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ABSTRACT

Modelling textured images as AM-FM functions has been
applied during the last years to texture analysis and seg-
mentation tasks. In this paper we present some advances
in two directions, namely the improvement of modulation
feature extraction and texture vs. non texture discrimina-
tion. First we present a modified dominant AM-FM compo-
nent analysis scheme based on non-linear energy operators.
Subsequently we propose a novel approach to the discrimi-
nation between textured and non-textured image areas using
multiband filter responses which is formulated as a statis-
tical multiple hypothesis testing problem. The theoretical
insights of this approach are supported by experimental val-
idation using natural images.

1. INTRODUCTION

The detection and analysis of textured regions in images is
a central research topic in image processing and computer
vision, since textures are present in almost all natural im-
ages. A recently developed model for decomposing an im-
age into its essential components is the AM-FM modulation
model [4, 7] which describes intensity variations in magni-
tude and orientation in terms of instantaneous frequencies
of spatially varying 2D modulated sinusoids. Extraction of
modulation information has been widely used so far for im-
age analysis, classification and segmentation [13, 4, 9, 15].

Multiband filtering approaches [3, 1, 14] for texture anal-
ysis are commonly used to derive a representation of an im-
age which lends itself more easily to analysis. The Dom-
inant Component Analysis (DCA) scheme [9, 10], which
aims at capturing local image oscillations as laid out by the
AM-FM image model, chooses at each pixel the most pow-
erful of these channels and estimates the AM-FM model pa-
rameters using the outputs of that channel.

In this work we present some advances in feature extrac-
tion from modulation components and present a statistical
hypothesis testing method for the task of discriminating be-
tween textured and non-textured image regions. In the first
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part we propose an alternative method for DCA based on
2D energy operators that is characterized by strong localiza-
tion and boundary preservation. Subsequently we propose
a multiple hypothesis testing formulation for the texture vs.
non texture selection and for the channel selection criterion.

2. IMAGE MODULATIONS ANALYSIS

2.1. Modelling Images as AM-FM Modulations

The use of multiple sinusoidal modulating signals for mod-
elling images has been proposed and explored by Bovik [4]
and Havlicek in [7, 9], according to which any 2D narrow-
band signal can be expressed in terms of spatially varying
amplitude and frequency modulations, namely as a super-
position of locally smooth, nonstationary sinusoids:

I(x, y) =
K∑

k=1

ak(x, y) cos[φk(x, y)]. (1)

ak(x, y) and~Ωk(x, y) = ∇φk(x, y) are the Amplitude and
Frequency Modulation signals of theK image components
respectively, modelling image contrast and locally emer-
gent frequency variations respectively. The FM signal may
be decomposed in the instantaneously varying horizontal
Ω1,k = ∂φk/∂x and verticalΩ2,k = ∂φk/∂y frequency
signals.

A set of bandpass filters is used to decompose the image
into narrowband components and a demodulation algorithm
is applied to each of them. A common choice for the filter-
bank are Gabor filters which achieve the optimal joint time-
frequency uncertainty minimization in both 1-D [6] and 2-D
[5, 3]. Demodulation techniques of single AM-FM compo-
nent images include the 2D Energy Separation Algorithm
(ESA) [13] based on the differential Teager-Kaiser energy
operator and the analytic image extension [10].

2.2. Dominant Component Features

As an alternative to channelized analysis and demodula-
tion of the narrowband single components of (1), DCA of-
fers a rigorous and more compact way for capturing locally
emerging modulation signals. After decomposing the image
in narrowband components, the amplitude and frequency
estimates of each pixel are estimated on a pointwise basis
using the channel that maximizes an activity criterion:
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Γi(x, y) =
|(J ∗ hi)(x, y)|
max~Ω|Hi(~Ω)|

, J(x, y) = I(x, y)+ jÎ(x, y).

