a hierarchical multi-label annotation method was proposed,
which fused body skeleton with facial expressions for automatic
recognition of emotion of children during CRI scenarios. In [23],
they experimented with two bodily expression pipelines, one of
which implemented a two-stream-based CNN. The other one relied

solely on the human skeleton and utilized a spatial-temporal Graph
Convolutional Network (GCN) [37], which constructs a graph from
the human body landmarks with their natural spatial connectivity,
as well as temporally neighboring landmarks.

Along with body, context has been an additional modality in-
volved in the task of emotion recognition. In [11], RGB and flow
body streams were accompanied with a context RGB stream and a
visual-semantic embedding loss based on word embedding repre-
sentations. In [18], they proposed a network structure composed of
a GCN processing skeleton landmarks, and two 3D CNNs for RGB
body and context input. A network ensemble, including streams
that processed the body in RGB, flow and skeleton form was pro-
posed in [30]. This variety of bodily expressed cues have also been
involved in CRI emotion recognition systems [9] [25].

Our work focuses on the effect of the face occlusion on emotion
recognition performance. We adopt a proven related work model
and process only RGB input, despite the diversity of body cues
that can be conveyed. We sense that this approach suits best to our
purpose, regarding the medical face mask effect study.

3 VISUAL EMOTION RECOGNITION MODEL
In this chapter, we present the model, that will be used to tackle
the visual emotion recognition task. We discuss its structure and
benefits and also address the occuring challenges, which are taken
into account in the model’s various configurations. Furthermore,
we describe the tools utilized to conduct the upcoming experiments
and some techniques to enhance model performance.

3.1 Feature Capturing
Complex actions, like emotional expressions, comprise multiple
stages spanning over a period of time and it would be quite a loss
failing to utilize them. On the other hand, each expressed emotion
is not present throughout a whole input video. These facts, indicate
that we are in need of effective general feature capturing. While
the plain CNN architecture considers the whole input sequence, as
well as each frame in the video separately, the Temporal Segment
Network (TSN) framework [36] operates on a sequence of short
snippets sparsely sampled from the entire video. Each snippet in
this sequence will produce its own preliminary prediction of the
emotion classes and then, a consensus among the snippets will
be derived as the video-level prediction. Therefore, it allows the
network to access several parts of the video, but also tackles the
inability of the former to model long-range temporal structure, thus,
being more likely to observe the corresponding expression.

3.2 Method
The overall architecture of our model is shown in Fig. 1. Formally,
given a video 𝑉 , we divide it into 𝐾 non-overlapping segments
{𝑆1, 𝑆2, ..., 𝑆𝐾 }, to access several parts of the video, and transform
them into a sequence of snippets {𝑇1,𝑇2, ...,𝑇𝐾 }. Each snippet 𝑇𝑘
is produced, by randomly sampling 3 consecutive frames from its
corresponding segment 𝑆𝑘 , to tackle frame redundancy. Finally, a
segmental consensus function H is applied on the snippet-level
predictions produced by the backbone, to obtain the final scores 𝑆 :

𝑆 = TSN(𝑇1,𝑇2, ...,𝑇𝐾 ) = H(F (𝑇1;W), F (𝑇2;W), ..., F (𝑇𝐾 ;W))
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Figure 1: TSN-Based Model Architecture

Figure 2: EmoReact Training Set Imbalance

Here F (𝑇𝑘 ;W) denotes the function representing the application of
a CNN with parametersW on the snippet𝑇𝑘 . The CNN is equipped
with a ResNet-50 backbone architecture [16]. The consensus func-
tion H we use is average pooling and the obtained video-level
scores 𝑆 are fed to a loss function L to perform the training step.
This framework offers several benefits to emotion recognition. Com-
pared to processing the entire video, the sampling process ignores
redundant information in consecutive video frames, helping avoid
overfitting, and offers a type of data augmentation, valuable for
children emotion databases of small size.

