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ABSTRACT

Matrix Factorization (MF) has found numerous
applications in Machine Learning and Data Mining,
including collaborative filtering recommendation systems,
dimensionality reduction, data visualization, and community
detection. Motivated by the recent successes of tropical
algebra and geometry in machine learning, we investigate
two problems involving matrix factorization over the tropical
algebra. For the first problem, Tropical Matrix Factorization
(TMF), which has been studied already in the literature,
we propose an improved algorithm that avoids many of
the local optima. The second formulation considers the
approximate decomposition of a given matrix into the
product of three matrices where a usual matrix product is
followed by a tropical product. This formulation has a very
interesting interpretation in terms of the learning of the utility
functions of multiple users. We also present numerical results
illustrating the effectiveness of the proposed algorithms,
as well as an application to recommendation systems with
promising results.

Index Terms— Tropical Algebra and Geometry, Matrix
Factorization, Dimensionality Reduction, Recommendation
Systems

1. INTRODUCTION

Tropical geometry is a research field combining ideas and
methods from max-plus algebra (e.g., [1]) with algebraic
geometry (see for example [2]). In the last few years, there is
a developing interest in the application of tropical geometric
ideas and tools to machine learning problems. Some
of the applications include the analysis and simplification
of piece-wise linear neural networks and the modeling of
graphical statistical models. For a review and some recent
results see [3].

This paper proposes some ideas and algorithms for
matrix factorization over the tropical algebra and over

The research project was supported by the Hellenic Foundation for
Research and Innovation (H.F.R.I.) under the “2nd Call for H.F.R.I. Research
Projects to support Faculty Members & Researchers” (Project Number:2656,
Acronym: TROGEMAL).

mixed tropical/linear algebras. Matrix Factorization (MF)
is a classical topic in Machine Learning and Data mining
and MF techniques (e.g. low-rank or nonnegative MF)
have found numerous and diverse applications, such
as collaborative filtering, dimensionality reduction, data
visualization, community detection, blind source separation,
and knowledge discovery, to name a few [4].

The contribution of this work is twofold. First,
we propose some simple algorithms for Tropical Matrix
Factorization (TMF) problem that manage to avoid a
large number of locally optimal solutions and compare
favorably with algorithms from the literature. Second, we
introduce a new matrix factorization problem, that involves
approximating a given matrix as a usual product of two
matrices, followed by a tropical product with a third matrix.
We refer to this problem as the Tropical Compression (TC)
problem. This formulation has an interesting interpretation
in terms of learning the utility function of multiple users.
Particularly, utility functions are usually modeled as concave
functions of their arguments (e.g. [5]). We will see that
TC formulation can be used to approximate a vector of
utility functions with unknown arguments. We will also
present an application of the proposed matrix factorizations
in recommendation systems.

Related Work: There is some prior work to the TMF
problem, that is to approximate a matrix as max-plus product
of two matrices with given dimensions. Early applications
of TMF include the problem of state space realization of
max-plus systems [6]. The exact formulation of TMF can
be reduced to an Extended Linear Complementarity Problem
(ELCP) [7]. ELCPs also describe the solution of sets of
tropical polynomial equations [8]. Unfortunately, the general
TMF problem is NP-hard [9]. An approximate technique for
TMF was introduced in [6]. The algorithm was extended
in [10–12], and some applications in data mining were
presented. A closely related algorithm was proposed in
[13], for approximating symmetric matrices as the max-plus
product of a matrix with its transpose. Algorithms for
the related problem of approximate sub-tropical matrix
factorization, i.e., matrix factorization over the max-product
semi-ring were proposed in [14–16]. For a review of several
matrix factorization formulations over non-standard algebras
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see [17].

