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ABSTRACT
Monitoring driver behavior and recognizing driver actions is a cru-
cial task in modern semi-autonomous driving conditions, where
secondary activities, irrelevant to driving, should be minimized.
The driver activity recognition problem represents a subclass of
the widely studied action recognition task, but poses additional
challenges stemming from the environment, the appearance of the
participants, and the limited data availability for this specific task.
Furthermore, the similarity of body movements and the nuanced
changes when performing different actions further complicate the
classification process. In this work, we explore the effectiveness of
Temporal Segment Networks (TSNs) on the driver activity recog-
nition task. Moreover, we propose a model to enhance the perfor-
mance of such networks through the integration of information
from pose landmarks, allowing for multi-modal fusion either in
the early or late stages of the model, providing informed predic-
tions for input videos. Thus, the simplicity of the TSN models is
counterbalanced by the incorporation of prior knowledge, resulting
in a fused model that outperforms more resource-demanding 3D
architectures. The proposed method is evaluated on the Drive&Act
dataset and demonstrates state-of-the-art performance, surpassing
previous works by a margin of 8.01% using only RGB video as input.
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1 INTRODUCTION
Driver activities and behaviors can be a determining factor of traf-
fic accidents. According to the World Health Organization, road
accidents are the leading cause of death in the ages of 5-29. Also,
the 2018 report from the same organization shows that the number
of annual deaths from road injuries exceeds 1.35 million, which
corresponds to an average of 3,700 deaths per day. The United Na-
tions General Assembly has set an ambitious target of halving the
global number of deaths and injuries from road traffic crashes by
2030.[17]

This goal could be undermined by the prevalence of autonomous
vehicles. While the "reflexes" of machines can potentially surpass
those of human beings in emergency situations, the technology
of self-driving cars has not yet been developed to the same level
and thus, the driver’s readiness to take over the vehicle control is
still indispensable. Therefore, the driver’s attention on the road is
always required and it is important that secondary activities, irrele-
vant to driving, are minimized. As the technology of autonomous
vehicles grows exponentially it is important that also mechanisms
and systems that will ensure their safety are developed.

Safety systems could potentially counter this issue and auto-
matic recognition of distracted driving and secondary actions could
assist developing a driver’s alert system. This task falls under the
extensively researched problem of action recognition from video
datasets, but introduces some additional challenges.

Currently, the recognition performance is especially low in driver
activity datasets and there is much room for improvement. This
can be explained by the uniqueness of the environment, the variety
of visual angles and the limited availability of data for the specific
task. Additionally, in order to achieve higher accuracy, as in any
action recognition problem, the proposed model should adapt to
different driver’s appearance. Moreover, the use of such safety
systems in-vehicle require low computational complexity of the
proposed models and light networks with low response time.

In this work we aim to utilize prior knowledge from pose land-
marks in order to increase the performance of low-computational-
cost models. We focus our research on the Drive&Act [15] dataset
that refers mostly to actions performed in autonomous vehicle
environment.

Motivated by the above, we propose a model for drivers action
recognition that fuses vision and pose features/predictions. We
show that by combining vision and human pose, obtained in “skele-
ton” structure by leveraging the latest advancements in human
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pose recognition [2], we can satisfactorily assess the driver’s action
and increase the performance of Temporal Segment Network (TSN)
model in such environments. In summary, our contributions are
summarized as follows:

• We propose a method that utilizes Deep Neural Networks
(DNNs) to fuse body posture skeleton information with RGB
frames for automatic recognition of actions. The networks
can be trained both separately and jointly and result in signif-
icant performance boost when compared to previous works,
surpassing them by a margin of 8.01% using only RGB video
as input.

• We present a balancing approach for the Drive&Act dataset,
which results in a semi-balanced sampler that prioritizes
classes with high sample counts.

• We propose a normalization method to obtain key-points
that are agnostic to the size, gender or ethnicity of the driver
and a model that generalizes well on different participant
samples.