(2)

In (2) * denotes convolution,hi, Hi are theith filter’s im-
pulse and frequency response andJ is the analytic counter-
part of I with Î its 2D directional Hilbert transform. Ac-
cording to theanalytic image model[8], any real-valued
image can be extended to a complex-valued one, using an
adjusted directional Hilbert transform, uniquely assigning
instantaneous amplitude and phase signals to an image AM-
FM component of the forma(x, y)ejφ(x,y). A demodu-
lation algorithm has been developed to approximately ex-
tract the amplitude and signed frequency signals from the
analytic imageJ . Usually post-processing and smoothing
techniques are required in order to suppress error effects. A
detailed descriptions of the above can be found in [10].

2.3. Modulation Energy and Separation

An efficient and computationally simple approach to ex-
tracting modulation features from AM-FM modelled im-
ages (1) was presented in [13], based on the 2D Energy
Operator,Ψ(I) , ||∇I||2 − I∇2I, an extension of the
1D Teager-Kaiser Energy Operator used for speech demod-
ulation. ApplyingΨ to a 2D AM–FM signalIk(x, y) =
ak(x, y) cos[φk(x, y)] yields

Ψ[ak cos(φk)] ≈ a2
k||~Ωk||2 (3)

which equals the product of the instantaneous amplitude and
frequency magnitude squared which may be interpreted as
the image modulation energy. The above approximation er-
ror is negligible assuming that the instantaneous amplitude
and frequency do not vary too fast in space or too greatly
in value compared to the carriers. Furthermore, if we apply
the energy operator on the image derivatives∂I/∂z1 and
∂I/∂z2, where~z = (x, y) are the image vector coordinates,
it is possible to separate the energy into its amplitude and
frequency components via the 2D ESA [13]:
√√√√√Ψ

(
∂I

∂zn

)

Ψ(I)
≈ |Ωn(~z)|, Ψ(I)√√√√

2∑
n=1

Ψ
(

∂I

∂zn

) ≈ |a(~z)| (4)

wheren = 1, 2. This algorithm can estimate at each loca-
tion~z the amplitude envelope and the magnitude of instanta-
neous frequencies of the spatially-varying AM–FM signal.

3. IMPROVEMENTS AND A NOVEL VIEWPOINT
FOR THE CHANNEL SELECTION PROCEDURE

3.1. Energy-based Dominant Component Selection

In this subsection we examine the usage of the image modu-
lation energy measurement as a decision criterion for a mod-
ified energy-based DCA scheme. Motivated by the capabil-
ity of the 2D Energy Operator to incorporate both amplitude
and frequency magnitude information, we aim to combine

various filters outputs in a multiband analysis process. By
intuition, we believe that image modulation energy will suc-
ceed in choosing filter outputs with lower amplitude levels,
where conventional DCA fails, due to a possible local high
spatial frequency content. This is important in cases where
edges and sharp texture variations are present, since the ex-
tracted features should retain boundary information.

We propose a DCA scheme in which the amplitude and
frequency values for each pixel are chosen from the ESA -
demodulated filter output that maximizes the Energy Oper-
ator response. We mention that to the best of our knowledge
using the ESA algorithm resulted in improved results when
compared with the analytic image approach. The dominant
filter is indexed byi where:

i = arg max
j

Ψ[(I ∗ hj)(x, y)] (5)

We compare the performance of our approach with that of
the decision criterion (2) in the extraction of dominant mod-
ulations features from synthetic, textured and natural im-
ages. We use a bank of40 Gabor filters in 4 different scales
and a radial frequency domain arrangement. Implementa-
tion of (2) is done without explicit use of the analytic image
model, using the theoretically equivalent quantity:

Γ∗i (x, y) =

√
(I ∗ hei)2(x, y) + (I ∗ hoi)2(x, y)

max~Ω|Hi(~Ω)|
(6)

wherehei andhoi are the the real and imaginary parts of
the complex Gabor filterhi = hei + jhoi. This way we
bypass the explicit estimation of the analytic image repre-
sentation as well as the singularities that may be caused by
the division in (4).

3.2. A Detection Theoretic Perspective for DCA
It would be interesting to somehow relate a likelihood term
with the channel selection procedure. For example this would
make it possible to incorporate alternative hypotheses, like
the absenceof an AM-FM signal, into the DCA analysis;
thereby spurious amplitude or frequency measurements can
be avoided, by setting these to zero.