2. PRELIMINARIES

In this section, we introduce some basic notions of max-plus
or tropical algebra. The underlying space is Rmax = R ∪
{−∞}. This set is equipped with two binary operations ∨
and +, where x ∨ y = max(x, y) and + is the usual scalar
addition. In this space, maximization has the role of the usual
addition and addition the role of usual multiplication. We also
consider the vector space Rpmax where the internal operation
x ∨ y is defined entry-wise, i.e., [x ∨ y]i = max(xi, yi) and
the external operation λ + x, for λ ∈ Rmax,x ∈ R

p
max, is

defined as [λ+ x]i = λ+ xi.
For a matrix A ∈ R

m×p
max and a vector x ∈ R

p
max, we define

the tropical matrix-vector multiplication as

[A� x]i = max
j

(Aij + xj). (1)

Similarly, for matrices A ∈ R
m×p
max and B ∈ R

p×n
max , we define

the tropical matrix multiplication as

[A�B]ij = max
l

(Ail +Blj). (2)

Tropical polynomials are polynomials in the max-plus
algebra. A tropical polynomial function p : Rn → Rmax

is defined as

p(x) =

mp∨
i=1

(ai + bTi x), (3)

where bi ∈ Rn, ai ∈ Rmax. A vector of tropical polynomials
is called a tropical map. Observe that a tropical map can be
expressed in the form A � (Bx), for appropriate matrices
A,B.

For a matrix A the Frobenius norm is given by ‖A‖F =√∑
i,j a

2
ij . Finally, we use 1 to describe an indicator

function, i.e., 1i=j = 1 if i = j and zero otherwise.

3. TROPICAL MATRIX FACTORIZATION

Assume that Y is an n× p matrix. The approximate Tropical
Matrix Factorization problem is to find n × r and r × p
matrices A,B, with given r < min(n, p) that solve the
optimization problem

minimize
A,B

‖Y −A�B‖2F , (4)

where ‖ · ‖F is the Frobenius norm1

1We could also call the above problem as the Tropical Low Rank
matrix approximation problem. However, tropical rank has at least
three non-equivalent definitions (see for example [2]). This formulation
corresponds to the ‘Barvinok rank’. However, to avoid confusion we call
it the TMF problem.

We start with a simple Gradient Descent (GD)
formulation for the above problem. Observe that the function

f(A,B) = A�B

is piecewise linear, and in the generic case, each entry of [A�
B]ij depends on a single pair maximizing entries of A,B.

Thus, GD takes the form

π(i, j)← argmax
l
{Ail +Blj}, (5)

Ail ← Ail − α
∑
j

(Ail +Blj − Yij)1l=πk(i,j) (6)

Blj ← Blj − α
∑
i

(Ail +Blj − Yij)1l=πk(i,j) (7)

where α is the step-size. In case of many maximizers in (5),
assume that one is chosen at random.

In this problem, there is a large number of local minima
and stationary points. The partial derivatives with respect to
all Ail such that 1l=π(i,j) = 0 for all j, are zero. Thus, if the
value ofAil is very small, the partial derivative will be always
zero and local search would not be able to change it. We call
the entries Ail of matrix A that do not contribute to any part
of A�B ineffective.

We then propose a simple modification of the gradient
descent scheme to mitigate this issue

Ail ← Ail − α
∑
j

(Ail +Blj − Yij)si,l,j (8)

Blj ← Blj − α
∑
i

(Ail +Blj − Yij)si,l,j , (9)

where si,l,j = 1 if l = πk(i, j) and εk otherwise. We
choose εk to be small positive constants. The idea behind
this modification is that for all the ineffective entries of
matrices A,B change and thus have the opportunity in the
next iteration to attain the maximum in (5). Note that similar
optimization ideas were used in the context of neural network
pruning in [18]. We call this method Gradient Decent with
Multiplicative Noise (GDMN). We will also study a closely
related modification, where we just add a stochastic value
εk in (6), (7), which we call Gradient Decent with Additive
Noise (GDAN). As we shall see in the numerical section,
these modifications are surprisingly effective for avoiding bad
local minima.

We then shift our attention to the case where Y is partially
specified. That is, we do not have access to all the entries Yij
but only for a subsetO ⊂ {1, .., n}×{1, .., p}. Then, problem
(4) becomes

minimize
A,B

‖ZO ◦ (Y −A�B)‖2F , (10)

where ZO is an n× p matrix with ones in the entries (i, j) ∈
O and zeros elsewhere, and ‘◦’ stands for the Hadamard
(element-wise) product.