• We explore over different pose encoding and fusions and we
demonstrate that both early and late fusion can boost the
model’s performance.

• We overcome data availability limitations using transfer
learning from pre-trained models (trained on large scale
action datasets) and fine-tuning them on the specific task.
The fine-tuned vision backbone is further fine-tuned when
used in parallel with the pose model.

The remainder of the paper is organized as follows: Section
2 presents previous works in action recognition with emphasis
given on driver activity recognition. In Section 3, we present our
proposed method and its sub-models. Section 4 includes our train-
ing approach, experimental results and ablation studies on the
Drive&Act database. We also compare our findings to state-of-the-
art approaches in the same section. Finally, Section 5 concludes the
work and summarizes future directions.

2 RELATEDWORK
The more generic problem of Action Recognition has been the
subject of extensive research and investigation by the scholarly
community, with a wealth of studies and findings accumulated
over time. Most works focus on CNN backbones to extract features
followed by a classification module to make predictions about the
activity class.

3D Convolutional Networks [23] have been a straight-forward
solution based on the impressive performance of the 2D versions
on image classification tasks. The drawback of such models is their
computational cost and multiple models, such as I3D [3] and P3D
[21] have been developed to address this issue. At the same time, us-
ing information about the pose or the surroundings has been proven
to boost the performance of the networks [7, 8, 22, 24]. [5] has pro-
posed the use of 3D heatmap volume as the base representation of
human skeletons and has achieved state-of-the-art performance on
all eight multi-modality action recognition benchmarks.

As far as drivers activity recognition sub-task is concerned, it has
received increasing attention in recent years and multiple models
have been introduced. The [10] introduced MDAD dataset that
consists of two data modalities (RGB and depth). The [11] suggests

the utilization of depth information to attent the RGB frames to
achieve good performance on MDAD dataset.

The Driver Monitoring Dataset [18] consists of data from three
modalities (RGB, depth and IR) and focuses on a wide domain of
driving behaviours. One main work that was suggested for this
dataset is the [18], which introduces a solution to this problem
by combining 2D CNN feature extractors with an LSTM model to
capture temporal dependencies.

Another large-scale dataset is the AUC Distracted Drivers [1]
and the proposed approach for this dataset consists of a genetically-
weighted ensemble of pre-trained convolutional neural networks
that leverage information from raw images, face and hand im-
ages and skin-segmented images [14]. In addition, [20] proposed
a light-weight model with only 0.76 million parameters based on
a decreasing filter size achieving good performance on AUC DD
dataset.

All the above datasets focus on drivers’ behaviours and actions
while the driver is also engaged in the driving task. However, [15]
introduced a large-scale dataset consisting of over than 9.3 million
frames, in which the participants perform diverse actions. This
dataset could help address the aforementioned concerns on the
road safety the dominance of autonomous vehicles raises. Most
of well-known CNN-based models we mentioned above, such as
C3D [23], I3D [3] and P3D [21] have been used for this dataset [15].
[27] introduced CTA-Net which is built around a glimpse sensor to
attent LSTM’s hidden states to generate an output representation
that can discriminate against subtle changes of similar actions. Also,
the use of genetically-weighted ensemble [14] appears to perform
well on Drive&Act dataset. Another approach to this problem was
presented in [19] which uses the NIR information and combines a vi-
sion transformer with an additional augmented feature distribution
calibration module to increase performance on underrepresented
classes.

3 PROPOSED METHOD
In this work, we focus on the practical scenario of driver monitoring
with only one RGB camera (single-view setting). In fact, many
driver behavior datasets include video feed from differentmodalities
(e.g., IR cameras) and different views (multiple cameras). Contrary
to using such explicit extra information, we explore alternative
approaches to provide useful auxiliary information with minimal
cost by utilizing off-the-self pose estimators.

Furthermore, we strive for simplicity, since one of our main goals
is the practical utilization of such recognition system in real driving
conditions. To this end we used the segment-based model TSM,
introduced in [13], inspired from Temporal Segmentation Networks
(TSNs) [26].