3.3 Database
We perform our experiments on the EmoReact dataset [27], which
contains 1102 videos of 63 children, aged between 4 and 14, express-
ing emotions while discussing different topics, collected from the
YouTube channel React. Each video is annotated with one or more
emotions, from a total of 8 emotion labels: Curiosity, Uncertainty,
Excitement, Happiness, Surprise, Disgust, Fear, and Frustration.
Therefore, we are dealing with a CRI binary multi-label classifi-
cation problem. In Fig. 2, we show the imbalance of EmoReact’s

(a) Original Image (b) Mesh Tracking (c) Mask Polygon

Figure 3: Mask Application Steps

training set, which means it includes an unequal number of videos
for each emotion label, and is something that we must address
in our upcoming model configuration choices. We can also argue
that some emotions (Fear, Frustration, Disgust) are expressed in a
relatively low number of samples, which results in possible lack of
diversity and less ease to generalize well across unseen individuals,
introducing an extra degree of difficulty to our problem.

3.4 Medical Face Mask Effect Study
The COVID-19 pandemic has forced people to extensively wear
medical face masks, in order to prevent transmission. Motivated
by this fact, we want to conduct an experimental study about the
effect of medical face masks on emotion recognition, by applying a
relevant mask on the EmoReact children’s faces, as an attempt to
simulate the face occlusion consequence.

3.4.1 Mask Application. To apply the mask, we detect the facial
surface geometry using Google’s MediaPipe Face Mesh [19], an
end-to-end CNN-based model for inferring an approximate 3D
mesh representation of a human face from a single image. It uses a
dense mesh model of 468 vertices and is well-suited for face-based
augmented reality effects. We track the 2D coordinates of the right
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Figure 4: EmoReact Masked Samples

and left jawline vertices, starting from just below the eyes until the
chin, and one extra vertex for the nose, in order to form a polygon
that is finally filled to represent the mask (Fig. 3). The jawlines
for the mask are created by tracking the edge x-axis vertices and
accordingly selecting among several jawline candidates, that we
manually created for this particular face mesh model 1. In Fig. 4,
we display several samples of EmoReact after the application of the
mask and showcase our tool’s robustness to face orientation.

3.4.2 Body Detection. In order to incorporate bodily expressions,
we need a way to detect the human body. Google’s MediaPipe also
provides human body and hand skeleton tracking tools [3] [39]. We
combine keypoints tracked by both tools and create a bounding box
with the edge points, expanded by a factor of 10% at each respective
dimension, which is then cropped as the input image. This process
is demonstrated in Fig. 5, where most background noise is removed
and full body information dominates the cropped image.

3.5 Modality Fusion
We are looking to take advantage of the face and body information
separately, by fusing the individual modality prediction scores with
a late fusion scheme. The full body crop includes the masked face,
and processing it as a single RGB input image can lead to irrelevant
information confusion. The proposed method is to separate the
face and body features, in order to avoid the aforementioned issue.
The core model remains as is, but now processes the face crop,
and the plain body crop with the corresponding face area blacked
out, in two separate forward passes (Fig. 6). After producing the
scores 𝑆𝑓 and 𝑆𝑏 from face and plain body respectively, we use a
late fusion scheme to obtain the final scores 𝑆 . Finally, the overall
loss L is simply the summation of the individual modality losses:
L = 𝐿𝑓 + 𝐿𝑏 .

3.6 Temporal Modeling
The current TSN-based model processes only one of the 𝑁 con-
secutive frames of each snippet, being heavily based on spatial
structure. This architecture naturally supports temporal modeling,
by mingling information among neighboring snippet frames with
the Temporal Shift Module (TSM) [22]. TSM can be inserted into

1The code for the mask application tool is publicly available at:
https://github.com/nkegke/medical-face-mask-applier

Figure 5: Body Detection

CNNs, to exploit temporality at zero computation and parameters.
It shifts part of the channels of the input frames and the latent
representations of each snippet along the temporal dimension, both
forward and backward, thus facilitate information exchange among
neighboring frames. Because information contained in the channels
is no longer accessible for the current frame, the spatial modeling
ability of the backbone can be harmed. To address this problem,
the module is placed inside the residual branches of the ResNet,
so the information in the original activation is still accessible after
temporal shift, through the identity mappings.

