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ABSTRACT

In this paper we demonstrate efficient methods for continuous esti-
mation of eye gaze angles with application to sign language videos.
The difficulty of the task lies on the fact that those videos contain
images with low face resolution since they are recorded from dis-
tance. First, we proceed to the modeling of face and eyes region
by training and fitting Global and Local Active Appearance Models
(LAAM). Next, we propose a system for eye gaze estimation based
on a machine learning approach. In the first stage of our method, we
classify gaze into discrete classes using GMMs that are based either
on the parameters of the LAAM, or on HOG descriptors for the eyes
region. We also propose a method for computing gaze direction an-
gles from GMM log-likelihoods. We qualitatively and quantitatively
evaluate our methods on two sign language databases and compare
with a state of the art geometric model of the eye based on LAAM
landmarks, which provides an estimate in direction angles. Finally,
we further evaluate our framework by getting ground truth data from
an eye tracking system Our proposed methods, and especially the
GMMs using LAAM parameters, demonstrate high accuracy and ro-
bustness even in challenging tasks.

Index Terms— Eye gaze estimation, gaze direction angles, face
and eyes modeling, active appearance models, histograms of ori-
ented gradients, gaussian mixture models, eye-tracker estimation.

1. INTRODUCTION
The role of Eye Gaze: Eyes are primarily a human sensor for visual
data input. They can also express information and specifically the
gaze direction which defines the place where a person focuses his
attention. Eyes, as well as the other face parts, participate in the
expression of emotions [1]. Specifically, there are some emotions
which occur mainly with a change in the eyes region. Generally,
people can easily determine the eye gaze direction by rotation of
the head and eyes angles. Multiple application fields could benefit
from the use of a system for automatic estimation of eye gaze. For
example, it could be integrated in car security systems [2] and in
computer interaction systems [3] for people with special needs. Eye
gaze estimation could be used to design systems for automatic sign
language recognition [4, 5, 6] as well. Finally, it could be the basis
for the development of computer interfaces [6, 7], which would help
people with speech and aural disabilities to interact with computers.
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Background: Eye Gaze can be defined in two different ways: as the
direction of gaze vector [2, 8, 9] or as a point of interest in a ref-
erence plane (such as a monitor), on which our eyes focus [10, 11].
Both these approaches have been widely used, depending on the pur-
pose of application [12]. The main steps and individual problems
that arise in the estimation of eye gaze are eyes detection and track-
ing, head pose estimation and their combination using a model for
the calculation of the final gaze. Generally, the eye gaze estimation
methods can be classified into intrusive and non-intrusive. The in-
trusive techniques require the use of additional equipment and thus
affect the user behavior. In contrast, non-intrusive methods do not
use any type of additional equipment which interacts directly with
the user and influence his behavior. These methods use Computer
Vision techniques to extract information from a set of images and
are quite promising for the development of a widely used gaze esti-
mation system with a relatively low cost [13].

For the eye gaze estimation several types of techniques have
been proposed: 3D geometrical models, 2D feature based regres-
sion models and appearance based models [14]. The 3D geometrical
models, in most cases, use infrared light and achieve an estimation
with high accuracy [15, 13]. Nonetheless, typical cameras are also
used [2, 8, 12], but they require high-resolution images focused on
the eye region, because a small error in the estimation of one param-
eter can lead to large errors in the estimation of gaze. Regression
models are also based on feature extraction and are sensitive to fea-
ture errors, but to a lesser extent [16, 9, 17]. Finally, models based
on appearance are more robust and can operate well with low quality
images, since they are not based on local features but use informa-
tion from the whole eye region [10, 18, 11, 5, 19]. Additionally,
they do not require any camera calibration, however their estimation
accuracy is lower than previous mentioned models.