In this case (8), (9) become

Ail ← Ail − α
∑

j:(i,j)∈O

(Ail +Blj − Yij)si,l,j

Blj ← Blj − α
∑

i:(i,j)∈O

(Ail +Blj − Yij)si,l,j ,

4. THE TROPICAL COMPRESSION PROBLEM

We first define the Tropical Compression (TC) problem.
Assume that y1, . . . ,yN are datapoints in Rn, with N ≥ n.
The tropical compression problem is to find a description of
the given dataset as the output of a tropical map. That is,
we search for datapoints x1, . . . ,xN in Rp with p < n and
matrices B ∈ Rm×p and A ∈ Rn×mmax that solve the following
problem

minimize
A,B,X

‖Y −A� (BX)‖2F , (11)

where X = [x1 . . . ,xN ], Y = [y1 . . . ,yN ], and B =
[bT1 . . . bTm]T . This is a factorization problem in a mixed
tropical-linear algebras, since a matrix is written as a linear
algebraic product of two matrices, followed by a tropical
product with a third.

We then present a motivating example. Assume that there
is a set of n persons and a set of N items and that the
preference of each person towards an item is described by
a utility function. Each item has several features and the
utility of each user if they receive that item is a piece-wise
linear concave function of its features2. Assume also that
the features of each item i are described by an unknown
p−dimensional vector xi.

If Ȳ is the matrix describing the utility of each person
from each item, then Ȳij can be written as

Ȳij = min(−bT1 xj − ai,1, . . . ,−b
T
mxj − ai,m),

where xj is the vector of characteristics of object j, and−bl’s
the slopes of the piecewise linear utility function. Then, Y =
−Ȳ can be written as

Y = A� (BX),

for appropriate matrices A,B. Particularly, B contains
as rows the slopes of all the different users3. In the case
where both the features xj of the objects and the slopes
bi,l are unknown, the description of Y reduces to a tropical
compression problem.

2Let us note that utility functions are very often modeled as concave
functions (e.g. [5]). An intuitive reason for this choice is the principle
of diminishing marginal utility. Furthermore, piece-wise linear concave
functions can approximate arbitrarily well any concave function.

3In case where the utility function of some user i does not include a slope
bl, then ail = −∞.

4.1. A Numerical Algorithm for the TC Problem

Let us transform (11) into

minimize
A∈Rn×m

max ,C∈Rm×N

‖Y −A�C‖2F ,

subj. to rank(C) ≤ p
. (12)

It is not difficult to see that a solution A,B,X of (11)
corresponds to a solution A,C of (12), with C = BX .
On the other hand, for a solution A,C of (12), we can
perform a rank factorization on matrix C = B′X′ where
B′ ∈ Rm×p

′
,X ′ ∈ Rp

′×N , and p′ = rank(C) ≤ p. By
adding an appropriate number of zero columns in B′ and zero
rows in X ′, we obtain a set of matrices A,B,X solving
(11).

Based on formulation (12), we propose a projected
gradient descent type algorithm. The constraint set is
non-convex. However, the projection on the set of rank-p
matrices can be easily performed using singular value
decomposition (see e.g. [19]). The projected version of
(5)-(7) becomes

π(i, j)← argmax
l
{Ail + Clj}, (13)

Ai,l ← Ai,l − α
∑
j

(Ail + Clj − Yij)si,l,j , (14)

C̃i,l ← Cl,j − α
∑
i

(Ail + Clj − Yij)si,l,j , (15)

C ← Πrank≤p

(
C̃
)

(16)

where Πrank≤p is the projection onto the set of matrices with
rank less than or equal to p.

Remark 1 Let us note that if X is known and treated as
input, and n = 1 the problem reduces to a tropical regression
problem [20].

5. NUMERICAL EXAMPLES

5.1. Synthetic Data

At first we implement the proposed schemes in Python
package CuPy (a version of NumPy that allows for GPU
acceleration).

5.1.1. Tropical Matrix Factorization

We first present an example that illustrates the usefulness of
the proposed modifications GDMN and GDAN. We chose a
matrix Y given as

Y = Ā� B̄ + aR, (17)

where Ā, B̄,R are 10 × 5, 5 × 11, and 10 × 11 matrices
the entries of which are chosen as i.i.d. random variables
following the uniform distribution on [0, 1], and a = 0.1.



(a) (b)

Fig. 1. (a) The approximation error norm for Algorithm
(8)-(9). (b) The comparison of the GD scheme and the
proposed modifications, with FastSTMF. The results for (b)
have been averaged over 10 runs. FastSTMF converges very
fast (in 2 to 5 steps) but does not improve further. Since it uses
a different kind of iteration, we included only its final value.