We cast the problem of channel selection as a multiple
hypothesis testing problem [11], yet in a somehow differ-
ent form than the one used e.g. in communications theory.
For simplicity we use the 1-D setting, even though the ar-
guments carry over immediately to two dimensions. In the
proposed setting, selecting a channel amounts to detecting
a sinusoidal with the same frequency as that of the channel
and unknown phase and amplitude. The hypothesis that best
explains the signal data corresponds to the winning channel.

An extra factor that comes into play is the locality of
the decision process: assuming that we want to decide at a
point whether a sinusoid of a specific frequency exists in its
vicinity we test how well points near it match this hypoth-
esis; far away points are modelled with a less informative
model, namely a white noise process.

Pinning things down, we form the hypothesisHΩ that
around the pointx = 0, the signal is a sinusoidal of fre-
quencyΩ, unknown phaseφ, amplitudea, and DC valueb.
We express the likelihood of the signalI at pointx as:
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P (I(x); a, b, φ|HΩ) = G(x)
e−

(I(x)−(a cos(Ωx+φ)+b))2

2σ2

√
2πσ

+(1−G(x))
1√

2πσn

e−(I(x)−C)2/2σ2
n .

G(x) = e−x2/σ2
G is a weighting factor accounting for the

locality of the decision process,σ is the variance of a white
gaussian noise (WGN) process that is assumed to contam-
inate our signal, andσG models the spatial decay of the
‘ability’ of the hypothesis to explain the data. The second
term is a background model which is assumed to be a white
gaussian noise process of meanC and varianceσn. As we
shall see, settingσG equal to the spread of the Gabor filter
that is used in the corresponding channel results in a link
between the amplitude based channel selection and the like-
lihood based one.

Using the WGN assumption, the likelihood of a signal
patch around point0 under the hypothesisHΩ is given by:

P (I; a, b, φ|HΩ) =
∏

x=...−1,0,1,...

P (I(x); a, b, φ|HΩ) (7)

Taking the logarithm and using the fact thatlog is a con-
cave function we derive the following lower bound on the
likelihood ln(P (I)) =

∑
x ln(P (I(x))) of the data:

∑
x

G(x)
{
− (I(x)− (a cos(Ωx + φ) + b))2

2σ2
− ln(2πσ)2

2

}

+
∑

x

(1−G(x))
{−(I(x)− C)2

2σ2
n

− ln(2πσ2
n)

2

}

Even though the last equation is a lower bound on the like-
lihood of the data, it can be used to choose among two con-
flicting hypotheses; henceforth we shall be referring to it as
the (log)likelihood of the data, for simplicity. We use a test
similar to the Generalized Likelihood Ratio Test (GLRT),
which means we calculate the Maximum Likelihood (ML)
estimates of thea, b, φ parameters, and insert them into the
likelihood term. By maximizing (7) w.r.t.a, b, φ we derive:

â =

√
(he ∗ I)2 + (ho ∗ I)2

(
∑

G(x))2
, φ̂ = tan−1(−ho ∗ I

he ∗ I
) (8)

and b̂ = G ∗ I wherehe, ho are an even/odd filter pair
he(x) = G(x) cos(Ωx), ho(x) = G(x) sin(Ωx). Us-
ing a G function of the same spread with that of the one
used in the corresponding Gabor filter, we observe thatâ
is the estimated amplitude of the channel response, while
b̂ is what we would interpret as the mean of the data at that
point. The first term in the bound can then be shown to equal
â2/(2σ2/

∑
x G(x)), which is up to a constant scaling fac-

tor the criterion (6) to choose a certain channel. Since the
rest of the terms are constant for all channels at a specific
scale, we can ignore them, when working at a single scale.
Using exactly the above rationale, we can calculate the like-
lihood of the hypothesis that the image is piecewise constant
around the point0, by excluding the sinusoidal component;

however, to compare this likelihood with that of the hypoth-
esis that our data are sinusoidal-like we have to take into
account that fewer parameters are used to build the image
model: otherwise a sinusoidal with zero amplitude could
equally well explain the data. This is accounted for by us-
ing the Minimum Description Length (MDL) criterion [11]
which, modified for our case, becomes

MDL(Hi) = − ln(P (I|Hi)) + ni/2 ln(
∑

x

G(x)) (9)

with ni the number of parameters used for each hypothesis.