This paper’s contributions are summarized as follows. In Sec-
tion 2 we deal with the problem of tracking and modeling the face
and the eyes’ region using AAMs. In Section 3 we proceed to the es-
timation of eye gaze by fitting statistical models either on the AAMs
parameters or on HOG features extracted from the eye’s region. Our
method, in addition to the classification into discrete directions, can
provide a continuous estimation for eye gaze by computing gaze di-
rection angles from GMM log-likelihoods. The proposed method
performed well even in difficult tasks like sign language videos (Sec-
tion 4, which have low face resolution and face occlusions. The eval-
uation, based on an Eye Tracker estimation (Section 5), confirms the
effectiveness and accuracy of our methods, as well.

2. FACE AND EYES MODELING
2.1. Active Appearance Models
For the task of face tracking and modeling we have used the Active
Appearance Models (AAMs), which were originally proposed by
Cootes et al. [20, 21] and later improved by Baker and Matthews
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Fig. 1: Variance of the first 3 eigenshapes and eigentextures of local AAM for eyes region into [−3
√
λi, 3

√
λi], where λi is the corresponding eigenvalue.

Best viewed in color.

[22, 23], who added fast and efficient algorithms for fitting AAMs
in new images. The AAMs are our basic tool for the development
of eye gaze estimation methods. In some cases we use directly the
AAMs parameters, while others methods rely on the result of shape
mask fitting, in order to extract various features for the face. Also,
in some approaches AAMs can be used as an initial preprocessing
stage before the main algorithm is applied.
Global AAMs: For the sign language videos we trained subject-
specific AAMs for the whole face (Global AAM), which capture
most variance of the face and especially the eyes movements. The
tracking initialization is achieved using the Viola-Jones face detec-
tion [24] while for the training of AAMs we manually annotate an
image set with the face mask landmarks. We use 86 points for the
graph of face shape, including points for the forehead, in order to
increase the model accuracy. We keep 90% and 80% of the variance
for the shape and texture model respectively. For fitting the AAMs
into novel images we use the inverse compositional algorithm, pro-
posed by Baker and Matthews [23]. The fitting process estimates the
concatenated shape and texture parameters vector q = [p̃T , λ̃

T
]T

that minimizes the norm ‖E(q)‖22, where p̃ are the shape parameters
p concatenated with the parameters of a 4 d.o.f. similarity transform
and λ̃ are the texture parameters λ enhanced with the parameters of a
global affine texture transformation. E(q) is the error image defined
as the difference between the reconstructed texture and the image
texture warped on the mean shape s0. This optimization problem is
linear in texture parameters but non-linear for the shape parameters.
For its solution we use the adaptive and constrained algorithms for
inverse compositional AAMs fitting, proposed in [25].
Eyes Region Local AAMs: In order to decompose and model better
the eyes region, we train and fit a local AAM, initializing the points
of its shape graph from the corresponding landmarks of the Global
AAM. We have kept 6 eigenshapes and 12 eigentextures. Figure 1
shows the variance of the first 3 eigenshapes and eigentexture of
the local AAM on GSL database. Notice that the first eigenshape
models the opening and closing of the eyes, while the second and
the third describe the motion of the iris. Moreover, the texture model
describes also successfully the changes in the position of the iris.

2.2. The Database
We have implemented and evaluated our proposed techniques, by us-
ing videos from two databases: 1) Greek Sign Language (GSL) [26]
by the Institute for Language and Speech Processing (“ILSP”) and
2) American Sign Language database BU400 [27]. In sign language
eye movements play an important role, because the eyes are one of
the main ways for changing prosody in sign language and to direct
our “speech” to another person. But there are some technical limita-
tions in the use of sign language videos. First, most video databases
do not have sufficient annotation for checking the results accuracy.
Also, eye gaze estimation system must be designed without requir-
ing a specific calibration, because if a video has been recorded at

(a) (b) (c) (d) (e) (f)

Fig. 2: Global AAM tracking results on GSL database.

previous time, it will may be impossible to extract such information.
Finally, because in sign language hands movement plays the dom-
inant role, the whole upper body of the signer has been recorded.
This results in low resolution of the image in the face region and
much more around the eyes, even in cases where the initial resolu-
tion of the video is quite high. In Fig. 2 we see indicative tracking
results on GSL database. Note that the fitting of the AAM around
the eyes region is less influenced by the face occlusions.