3.7 Model & Training Configurations
The model is pretrained on AffectNet, the largest facial expression
dataset. We obtain the weights of the network as provided by the
PyTorch framework, achieving 59.47% accuracy on the validation
set. Before feeding the input to the network, we rescale sampled
RGB images from full resolution to 224 × 224. We train our models
for 60 epochs, with stochastic gradient descent with momentum
0.9 and a batch size of 8, L2 regularization with weight decay 5e-4,
and start with a learning rate of 1e-2, which is then reduced by
a factor of 10 at 20 and 40 epoch milestones2. Since our task is
binary multi-label classification, our predictions are fed to a binary
cross-entropy (BCE) loss function, after suppressing the scores 𝑆 to
[0,1] with a sigmoid function. BCE depends on the the label-specific
error, thus it penalizes label predictions independently. Following
prior work, the only evaluation metric that has been shown to
be robust to imbalanced datasets is the Area Under the Curve of
Receiver Operating Characteristic (ROC AUC). The scores 𝑆 , of size
8 per sample, are averaged to obtain a single overall performance
metric. Instead of giving equal weight to each class, which will
over-emphasize on the typically low performance on an infrequent
class, we compute the unbalanced average, so every sample-class
pair contributes equally to the overall metric. For evaluation, we
select the epoch with the best validation ROC AUC and apply the
corresponding network on the test set, to finally report the best
overall performance achieved.

2The code for the model and the experiments is publicly available at:
https://github.com/nkegke/deep-affective-bodily-expression-recognition

https://github.com/nkegke/medical-face-mask-applier
https://github.com/nkegke/deep-affective-bodily-expression-recognition
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Figure 6: Modality Score Late Fusion Scheme

Table 1: TSN Training Computational Load

Segments Time per Epoch (sec.)
Training Validation

1 6 4
3 14 10
5 23 16
10 32 23

4 EXPERIMENTAL RESULTS
In this section, we present our experimental procedure and re-
sults. First, an ablation study on the number of TSN segments is
performed to explore possible trade-offs. Then, we study the medi-
cal face mask effect by comparing emotion recognition results of
masked input to when the faces are visible. We examine the case of
when the mask is applied to the image of the full body, as well as
only the face, to compare performance between input modalities.
Furthermore, visual explanation techniques are utilized to display
expressive features for different modalities and emotion categories.
Lastly, we report results given with the enhancement techniques,
both when individually utilized and when combined.

4.1 Performance vs Speed Trade-off
In Table 1, we perform an ablation study on the number of segments
and consequently the number of snippets, which are used during
the TSN training, by considering 4 different values: 1, 3, 5 and 10.
By increasing the number of segments, we significantly increase
computational load, and therefore inference and training time. On
the other hand, when we provide the model with multiple parts of
the video, it might help achieve better performance. The numbers
reported stand for training with a single RTX 2080 GPU, but one
could use multiple ones and increase batch size proportionally for
faster training.

4.2 Mask Effect Results
We compare emotion recognition results between default andmasked
input, for face and full body crops. For face cropping, we extract
the visual face features using OpenFace [1], an open source facial
behavior analysis toolkit.

4.2.1 Mask Effect on Face Input. In Table 2, we report results on
face input. At first sight, performance drops considerably (≈ 3-4%).
This is a result we expected, as the mask covers the majority of the
face, including one of the most expressive facial features, the mouth.

Table 2: Mask Effect Results on Face Input

Segments ROC AUC PerformanceDefault Mask
1 0.755 0.728 −2.7%
3 0.769 0.733 −3.6%
5 0.767 0.732 −3.5%
10 0.770 0.741 −2.9%

Table 3: Mask Effect Results on Full Body Input

Segments ROC AUC PerformanceDefault Mask
1 0.752 0.752 -
3 0.759 0.758 −0.1%
5 0.758 0.754 −0.4%
10 0.761 0.759 −0.2%

Intuitively, if one would try to predict the emotions expressed
in the two images of Table 2, we sense that they would have a
better chance without the presence of the mask. Regarding the
number of segments used, performance peaks at 10, but increasing
it above 3 does not result in significant performance difference. This
means that the model does not necessarily create stronger temporal
structure when provided with more than 3 parts of the video.

