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ABSTRACT proves to be useful for segmentation. As a segmentation al-
gorithm we use curve-evolution implemented with the level-
In this paper we incorporate recent results from AM-FM sets technique, where the forces that drive the evolution of
models for texture analysis into the variational model of the contours are determined by a region-based probabilistic
image segmentation and examine the potential benefits ofcriterion, as in[21, 15].
using the combination of these two approaches for texture N the following section we present the necessary back-

i Using the Dominant C ts Analvsi ground for our segmentation algorithm, while briefly men-
segmentation.  Using the bominant Lomponents AnalySiStioning previous work, subsequently we mention the details

(DCA) technique we obtain a low-dimensional, yet rich tex- of our approach and finally we present experimental results
ture feature vector that proves to be useful for texture seg-that testify the power of the combination of the modulation

mentation. We use an unsupervised scheme for texture segfeatures with the region-based curve evolution approach.
mentation, where only the number of regions is known a-

priori. Experimental results on both synthetic and challeng- 2. BACKGROUND
ing real-world images demonstrate the potential of the pro-
posed combination. 2.1. Curve Evolution for Textured Image Segmentation

In the variational framework for segmentation, which we
1. INTRODUCTION adopt in our approach, a labelling of the image is searched
for that minimizes a certain energy functional which en-
The segmentation of textured images is a long standing prob¢©des the desired features of a segmentation. This labelling
lem in Computer Vision, which has been addressed from IS initialized by assigning the same label to pixels inside
various perspectives, with variational models, e.g.[11, 21, & closed contour while the energy criterion is expressed in
16, 20] and MRFs, e.g. [5, 13] being the most common terms of these contours; The segmentation of the image

approaches. As image intensity is a poor cue for texturelS derived by numerically solving curve evolution PDEs,
segmentation, filtering the image with a Gabor filterbank is Where the forces that drive the evolution are determined by
commonly used as a feature-extraction preprocessing stef-Ul€r-Lagrange equations which give the direction of steep-
which results in detecting texture information that resides €St descent of the energy functional. o
at different frequency channels. Region based segmenta- !N [21] the functional that was proposed to be minimized
tion algorithms which subsequently group pixels into re- Was the likelihood of the data inside each regi@ncon-
gions according to the proximity of the filter responses at t&ined in the interior of curvé:
these points are more global and therefore more efficient,
contrary to edge based algorithms [12] which result in spu- N
rious edges, due to the inherently random nature of textures. ~ £[I', Pi] = Z// —log(F(I))dz +v/2|Ty[ (1)

In this paper we examine the potential benefits of using i=1" /B
a more compact model for texture analysis that has been re- . o
cently presented in [8], namely Dominant Component Anal- Where F; is the PDF of the feature vectors inside each re-
ysis (DCA). This representation summarizes all the texture 9ion, N is the number of regions ands a weighting factor,
information in a 3 dimensional feature vector, which in a Punishing nonsmooth curves. The probability distribution
loose sense best models the texture at each point using thé1side each regiot; is considered Gaussian; specifically,

AM-FM modulations model of images. This technique pro- for texture segmentation, where high-dimensional feature
vides us with a low-dimensional, yet rich feature set, that Vectors are commonly used, multivariate Gaussians are used

to model their distributions inside each region:
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Minimizing (1) w.r.tI" results in the curve evolution equa- rowband modulating signals as:
tions:

K
ddl;l- _ (vms 1 log(P(D)/PAINE, Vi @) I(x,y) = ;am,y)cos[ask(:c,y)], (5)
whereP, is the likelihood of the featuré under the compet- An efficient and computationally simple approach for

extracting the 2D amplitude and frequency signals was de-
veloped in [14] based on the 2D Teager-Kaiser Energy Op-
oerator¥(f) £ [[Vf||* — fV2f. Applying ¥ to a 2D
AM—FM signal f yields approximately the product of the
instantaneous amplitude and frequency magnitude squared.
Using asf bandpass filtered versions of an image has a reg-
ularizing effect, thereby dealing with stability issues of the
Teager operator. If we apply the energy operator on the im-
age derivative® f /0x andd f /dy, it is possible to separate
the energy into its amplitude and frequency components via
a nonlinear algorithm called Energy Separation Algorithm
ESA) [14]. Multiband filtering approaches [2, 1] for tex-
ure analysis are applied to decompose an AM—FM mod-
elled image of the form (5) into narrowband, locally varying
components. The Dominant Component Analy&CA)
scheme [8, 6], chooses at each pixel the most powerful of
these channels and estimates the AM-FM model parameters
at that point using the outputs of that channel. This way, the
utputs of the filtered images are combined, resulting in a
w dimensional texture descriptor.