3. EYE GAZE ESTIMATION USING GMMS AND EYES
APPEARANCE

For the eye gaze classification we employ an approach based on
Gaussian Mixture Models (GMMs). For this purpose, it is needed
to define “manually” a training set with images for each class, which
represents a different gaze direction. In our approach we used six
classes describing the basic directions of gaze: “Up”,“Center and
Up”, “Down”,“Center and Down”,“Left”,“Right”. Then, for each
class an independent GMM is trained using the EM algorithm, which
expresses the gaze classification probability in the above classes.

For the classification process, we used as feature vector the pa-
rameters of the Local AAM for eyes region. This vector comprises
the parameters p,λ, which control the LAAM shape and texture,
but not those which are related with similarity transformation and
global affine texture transformation. We have also included the first
two shape parameters of the Global AMM since they mainly contain
information about the head pose [4, 28]. We have also experimented
with Histograms of Oriented Gradients (HOGs), which describe the
structure of the shape in an image and have been used with great suc-
cess in object recognition, such as the pedestrian detection [29, 30].
There are also used to express the eyes region changes for facial ex-
pressions recognition tasks, which are needed in the automatic sign
language recognition [5]. So, we expect to have similar successful
results for the eye gaze estimation problem. For HOGs features ex-
traction it is necessary first to determine the eyes region. This can be
done by defining on the face image a rectangle based on the points
of AAM shape mask, which encloses the eyes region. Then, for each
eyes image we extract a vector of HOGs based features, which will
be used for gaze classification. For the new testing samples, we first
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(c) Mean Absolute Error relative to Eye-
Tracker

Fig. 3: a,b) Percentages for successful eye gaze classification based on Local AAM parameters (red) or HOGs descriptors for eyes region (blue), using GMMs.
c) Mean Absolute Error (MAE) for horizontal and vertical angle estimation, relative to Eye Tracker estimation. Note that the lower performance in vertical
direction is related to the small changes in eye tracker estimation due to the limited screen height.

compute the log-likelihood for each of the 6 gaze categories and then
for each direction (horizontal or vertical) we select the class with the
highest likelihood.
Estimation of Eye Gaze Angles from GMM Likelihoods: The de-
scribed gaze direction classification provides us a quite good discrete
estimation for eye gaze. However, in many cases it is necessary to
have a continuous estimate for gaze angles, so the accuracy given
by the 6 basic classes is not enough. For this reason, we propose
a method, which makes use of GMMs log-likelihood for each one
of the 6 basic classes, in order to compute angles for the horizontal
and vertical gaze direction. The proposed method uses two different
approaches for the computation of the angles. The first one, assumes
large changes in the gaze angles. It is based on the estimation of the
gaze vector projection on the image plane, using the likelihood ratio
between the 6 basic classes. The other one is related with small gaze
changes around the straight direction, and is computed by a linear
regression between GMMs likelihood and gaze direction angles.

For the determination of the angle θver in the vertical direc-
tion, we first compute the following likelihood ratios (LLi is defined
as the likelihood of each class minus the overall minimum value):
Vup =

LLup−LLupcenter

LLup
and Vdown = LLdown−LLdowncenter

LLdown
.

The total vertical projection will be VUD = Vup − Vdown, while the
vertical direction angle will be given by: θver = arctan (VUD).
Afterwards, we compute the ratio between the two central direc-
tions: Dcenter =

LLupcenter−LLdowncenter

max (LLupcenter,LLdowncenter)
. In the estima-

tion of angle θver we have considered that there are two different
central directions. So, we add in the above result a correction term,
which expresses the difference between the two central directions
(κcenter is an experimentally defined small constant angle between
7◦ − 10◦): θver = arctan (VUD) + Dcenter · κcenter . In a sim-
ilar manner, we compute the ratios Vleft, Vright for the horizontal
direction: Vleft(right) =

LLleft(right)−LLcenter

LLleft(right)
. As center it is

selected the central direction with the highest likelihood. So, the to-
tal horizontal projection is VRL = Vright − Vleft and the relevant
horizontal angle will be given by: θhor = arctan (VRL).