4. EXPERIMENTAL RESULTS

In this section we present experimental results with the pro-
posed methods. In Fig. 1(b,c) and (e,f) we compare the de-
cisions made based on the amplitude measurement, (6) with
the ones made using our 2D Teager Energy based approach,
(5); henceforth we shall call the two approaches ADCA and
EDCA for simplicity. EDCA generally outperforms ADCA
in terms of localization accuracy. One can note for example
in Fig. 1(b) how spread far away from the leopard bound-
aries the amplitude is nonzero, influenced by the existence
of the leopard nearby, contrary to the case where EDCA is
used for channel selection. In Figs.1 (e-f) we note that using
ADCA the legs of the zebra are interpreted as a spread-out
low frequency region, while using the EDCA the results are
better localized. It should be noted, however, that in some
cases EDCA tends to favor channels responding to sharp
changes in the image, even when smooth changes visually
prevail.

The second set of experiments demonstrates the appli-
cation of the hypothesis testing algorithm mentioned pre-
viously. In Fig.2 (b)-(d) we present the nature of this tex-
ture vs. non-texture decision where the texture indexes are
shown as an intensity image. White parts of the image cor-
respond to areas where the non-texture hypothesis prevails,
while gray level codes the orientation of the winning Ga-
bor filter. It is intuitively appealing that at small scales fine
structure is interpreted as texture (Fig. 2 (f,g)) while at larger
scales (Fig. 2 (h)), larger image areas are interpreted as tex-
tured (e.g. the folds on the madrill’s nose) and at the same
time smaller scale areas are interpreted as a constant signal
contaminated by noise, instead of texture.

As a first application, this can help refine the initial re-
sults by computing a texture vs. non-texture mask at each
scale: for each pixel, after making a decision using a DCA
algorithm we estimate the likelihood ratio of the winning
hypothesis and the hypothesis that a non-textured model
‘explains’ the signal at the same scale near that point. Pixels
where the non-texture hypothesis prevails are assigned with
an amplitude and frequency value equal to zero. The re-
fined features, extracted via modulations modeling and the
EDCA methodology can be seen in Fig.3. Clearly the non-
textured hypothesis prevailed in the case of the flat ground
surface which was removed from the initial estimations for
the dominant instant Amplitude and Frequency Magnitude
(b)-(c). This is also evident by the black labelled pixels on
the Channel Index image in (d) which, for this image, cor-
respond to non-textured regions.
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(a) (b) (c) (d) (e) (f)

Fig. 1. Energy vs. Amplitude based Dominant Component Analysis:(a) LeopardImage Amplitude Estimate with(b) ADCA
and(c) EDCA respectively.(d) ZebraImage and Frequency Magnitude Estimate with(e)ADCA and (f) EDCA.

(a) (b) (c) (d)

Fig. 2. (a) Madrill Image, (b)-(d): Texture vs. Non-texture decision at increasing scales. White pixels stand for non-texture.

(a) (b) (c) (d)

Fig. 3. Modulation Features by Energy-based DCA:(a) Barb Image,(b) Amplitude Estimate with EDCA and texture mask,
(c) Estimated Frequency Magnitude,(d) Active Filter Index.

5. CONCLUSIONS

In this paper we have presented some advances in the AM-
FM modelling of textured images, by examining different
channel selection criteria to perform DCA, as well as a sta-
tistical hypothesis testing viewpoint of channel selection.
We believe the proposed approach is of general interest,
since it offers a different viewpoint for Gabor filtering, thresh-
olding the filtering results, etc. Finally, we note that the ex-
tracted features have been used in a companion paper [12]
for curve evolution-based textured image segmentation.
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