TSN models, selected for their simplicity compared to corre-
sponding 3D models, are built with 2D backbones and use simple
functions, such as average or weighted average for the aggregation
of frame-level outputs. Thus, acquiring low-cost auxiliary infor-
mation is an essential step towards enhancing performance of a
vanilla TSN/TSM system. The most straightforward auxiliary in-
formation for such tasks, which involve humans, is acquiring the
hyman pose information. Following the minimal-overhead goal, it
is important to preserve simplicity by choosing a light-weight pose
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model. Notably, the fusion of pose and RGB data has proven to be
beneficial for several action recognition tasks [4, 6, 28].

Moreover, utilizing a well-performing pose estimation system
(such as MediaPipe [2]) provides to pose information is tolerant to
changes in the appearance and the surroundings of the person. Real-
world tasks that include various everyday activities and diversity
of participants’ size, ethnicity, age and other characteristics usually
exhibit intra-class variation. Hence, pose estimation is utilized to
mitigate this issue.

Implementation-wise, the proposed model consists of two sub-
models, one that processes vision data, in the form of RGB video
frames, and one that processes skeleton data, such as landmarks of
pose, face and hands. The fusion of these two modalities, namely vi-
sion and pose, is performed either on an early, as feature descriptors,
or on a late stage, as predictions. The proposed system’s overview is
depicted in Figure 1, where we can see the parallel processing of the
two input modalities and the subsequent fusion operation. In the
following sections, we will describe the sub-models’ functionalities,
as well as their fusion options, in detail.

3.1 Vision feature extractor
3.1.1 Temporal Segment Networks: TSNs [26] are widely-usedmod-
els for video classification that have been proposed to process 3D
input with a 2D model backbone. The underlying idea is simple;
First, it partitions a video into several segments and processes each
segment independently with a shared feature extractor. Then a
class consensus over the frame-based predictions is applied.

In a systematic manner, the video V is divided into K equal-
duration segments 𝑆1, 𝑆2, ..., 𝑆𝐾 . From each segment 𝑆𝑘 , a snippet
𝑇𝑘 is randomly selected. The TSN models the sequence of snippets
(𝑇1,𝑇2, ...,𝑇𝐾 ) using the following equation:

𝑇𝑆𝑁 (𝑇1,𝑇2, ...,𝑇𝐾 ) = H(G(F (𝑇1;𝑊 ), F (𝑇2;𝑊 ), ..., F (𝑇𝐾 ;𝑊 )))

where F (𝑇𝑘 ;𝑊 ) represents a Convolutional Network with param-
eters𝑊 that operates on the short snippet 𝑇𝑘 and predicts class
scores for all classes. The segmental consensus function G com-
bines the outputs from multiple short snippets to form a consensus
of class hypotheses among them. The choice of the G function
holds significant importance as the selection of a simple aggre-
gation function of frame-level predictions may lead to weakness
in capturing temporal information. Based on this consensus, the
prediction function H predicts the probability of each action class
for the whole video, using the Softmax function forH .

3.1.2 Temporal Shift Module: The Temporal Shift Module (TSM)
[13] is a modification to the TSN architectures that addresses one
the major limitations of TSN in an efficient manner. Specifically,
in TSN, average pooling is used to aggregate feature maps across
time, however this can result in loss of temporal information. To
overcome this, TSM introduces a novel operation, referred to as
the temporal shift, which shifts the channels of the feature maps
along the temporal dimension; more specifically it is common to
shift channels of the feature maps in opposite directions, with
one channel shifted forwards in time and another channel shifted
backwards. This typically leads to improved performance on video
classification tasks, as the network is able to better capture the
temporal dynamics of the video. In the case of our task, the use

of TSM is motivated by the improved performance observed on
the discrimination between similar classes that consist of atomic
actions in reverse order, e.g, "opening bottle" and "closing bottle". In
other words, TSM provides a sense of context that may be crucial
for specific classes.