However, the method described above performs weakly in
estimating gaze angles, that lie very close to the straight di-
rection. So, two angles φver and φhor are introduced for de-
scribing small variations of gaze around the central direction.
This angles are computed using linear regression on class likeli-
hoods: φver =

(
LLup

LLupcenter
− LLdown

LLdowncenter

)
λver and φhor =(

LLright−LLleft

LLcenter

)
λhor . The angles λver, λhor are two small an-

gles about 5◦ − 8◦, defined also experimentally. For the angle φver

it should be added the angle between the two central directions.
So, for large gaze variations, angles are computed by the previous
equations, while for small changes around the central direction will
be given by: θver = φver +Dcenter · κcenter and θhor = φhor .

4. EVALUATION ON SIGN LANGUAGE VIDEOS

Evaluation on GSL: Figure 3a presents percentages for success-
ful gaze classification, in each of the 6 classes, on GSL database.
As classifier input we have selected either the parameters of the
local AAM (red) or the HOG features (blue), and we have em-
ployed mixture models with 2 Gaussians (K = 2). We can observe
that recognition rates reach the perfect for the classes “UpCen-
ter”,“Left”,“Right”, while for the other classes are also quite high.
This happens because the above 3 classes contain more obvious
changes in the eyes region relative to the other classes. At this point,
we should note that in cases where the eyes appear closed, we con-
sidered that the gaze direction is “Down”. As we have mentioned,
the recognition rates for these 6 very basic eye gaze classes are quite
high, proving in this way the success of the proposed method. How-
ever, if the classes number increases then, as it is expected, the rates
will decrease considerably. In addition, classify the gaze into more
classes requires the annotation of the corresponding training set.
This is not always straightforward, because a more accurate classifi-
cation for eye gaze is a difficult task even for humans. Regarding the
employed feature vector, we observe that in general the recognition
rates remain quite high. However, excluding “ Left” and “ Right”,
the other classes rates appear lower compared to those using the
LAAM parameters. Also, we should mention that the vector of
HOGs features is significantly larger (81 values) than that of LAAM
parameters (20 values). So, in most cases, gaze classification based
on LAAM parameters seems to yield better results, with the use of
a much smaller amount of parameters. This is expected, because
HOGs describe the local changes of an image shape, in contrast
to the AMMs, which give a representation of a given object based
on information from other similar images. On the other hand, the
extraction process for the HOGs is computably easier than AAMs
training and fitting. The required eyes region can be found by fitting
a more simple model, like Active Shape Models [21], or using other
facial points detectors [31, 32], e.g. a Haar-like detector in a similar
manner as in face detection [33, 34, 35].
Estimation of gaze angles on GSL:We have applied the proposed
method for gaze angles estimation on the GSL database. First, we
compute, as before, the log-likelihood for each class GMM, using
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Fig. 4: Examples of estimating gaze direction angles from GMM likelihoods
for each class using the LAAM parameters (red) or the HOGs descriptors
(blue), on GSL database. We also see the gaze estimation using a geometri-
cal model (green) [2]. Best viewed in color.