4.2.2 Mask Effect on Full Body Input. Looking at Table 3, which
shows results on full body input, the first and most important
observation we make, is that performance decrease is very little
to none (0-0.4%). These results suggest that the model can exploit
body information in such a way, that even with the application
of a face mask, and consequently face information loss, it only
suffers minimal performance drop. We also note the same pattern
of performance with the masked face input results, which is better
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Table 4: Masked Input Result Comparison

Segments ROC AUC PerformanceMasked Face Masked Full Body
1 0.728 0.752 +2.4%
3 0.733 0.758 +2.5%
5 0.732 0.754 +2.2%
10 0.741 0.759 +1.8%

Figure 7: Masked Input Modality per Emotion Performance

performance as complexity goes up. However, performance increase
from 3 to 10 segments is minimal (0.1%), which again suggests
working towards the speed side of the trade-off.

4.2.3 Masked Face vs Masked Full Body Results. Lastly, in Table 4
we compare model performance with masked face versus masked
full body crop, and show that incorporating the whole body in the
input gives superior results over face crop. With black we highlight
the best overall result, whereas with blue we highlight the result of
the suggested optimal model, regarding the performance vs speed
trade-off discussed earlier. The obvious conclusion is that moving
towards bodily expression recognition is our best option, when the
face is occluded. However, this is only a baseline result, which we
could build on and pursue improvements by enhancing our model.

4.3 Per Emotion Performance
In Fig. 7, we report per emotion ROC AUC and compare masked
face versus masked full body input performance. Full body outper-
forms face in all emotions, except for Excitement and Frustration.
This could be translated as these two emotions being expressed
more by facial than bodily features from the children involved and
incorporating the body in this case misleads the network. For Fear,
performance is a lot higher with full body compared to face, which
intuitively makes sense as children tend to utilize their body more
to express fear [10]. Happiness is not conventionally an emotion
with intense expressions, as most people think of just a simple

Happiness Excitement Curiosity Frustration

Figure 8: Face Decision Regions

Happiness Excitement Curiosity Frustration

Figure 9: Body Decision Regions

Happiness Excitement Curiosity Frustration

Figure 10: Mixed Decision Regions

smile, which is obstructed by the mask, but the model manages to
recognize it at a decent level. Another conclusion we could come
up to is that for some emotion pairs, like Curiosity-Uncertainty
or Excitement-Surprise, which intuitively are quite similar to each
other, performance might be lower for each emotion individually,
because it is harder for the model to distinguish one from the other.

4.4 Visual Explanation
To have a better understanding of the mask effect on performance,
we utilize a technique for producing visual explanations for pre-
dictions. We wish to explore where our model focuses in the input
image and how its behaviour varies for the different emotion cate-
gory targets. The method we choose is Grad-CAM [33], which uses
the gradients of an emotion target flowing into the final convolu-
tional layer, to produce a coarse localization map that highlights the
important regions in the image for predicting that particular emo-
tion. We provide some example frames of the activation mapping,
where model focus increases from blue to red.

Starting from the face examples (Fig. 8), we can see that the
model focuses on the upper part of the face. The facial features
that could be utilized are the eyes (half-closed for Curiosity, wide
open for Excitement), the eyebrows (raised for Excitement), and
the forehead (frowning for Frustration).

Regarding the body examples (Fig. 9), the arms become visible
and provide information that is utilized by the model. The bodily
features that could be utilized are the hands (calm for Happiness,
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Table 5: TSN Fusion Scheme Performance Comparison

Input - 3 Segments Aggregation ROC AUC
Masked Face - 0.733
Plain Body - 0.736

Fusion Maximum 0.724
Average 0.764

Table 6: TSN vs TSM Model Performance Comparison

Model Input - 3 Segments Shift ROC AUC
TSN Masked Face - 0.733
TSN Masked Full Body - 0.758

TSM Masked Full Body 1/8 0.762
1/4 0.763

aroused for Excitement, investigating for Curiosity, fist for Frus-
tration), the arms (wide open for Excitement), and the shoulders
(shrugged for Curiosity).