3.1.3 CNN Backbone: Following the TSN rationale, the ResNet-50
backbone is used as a feature extractor of the per-frame 2D vision
input. The output of this feature extractor is the output of its latest
fully-connected layer that has 2048 neurons. The vision model with
ResNet backbone is pre-trained on Kinetics dataset [12] and then
fine-tuned on Drive&Act dataset.

3.1.4 Sampling: Following the paradigm of TSN/TSM, the selected
segments are sampled uniformly from the indices of the video
frames; The sampling process is stochastic during training phase,
while deterministic, with equally distributed segments, during eval-
uation/testing phase.

3.2 Pose feature extractor
3.2.1 Pose Estimation: The pose estimation is extracted as part of
the data pre-processing. The Google’s MediaPipe Pose [2] is used to
estimate skeleton landmarks. This pose estimator is a light-weight
model that can run both on GPU and CPU devices. At the same
time, it is a high-performance model that predicts landmarks of
high fidelity even when some part of the body is missing. The
driver has a basic posture and most of the times the low-part of
their body is not visible. Therefore, the model should be able to
achieve high accuracy in such conditions. Furthermore, it is should
be highlighted that the MediaPipe system has been trained and
tested in a large of variety of people with different characteristics,
mitigating possible biases such as ethnicity and skin color.

The MediaPipe holistic model generates a total of 543 landmarks,
33 pose landmarks as depicted in Figure 2, 21 hand landmarks
for each hand and 468 face landmarks for the face of the detected
human. Each landmark has 3 coordinates, x and y that determine the
position of the landmark in the frame and visibility that expresses
the confidence of the estimated key-point.

The landmarks that are used every time (pose, face, hands) are
flattened and fed into a convolutional backbone. In this study, we
concentrate on pose landmarks, however, the utilization of hand
and face landmarks is a straightforward extension of the proposed
architecture and a potential future direction.

3.2.2 Pose Normalization: In order to ensure that the model re-
mains agnostic with respect to the size and appearance of the subject
and can generalize without enumerating solutions based on input
skeleton, we employ standard normalization and scaling techniques.
Specifically, we normalize the pose as follows:

• For the values of the vertical axis, y, we divide the given value
by the sum of the vertical distances between the landmarks
(11,23), (23,25), and (27,25), i.e., the height of the torso and
leg of the subject. The normalizing value is computed once
and used for all the frames.

• For the values of the horizontal axis, x, we follow a similar
procedure. We divide these values by the sum of the horizon-
tal distances between the landmarks (15,13), (13,11), (11,12),
(12,14), and (14,16), i.e., the width of the torso and both upper
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Figure 1: Our proposed network architecture, which is based on the TSM model and comprises parallel processing of RGB
input and skeletons. The vision feature extractor utilizes a ResNet backbone, while the pose feature extractor adopts a simple
1D ConvNet. The network supports two fusion techniques: early fusion, which occurs in the feature stage (indicated by the
green box in the figure), and late fusion, which takes place in the prediction stage (indicated by the blue box in the figure). Note:
Skeleton data does not comprise RGB frames or key-point connections. These visual elements are solely included in the figure
for the purpose of visualization.

Figure 2: MediaPipe Pose landmarks.

extremities. The normalizing value is computed once and
used for all the frames

3.2.3 Proposed Pose Architecture: As we have stressed before, one
of our main goals is building a lightweight system. To this end,
to process the pose information, an 1D CNN model with only 3
convolutional layers is used as a temporal CNN backbone for feature
extraction. The input channels equal to the size of the pose encoding,
namely 33 (landmarks) ×3 (coordinates). The dimension of the

extracted features is selected to be the same with the one of vision
features and equal to 2048. Convolutional layers are intervened
with ReLU activations and batch normalization layers. Finally, a
Dropout layer with a very low percentage (5%) is applied on the
model’s output to prevent overfitting.