as feature vector either the LAAM parameters or HOGs descriptors.
Then, direction angles are estimated according to the above algo-
rithm. Figure 4 presents indicative results of these methods. We also
compare our method with a state of the art geometrical model for
eye gaze estimation, combining available information about the head
pose. The initial model is based on the Ishikawa et al.[2] model for
driver gaze tracking. However, we have made some modifications
in order to increase robustness with low resolution eye images and
to be able to easily calibrate the whole system using only one im-
age of the straight gaze direction. In general, we can see that the
results are quite accurate and agree in a large degree with human
sense. The proposed method managed to give quite good results
in difficult cases, like face occlusions, where geometrical models
have difficulties to give a correct estimate. On the other hand, the
estimated angles tend to magnify the extreme gaze changes, as the
up/down (or left/right) gaze turn. Finally, depending on the feature
vector employed, it seems clearly that the LAAM parameters per-
form better than HOG descriptors. The latter, in some cases, fail to
estimate correctly the gaze direction (Figure 4c, 4f). This fact was
observed during the classification process as well, but it becomes
more apparent with the continuous angles estimation.
Evaluation on BU400: Next we evaluate our classification meth-
ods on BU400 database which has eye gaze annotation for the basic
angles. Spesifically, we classify the gaze into 6 different directions:
“Down”, “Down/Left”, “Left”, “Right”, “Up” and “Up/Left”. Fig-
ure 3b presents accuracy percentages for the gaze classification, on
BU database. In this dataset we employ GMMs with K = 7 Gaus-
sians due to the low resolution videos and the high variance in both
head pose and eye gaze directions. We confirm that the method based
on the LAAM parameters performs better than the HOG features for
almost all the gaze classes.

5. EVALUATION BASED ON EYE TRACKER
ESTIMATION

In this last section, we will compare our continuous estimation for
eye gaze direction angles, with the one that is provided by an eye
tracking system. As we have seen, the above mentioned methods
have good quality performance over sign language videos, which
have the limitations that we have already discussed. Unfortunately,
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Fig. 5: Example of horizontal and vertical angle estimation for gaze varia-
tions inside screen boundaries. Best viewed in color.

we cannot provide any quantitative evaluation of these results, be-
cause it is difficult to find a database with both sufficient continuous
annotation for eye gaze and spontaneous scenes, such as sign lan-
guage videos. For this reason, we are going to quantitatively eval-
uate the described methods on a somewhat different task: the eye
gaze estimation when someone sits in front of his computer mon-
itor. This is a widely used case, for which we can obtain ground
truth estimation via an eye tracking system. Specifically, we have
used the commercial Eye Tracking System TM3 provided by Eye-
TechDS. Figure 5 presents an example of the estimated angles for
gaze variations inside screen boundaries, while in Fig. 3c we see
the Mean Absolute Error (MAE) relative to Eye Tracker estimation.
For the estimation using HOGs, we have applied a median post-filter
because the original data had a lot of noise. It is clear that for the
horizontal direction all methods’ results are close to the tracker’s es-
timation. Although, GMMs with LAAM parameters have the best
performance, with mean absolute error value around 4◦. For vertical
direction, there are deviations between methods and tracker estima-
tion. In this case, according to MAE, the Geometrical Model seem to
perform better. However, from the angle curve we see that it happens
because its estimation is very close to zero while the other two meth-
ods track better the gaze changes. The lower performance in vertical
direction is partly explained by the fact that the screen height is not
big enough, in order to have large variations both in gaze angles and
eyes region. In addition, let us note that for all methods the MAE is
relatively low, under 7◦. Closing, we can say that “GMMs-LAAM”
method has, in general, the overall better performance, as we have
also mentioned and for the GSL database.

6. CONCLUSIONS

In this work, we approach the problem of continuous estimation of
eye gaze angles, with application to low resolution face images from
sign language videos. We proceeded to a discrete gaze classification
using GMMs, based on either LAAM parameters or HOG descrip-
tors. Evaluation on sign language databases showed that both repre-
sentations are promising, although LAAM seems to perform better.
Additionally, we proposed a method for continuous estimation of
gaze angles from GMM log-likelihoods with successful results, as
well. We have also compared our method with a state of the art ge-
ometrical model for gaze estimation, based on LAAM landmarks.
Qualitative experimental evaluation on sign language videos verify
the effectiveness of our method. Finally, we evaluated our methods
using ground-truth data from an Eye Tracker and showed that for all
cases the Mean Absolute Error (MAE) for both gaze directions is
relatively low and specifically under 7◦.
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