The only previous work we are aware of where it has
been attempted to couple modulation features with curve
evolution models is [22] where a geodesic active contour
K orori b imall t d%as been used to perform texture segmentation on a modu-
SOMEUnxnown a-priorelasses become maximally separatetyin g pased feature space. However the segmentation prob-
is usually performed using heuristic criteria, as e.g. in [18]. lem is formulated as a data clustering problem and a purely

In a recent attempt to alleviate this problem, Rousson etgiayistical algorithm performs most of the segmentation task.
al. [17] used a vector valued diffusion procedure to smooth

a low dimensional image feature set, which gave good tex-
ture segmentation results, using a 4-dimensional feature vec- 3. VARIATIONAL SEGMENTATION ON A
tor. In the information theoretic approach of [9] textured MODULATION BASED FEATURE SPACE
image segmentation is accomplished without using a fea- ) _ -~
ture extraction stage, using as the sole criterion the max-We have approached the basic DCA using a modified de-
imization of the mutual information between region label cision logic based on the Teager-Kaiser Energy Operator.
and image intensity. In the work presented here we are us-n order to capture image modulation information at vari-
ing features that are based on a different approach to textur@us scales and orientations, a bank of Gabor filtereas
analysis, which builds on the AM-FM model [3, 7] of tex- been used since they are compact, smooth and attain the
tured signals. lower bound in a time-frequency uncertainty relationship
[4]. Each bandpass imade = I * h; is demodulated via
the ESA and at a pixel-wise basis, a value is kept for the
2.2. Dominant Components Analysis amplitude and frequency signals from the bandpass image
I, that maximizes the Energy Operator response:
Locally narrowband 2D signals can be modeled as spatial
AM-FM structures i = argmax V[(] * h;)(z,y)] (6)
J

ing neighboring hypothesis, «; is the curvature of’; and

N; is the normal td";. Minimizing (1) w.r.t. u;, 3; results

in setting the parameters of the Gaussian distributions t
their ML estimates. Iterating the minimization w.nt;, >,
andT’; results in a greedy algorithm for the minimization of
(1) conceptually similar to the EM algorithm. The paramet-
ric distributions employed in [21, 15] have been recently
replaced with non-parametric distributions e.g. in [9, 17],
which result in similar evolution equations.

In [15] this idea was implemented and extended using
the level-set technique, which has many computational ad-
vantages, since it handles automatically topological change
and lends itself to efficient implementations.

A problem that arises when filtering the image with a
Gabor filterbank is the high dimensionality of the derived
feature vector at each point, which results in many potential
suboptimal segmentations as grouping the data in high di-
mensional spaces becomes hard. In the supervised textur
segmentation case e.g.[16] this problem can be bypasse
by choosing these channels that maximally separate differ-
ent textures. It is however harder to tackle the unsuper-
vised problem, since choosing the ‘best’ channels - which is
equivalent to projecting the features onto a subspace wher

f(z,y) = a(z,y) cos[d(z,y)], Qz,y) = Vo(z,y) Due to lack of space, details about the methodology used
. . . : ( for extracting dominant component features can be found in

that are 2D nonstationary sines with a spatially varying am- oy companion paper [10].
plitude a(z,y) and a spatially-varying instantaneous fre-  The feature vector we have used consists of the follow-
quency vectof)(z,y) = (V(z,y),U(z,y)). Particularly ing components: a) Amplitude b) Phase Gradient Magni-
in image signals, the amplitude is used to model local im- tude ¢) Phase Orientation d) Image Intensity. We include
age contrast and the frequency vector contains informationimage intensity in our feature set as in [17], since this is still
about the locally emergent spatial frequencies. These mod-an important feature for non-textured regions.
ulation models have been proposed by Bovik et al. [3]and  Curve evolution has been implemented using level-set
extended by Havlicek [7] for wideband image signals. Any methods [19], where a very similar architecture with the
image can be thought of as a sum of locally smooth, nar-one proposed in [15] has been used to implement region
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competition. An explicit scheme has been used, and no
boundary based term was used. As in [18, 17, 20] the dis-
tribution of the data inside each region is learned in parallel
with the evolution process, resulting in an adaptive scheme.
For simplicity we model the distribution of the feature vec-
tors inside each region with a multidimensional Gaussian
with diagonal covariance matrix, which is reasonable, since
the features we use should be uncorrelated. We note that
the phase orientation data should be modelled using a von
Mises distribution, which is the analog of the normal dis-
tribution for angular data. For the examples used in this
paper a Gaussian distribution worked well, even though this
is not guaranteed in case the orientations inside a region are
around0 and.