Ideally, the 1D CNN feature backbone should capture tempo-
ral dependencies between the skeleton of consecutive frames or
segments. For that reason, we considered four temporal-wise ar-
chitectural modifications. The first one is using a kernel of size 1
with stride 1 and no padding (degenerated into fully-connected).
This option acts as a baseline, since no temporal information is
encoded. The second one is using convolutions of a kernel-size
equal to 5 (with stride 1 and zero-padding of size 2). This option
introduces temporal correlation in a typical 1D CNN fashion. The
third option is inspired from Inception-v1 [9] and two different
convolution operations are used in each layer of kernel size 1 and 5,
respectively. The output of the first convolution with the kernel of
size 1 is used as input to the convolution with the kernel of size 5
and then the final output is added to the first convolution’s output,
as shown in Figure 3. The final modification involves the integra-
tion of a temporal shift module, similar to the one utilized in the
ResNet backbone, by inserting a shift operation before every degen-
erated convolutional layer with a kernel size of 1, allowing model
to capture temporal information with an alternative approach com-
pared to kerneled convolutions. Specifically, this module shifts the
first 33 attributes of the pose landmarks in a backwards direction,
maintains the next 33 attributes unchanged, and shifts the final 33
attributes forwards.
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Figure 3: Visualization of the inception-based convolutional
blocks.

3.3 Vision and Pose Fusion
We considered both a version of early fusion using the extracted
features of vision/pose CNNs and a version of late fusion using
the final predictions. These fusion operations are also visualized in
Figure 1.

Early Fusion: In the case of early fusion, the extracted features by
both vision and pose backbones are aggregated and the aggregated
features are then fed to a fully-connected classifier to predict the
class of each frame. In other words, early fusion acts as a frame-level
(segment-level following the TSN scheme) aggregation. To enable
such a segment-based early fusion operation, both skeleton and
vision models share the same segment indices. The per-segment
joint predictions are then combined, using all the k segments, and
the video-level prediction is the output of the last consensus module.

Late Fusion: Regarding late fusion, the extracted features of vi-
sion and pose data are processed independently. Each feature vector
constitutes the input to a fully-connected layer that predicts the
class scores. Specifically, two different fully-connected classifier
heads are used, one for each information flow (i.e., vision and pose),
to make predictions for all the respective k segments. These pre-
dictions are passed though two consensus modules providing two
video-level predictions, which are averaged to produce a final pre-
diction. For this strategy, both skeleton and vision models are not
required to share the same segment indices, since the merging of
information is performed at video-level. Nonetheless, we adopted
the same sharing operation to be comparable with the early fusion
strategy.

4 EXPERIMENTAL RESULTS
4.1 Drive&Act dataset
Drive&Act [15] is a large-scale video dataset consisting of secondary
actions performed in autonomous vehicle environment. There are
three hierarchical stages of annotations. The first one is the most
abstract one and refers to 12 high-level actions and tasks, such
as "drinking". The mid-level annotations categorize videos into 34
semantic actions, such as "taking off sunglasses". The last level
consists of 372 classes of atomic action units. Each annotation is
defined by a triplet of action, object location and there are 5 possible
actions, 17 object classes and 14 locations.

The fine-grained activities annotations (mid-level actions) are
used as they are more relevant to the problem addressed in this

work and can contribute to building alert systems for secondary
actions. More abstract classes would not allow alert system to give
useful prompts to the driver while more detailed triplets are out of
the scope of this work.

The dataset is split into 3 subsets, according to [15], based on the
driver’s identity so that every one of the three test splits contain
unseen participants.

4.2 Training
4.2.1 Training Details: The developed models were trained for 50
epochs with batch size of 10, with standard stochastic gradient
descent (SGD) optimizer (0.9 momentum/ 5e-4 weight decay). The
initial 1e-3 learning rate was decayed by the multi-step scheduler
at the 50% and 75% of the epochs by a factor of 10.

The cross-entropy loss between the model’s output and the
ground truth labels was calculated for the training step and the best
model was considered based on the top-1 accuracy on the validation
set.