Figure 1.a compares the norm of the error ‖Y −A�B‖F ,
where the matrices A,B are computed using Algorithm
(8)-(9), with different values of ε (recall that ε represents the
contribution of non-maximizing entries to the algorithm). The
modification allows the algorithm to overcome some local
optima. Observe that there is a trade-off between convergence
speed and quality of solution. With a large value of ε, we have
faster convergence to a worse solution. Additionally, we used
a diminishing scheme for ε in the form εk = 9/(500 + k),
where k is the iteration count. All the results are normalized,
that is, we divide the error with the norm a‖R‖F . Figure 1.b
compares the modified versions of GD.

We then compare the proposed algorithms with the
FastSTMF algorithm from [12]. We factorize multiple 10×11
matrices with r = 5. To have a fair comparison, we
use as an initial estimate in both algorithms the matrices
proposed in [12]. Table 1 shows the matrix factorization
error of FastSTMF and compares it with the error of the GD
and the proposed variations. We have two implementations
of GDAN, with zero mean (GDAN-ZM) and non-zero
mean (GDAN-NZM). GDAN-NZM has the best performance
between the variants examined. This is probably because it
promotes competition between the different non-maximizing
entries of matrices A,B.

Algorithm Parameter a

0.01 0.1 0.5

FastSTMF [12] 11.2± 4.9 1.38± 0.52 .52± .06
GD 13.2± 3.5 1.45± 0.40 .43± .04
GDMN 06.3± 4.1 0.77± 0.19 .39± .04
GDAN-ZM 11.4± 2.6 1.26± 0.43 .42± .04
GDAN-NZM 4.5 ± 2.1 0.60 ± 0.28 .34 ± .05

Table 1. Comparison of the Algorithms: The normalized
Frobenius error, for various values of a.

5.2. Real Data
5.2.1. Movielens 100k Dataset

We use the Movielens 100k Dataset [21], consisting of the
ratings of 943 users to 1682 movies. There are in total 100000
ratings. Here we use the implicit feedback formulation. That
is, we consider a matrix Y with a value of −1 if the person
has watched a movie and +1 if they haven’t.

We then use a factorization of matrix Y . We split the data
into 80% training, 10% validation, and 10% test, and apply
a stochastic version of GD, and early stopping (note that we
observe only a part of the ratings). We use two metrics, the
RMS error and the Hit Rate at 10 (HR@10)4.

The best approximation comes for an intermediate
dimension r = 35 and has an RMS error equal to 0.396
in the test set and HR@10 is 0.755. We then consider the
TC formulation of the problem (11), with m = 40 and
p = 25. Using the modified projected gradient descent
algorithm (13)-(16) we get an RMS error equal to 0.391 and
HR@10 equal to 0.77. Compared to the TMF formulation,
TC performs slightly better. It has also a smaller number of
parameters and an intuitive interpretation.

5.2.2. Movielens 1M Dataset

We then turn to a larger dataset, Movielens 1M, with 1 million
ratings from 6000 users on 4000 movies. We formulate
matrix Y , as in the previous subsection. Then, using the
same train/validation/test split, we compute an approximate
tropical factorization for matrix Y , with r = 40. Then, the
RMS error becomes 0.328 and the HR@10 becomes 0.742.
For comparison, a carefully optimized and regularized linear
factorization gives HR@10 equal to 0.731 [22]. For a TC
formulation with m = 100 and p = 35, the RMS error
becomes 0.327 and HR@10 becomes 0.743.

6. CONCLUSION AND FUTURE WORK

This paper formulates two matrix factorization problems,
over the tropical algebra and over mixed linear tropical
algebras respectively. For the first problem, we proposed
some variations of Gradient Descent that lead to improved
performance and compare favorably with an algorithm from
the literature. For the second problem which, has an
interesting interpretation, in terms of learning the utility
function of a set of users, we proposed a non-convex
projection gradient descent algorithm. The proposed
algorithms were applied to a recommendation problem, using
datasets MovieLens 100k and 1M, with promising results.

Some interesting directions for further research are the
use of appropriate regularization techniques and the study of
sparse approximate solutions for the TMF problem.

4HR@10 is defined as follows. For each user, form a list of 101 items
choosing randomly from the test set 1 positive and 100 negative items. Then,
count the number of users for which the positive item is ranked among the
first 10 of the list [22].



7. REFERENCES
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