In Fig. 10, we present several examples where the model focuses
not only the body, but also on the face, fusing different modality
information to make predictions. This suggests that it is able to
learn both facial and bodily features in a single RGB stream.

Overall, the model has learned to ignore noisy features, like the
mask and the background. It is crucial to note, that the background
is considered noise in this dataset, as the videos were recorded in a
directed setup and it can be the same for different reaction topics.
There is also large variability introduced by differences in the chil-
dren’s appearance due to clothing, body shape, size and hairstyles.
These examples specify that the model is able to overcome these
difficulties and focus on the expressive features.

4.5 Enhancement Results
We enhance the TSN-based model with the modality fusion and
temporal modeling techniques and aspire to fully overcome the
consequences of the face mask, by achieving performance as high
as with the unmasked input.

4.5.1 Modality Fusion. In Table 5, we report fusion results after
experimenting with two different aggregation functions: maximum
and average. We also present an extra row of the plain body input,
the performance of which is expected to be on the same scale with
the masked face. A first observation we can make is, that using max-
imum as the aggregation function gives poor results, as it is actually
outperformed by the plain body crop method. That might happen,
because we are utilizing different modality information with a sin-
gle input and wrong positive predictions (false positives) from one
modality are possibly canceling out correct negative predictions
(true negatives) from the other. On the other hand, averaging seems
a choice that blends well, as it clearly improves performance. In-
tuitively, it makes sense to have a balanced consensus between
modalities, as emotional expression cues can vary.

4.5.2 Temporal Modeling. We experiment with the originally pro-
posed channel shift fractions: 1/8 and 1/4. In Table 6, we observe

Table 7: Method Combination Performance Results

Model Input - 3 Seg. Shift Aggr. ROC AUC
Unb. Bal.

TSN Masked Face - - 0.733 -
TSN Masked Full Body - - 0.758 -

TSM Fusion
1/8 Max. 0.729 -

Avg. 0.767 -

1/4 Max. 0.731 -
Avg. 0.768 0.696

TSN Unmasked Face - - 0.769 0.698
[27] - - - 0.620

that inserting TSM improves performance slightly. Either by shift-
ing 1/4 or 1/8 of the channels, the difference is minimal. We come to
the conclusion, that spatial feature learning plays a more important
role for an emotional expression, while temporal structure is rather
complementary.

4.5.3 Method Combination. In Table 7, we report results when
combining the TSM and fusion techniques. It seems that when
utilizing both, the same conclusions as earlier apply. That means,
TSM seems to give slight temporal modeling ability to themodel and
the fusion method results suggest that it effectively takes advantage
of the face and body information separately, and possibly avoids
irrelevant information confusion. The best overall performance is
0.768 ROC AUC and is achieved by the averaging fusion method,
when using TSM with 1/4 partial shift. Compared to 0.769, which
is the best face result achieved with no mask applied, reported
in Table 2, we almost fully overcome face information loss and
achieve similar performance. For reference, the last row reports
the balanced ROC AUC average result from [27], where features
extracted from [1] are used with an SVM, which our TSM Fusion
method clearly outperforms.

5 CONCLUSION
In this work, we studied the effect of face occlusion on a CRI vi-
sual emotion recognition problem. In the presence of a face mask,
performance from just the face drops considerably and urges us to
incorporate the body modality. By providing the full body image
as input, the model can sustain its performance and outperform
the masked face case. Spatial information can be instrumental and
yield great results, while temporal structure complements fittingly,
as the consensus of several video segments provides additional
emotional expression information. When enhancing the baseline
model with temporal modeling and more importantly modality
fusion, we almost fully overcome face information loss and achieve
performance similar to the unmasked input case. Our visualizations
provided insights suggesting a single RGB stream can ignore noise
and learn both from facial, as well as bodily expressive features. An
emotion recognition system with these capabilities can effectively
tackle face occlusion forced by health and safety protocols, and be
a core part of various applications in crucial areas like education
and health care, for both adults and children.
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