Considering the vision-only module, the vision backbone was
initialized with a pre-trained version obtained from [13], which
was trained on the Kinetics dataset [12]. Then, this pre-trained
model was fine-tuned on Drive&Act dataset’s three splits separately
for 50 epochs. These fine-tuned vision-only networks are used
for initializing the vision part during the training of the fused
vision/pose models .

4.2.2 Data augmentation: Data augmentation is known to be of
crucial importance for the performance of deep architectures, as
it helps overcome the overfitting problem. During training both
the RGB videos and the extracted skeletons were augmented. RGB
frames’ size was 540 × 960 but they were resized to 256 × 256 and a
224 × 224 patch was randomly cropped. Random affine transforma-
tion was applied to both RGB and skeleton input data.

In addition, Drive&Act dataset is very unbalanced as demon-
strated in figure 4. The most under-presented class ("taking laptop
from backpack") has less than 1% of the samples of the most pre-
sented class ("sitting still").

Although the distribution of classes in train-set is similar to the
distribution in the validation- and test-set, the vast difference in
available samples for each class impose “strong” prior biases. To
partially address this issue, we followed a “semi-balanced" approach
that tries to balance the samples within distinct groups of classes.
These classes can be coarsely defined as classes with many appear-
ances and as classes with few appearances. To distinguish between
classes with many and few instances, we establish a threshold based
on the number of samples in the most frequent class. In particular,
all classes with greater than 15% of the maximum sample count are
considered to have an over-represented sample size, while those
with fewer than twice the number of samples in the least frequent
class are deemed to have an under-represented sample size. Classes
with a sample count that falls between these two extremes are
considered in-between classes. Specifically, we assume an initial
balancing step of class weights as 1

𝑁
, where N is the number of sam-

ples from each class. Then, we scale this weights according to the
group they belong: ×5 for classes with large number of instances,
×0.2 for classes with few instances and ×1 for the in-between.
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Figure 4: Samples distribution of fine-grained activities per class in split 0, with each bar representing the number of samples.
The train-set, validation set, and test set are distinguished by different colors.

4.3 Ablation Study
Here, we investigate different aspects of the initial vision module
(TSM) and its adaptation to the driver recognition problem, as well
as the performance impact of the fused vision/pose models.

4.3.1 Impact of Segment Sampling: This ablation study pertains to
an examination of the effect of varying the number of segments dur-
ing the evaluation procedure. The aggregation step of TSM should
lead to robustness over the number of selected frames. Indeed, re-
sults of Table 1 support this idea, but, as expected, the initial training
choice of 𝑘 = 8 provides the best performing option. Specifically,
these results are derived on the validation set of split 0, from exper-
imental trials conducted using only vision input data (no pose) and
8 segments sampled during the training phase. The metrics used
are the top-1 accuracy and the balanced accuracy (mean per-class
accuracy).

Table 1: Ablation study for the number of segments in the
evaluation process. Validation results on split 0.

Segments Accuracy Balanced Accuracy

4 80.49% 61.50%
6 81.19% 61.92%
8 81.26% 62.34%
10 80.35% 61.02%
12 80.30% 60.55%

Therefore, for the rest of the experiments we choose 8 as the
number of segments used in the evaluation process.

4.3.2 Pose Architecture: The next ablation study is focused on ex-
ploring the variations in the pose backbone model architecture
when using the early fusion strategy. CNN1D model is able to cap-
ture temporal dependencies between adjacent frames. However, the
degenerated option of kernel size 1 and the absence of shift module
in the pose backbone leads to a pose model that cannot encode

temporal dependencies. To overcome this issue we need to capture
temporal info of the skeletons’ data using useful architectures or
introducing a similar shift module, as we described in Section 3.

The recognition results of the considered architectural options
are summarized in Table 2, using the validation set of split 0. The
following observations can be made:

• The inclusion of pose variations results in an improvement
in performance compared to vision-only model.

• As anticipated, 5/1/2 (kernel size/stride/padding) architec-
ture outperforms 1/1/0 as temporal information plays a cru-
cial role in action recognition tasks.

• The inception-like structure does not result in any additional
improvement in performance, while it adds an overhead to
the model.