We observed that using more robust estimates of the
Gaussian distribution parameters results in greater invari-
ance to initialization: we used the-trimmed mean of the
data and the-trimmed mean absolute deviation of the points
from this value, forx = 10%; the deviation was normalized
with the factor1/.8 to compensate for the reduction in the
variance caused by using a subset of the sample that is closer
to this value. This gracefully deals with spuriously high
amplitude estimates, caused occasionally by the ESA algo-. The representation of the texture in terms of its domi-
rithm, at places where pre-smoothing does not eliminate er-nant components results in a low-dimensional feature space,
rors. At a pre-processing level we have experimented with yyhere it is no longer necessary to search in a supervised or
the coupled diffusion of the vector-valued data, like in [17], ynsupervised setting for low-dimensional projections of the
where an orientation diffusion term is introduced into the feature set, as e.g. in [18, 16]. However this low-dimensional
evolution equations for the directions feature channel, in or- featyre vector is expressive enough for the discrimination of
der to obtain smoother estimates. No significant changes iny wide variety of textures.
performance were observed using the latter enhancements, ¢, mnaring our work with the most up-to-date publication
since the modulation features are sufficiently smooth, con-\, nara”|ow-dimensional feature spaces are used [17], we
trary to the nonlinear structure tensor [17] data. mention that the feature set we use is richer in its expres-

sive ability, even though it is of the same dimensionality:
texture scale is naturally represented by the gradient mag-

4. EXPERIMENTAL RESULTS nitude, while good feature localization is achieved without
anisotropic diffusion being necessary.

In the results presented here our only intervention has beeri 1 1€ fact that modulation features can be used to recon-

in predefining the number of regions in the image; even SUUCt @ signal, makes them interpretable in termgenfer-
though various statistical criteria can be used to find the &tivémodels which model the observed data. As such, they
‘correct’ number of regions we believe this is a very hard &€ amenable to a probabilistic treatment, and comparable
problem to solve automatically, since even humans may dis-{0 Other features, that may compete for the ‘explanation’ of
agree about the correct number of segments in an image. € observed data. In our companion paper [10], we explore
the ability of incorporating the extraction of modulation fea-
In Fig. [1] we show how the system performs with some tures with the discrimination of textured/non-textured re-
simple synthetic images: one can note from the bottom row gions, which is very active area of current research, and
that scale information is included in the feature vector, con- Where we have obtained promising results.
trary to [17]; the inner texture is a scaled version of the outer - The Geodesic Active Contour model used in [22] is used
texture, so the magnitude of the frequency vector helps dis-at a post-processing stage to eliminate small & fragmented
criminate among them. In Fig. [2] results with a real image regions. The most important part of the segmentation is ac-
are demonstrated, which contains both textured and non-complished during the previous step, where the image data
textured regions. In Fig. [3] we notice that columns have are clustered using a purely feature-driven criterion, disre-
been detected as a unified textured region, as the amplitudgarding any geometrical information. This diminishes the
strength is almost constant, while the flowers, the steps andoenefits of the region competition framework, that allows
the bushes form separate regions. region, geometry as well as shape based knowledge to be
incorporated into the evolution equations, thereby interleav-
ing the use of geometrical and statistical information.

5. DISCUSSION & CONCLUSION Summing up, we believe that the proposed method is
characterized by simplicity and efficiency and combines the

Comparing our proposed algorithm for texture segmenta- best of the DCA and curve evolution methods. Even though
tion to related work on unsupervised curve-evolution baseda three dimensional feature vector cannot discriminate be-
texture segmentation we believe it is advantageous in thetweenany set of textures, promising results have been ob-
following aspects: tained on both synthetic and real images, showing that our

Fig. 1. Results with synthetic textures
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method is applicable to a wide variety of textured images.
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