• The temporal shift module enhances the performance of the
pose architecture; it yields similar or slightly better results
compared to the kerneled version of 5/1/2, despite requiring
fewer parameters.

Table 2: Ablation study for 1D CNN backbone architecture.
Validation results on split 0.

Kernel Size/Stride/Padding Accuracy Balanced Accuracy

Vision-Only 81.26% 62.34%

1/1/0 81.68% 65.33%
5/1/2 83.50% 66.38%

1/1/0 + 5/1/2 83.29% 66.33%
1/1/0 + TSM 83.78% 66.72%

4.3.3 Fusion Strategies: Having explored different pose architec-
tures, the next ablation study focuses on the stage of fusion between
the information obtained from vision and pose data. In Table 3, we
explore the impact of early vs late fusion, as defined in Section 3,
for both the well-performing temporal-based pose architectures of
the previous ablation study, namely the kerneled 5/1/2 version and
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Table 3: Ablation study for fusion strategies (Early vs Late)
for the best performing pose architectures. Validation results
on split 0.

Architecture Fusion Accuracy Balanced Accuracy

5/1/2 Early 83.50% 66.38%
5/1/2 Late 83.57% 64.98%

1/1/0 + TSM Early 83.78% 66.72%
1/1/0 + TSM Late 83.71% 65.16%

Table 4: Results for vision-only and vision-pose models
on all three splits - validation set.

Validation Split
Method Metric 0 1 2 Total

Vision-Only Accuracy 81.26% 79.64% 81.86% 80.92%
Balanced Accuracy 62.34% 68.06% 67.23% 65.88%

5/1/2 Accuracy 83.50% 80.29% 83.19% 82.33%
Balanced Accuracy 66.38% 64.41% 74.00% 68.26%

1/1/0 & TSM Accuracy 83.78% 79.03% 83.26% 82.32%
Balanced Accuracy 66.72% 63.94% 74.54% 68.40%

the 1/1/0 version along the the temporal shift module. Initial explo-
ration on early fusion with different aggregation function showed
that a concatenation operation outperforms an addition operation.
Specifically, for the 5/1/2 case and the concatenation we had 83.50%
and 66.38%, accuracy and balanced accuracy respectively, compared
to 83.44% and 65.82% of the addition variant. To this end we only
considered concatenation operations for the early fusion strategy
in Table 3. Notably, late fusion under-performs compared to early
fusion versions, indicating a more fine-grained combination of the
two information flows. To this end, we assume concatenation-based
early fusion as the default fusion mechanism for the rest of the
paper.

4.3.4 Vision-only vs Fused models: Lastly, we compare the perfor-
mance of vision and best vision&pose models, namely 5/1/2 and
1/1/0+TSM variants with early fusion, on validation set using the
both accuracy and balanced accuracy metrics on all three dataset’s
splits. This exploration is summarized in Table 4. As we can see,
both pose variants have similar overall performance over the three
splits, while non-trivially outperforming the vision-only model in
both metrics.

There are variations on the performance of the model on the
different splits which can be explained by the fact that the parti-
tioning of the dataset was done based on the participant’s identity
and not the number of samples from each class. Thus, there is a
significant difference between the class frequency in each split and
that is well demonstrated if the balanced accuracy metric is used for
comparison between the model’s performance on different splits.
Similar performance variations between splits were also found in
the test set evaluation.

Table 5: Proposed models on Drive&Act dataset compared to
our proposed model. Our best vision+pose model was used,
i.e. early-fused 1/1/0+TSM architecture. It was trained and
evaluated on RGB input. The reported accuracy corresponds
to the average top-1 accuracy of all three splits.

Type Model Validation Test

Baseline Random [15] 2.94% 2.94%
Pose Interior [15] 45.23% 40.30%

Pose [15] 53.17% 44.36%
Two-Strem [25] 53.76% 45.39%
Three-Stream [16] 55.67% 46.95%

End-to-end C3D [23] 49.54% 43.41%
P3D ResNet [21] 55.04% 45.32%
I3D Net [3] 69.57% 63.64%
CTA-Net [27] 72.42% 65.25%
TML [14] - 66.90%
Ours (1/1/0 + TSM) 82.32% 74.91%

4.4 Comparison to State-of-the-Art
The evaluation of the proposed model was done on all three splits
of the test set and the average top-1 accuracy of the three splits
is used as a comparison metric with related works evaluated on
Drive&Act’s RGB input, since no balanced accuracy metrics present
in the relevant literature.

In Table 5, we can find this comparison with other similar works
in the literature. Our proposed model has outperformed previous
works by a margin of over 8%. This improvement can be attributed
to both the effectiveness of the TSM architecture as well as the
proposed integration of pose information into our model. By incor-
porating the pose information, we have been able to enhance the
accuracy of our our model and make more informed predictions.

Specifically, in the case of vehicle environments where the par-
ticipants appearance and the environment surrounding vary signif-
icantly the combination of RGB and skeleton information of high
fidelity can outperform the simple vision models. This underscores
the importance of considering multi-modal information in future
endeavors and further utilizing this information in innovative ways
to boost the model’s performance even more.

To further comprehend the performance characteristics of our
proposed model, a confusion matrix has been generated to provide
a quantitative analysis of its behavior. A subset of the generated
normalized confusion matrix is presented in Figure 5, which can
be utilized to extract meaningful insights and conclusions. The
selected subset contains interesting cases of recognition errors.

Specifically, the confusion matrix results suggest that the dataset
Drive&Act has some more unique characteristics with regards to
the class distribution. For instance, the logical correlation between
the action "taking laptop from backpack" and "fetching an object" is
significant with the second class being a subset of the first one, and
that correlation is captured by our model resulting in 57% of the
samples belonging to the first class being misclassified as samples
of the second class. This misclassification is exacerbated by the
frequency difference between the two classes, with "fetching an
object" having 40 times more samples than "taking laptop from
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backpack." Despite the use of techniques to balance the learning of
both classes, it may not have been adequate in this case.

Another example of this behavior is the confusion between the
class "preparing food" and "eating," where the two classes have a
logical connection and the videos leading up to eating, when the
food is being prepared, may not have distinct boundaries or exhibit
similar visual and posture characteristics. Similar observations can
be made for other pairs of classes such as "opening bottle" and
"drinking."

Furthermore, the subset of the confusion matrix highlights a
weakness in the model’s ability to distinguish between classes
that consist of reverse atomic actions, such as "opening bottle"
and "closing bottle". Improving the model’s capability to capture
temporal dynamics could help address this issue.

Finally, it is worth noting that classes with consistent postures,
such as "using multimedia display" where the driver’s hand is al-
ways extended, as depicted in Figure 6, exhibit a high degree of
accuracy. This underscores the importance of including pose infor-
mation to enhance performance in challenging action recognition
tasks.

Figure 5: Subset of the normalized Confusion Matrix for the
proposed model, i.e. early-fused 1/1/0+TSM architecture.

5 CONCLUSIONS
In this study, we proposed a method for action recognition in vehi-
cle environments that merges body posture and RGB frames. The
unique difficulties posed by this environment were addressed by
additional skeleton information and operations that allow model
to capture temporal dynamics of the videos without using compu-
tationally expensive architectures. To this end, different temporal-
encoding 1D CNN architectures were explored for pose feature
extraction. Results showed that the fusion of posture and vision
data improved driver action recognition performance compared to
other works on this dataset, including 3D models. Future work may

Figure 6: RGB frames of the "usingmultimedia display" activ-
ity extracted from four videos depicting distinct performers,
with overlaid visualized skeleton information.

involve incorporating more relevant information, such as objects
in the scene, and exploring novel fusion techniques to enhance ac-
curacy. In conclusion, our work highlights the potential of posture
information for improving accuracy in challenging action recogni-
tion tasks, such as driver action recognition where data are usually
scarce.
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