
An Optimum Microphone Array Post-

Stamatis Lefkimmiatis, Dimitrios Dim

National Technical University of Athens, School of
Email:[sleukim, ddim, mara

Abstract
This paper proposes a post-filtering estimation scheme for mul-
tichannel noise reduction. The proposed method extends and im-
proves the existing Zelinski’s and, the most general and prominent,
McCowan’s post-filtering methods that use the auto- and cross-
spectral densities of the multichannel input signals to estimate the
transfer function of the Wiener post-filter. A major drawback of
these two speech enhancement algorithms is that the noise power
spectrum at the beamformer’s output is over-estimated and there-
fore the derived filters are sub-optimal in the Wiener sense. The
proposed method deals with this problem and can be considered
as an optimal post-filter that is appropriate for a wide variety of
different noise fields. In experiments over real-noise multichannel
recordings, the proposed technique is shown to obtain a significant
headstart over the other methods in terms of signal-to-noise ratio
and speech degradation measures. In addition it is used for ASR
experiments where promising preliminary results are presented.
Index Terms: Speech enhancement, microphone array, post-filter,
complex coherence, speech recognition.

1. Introduction
Nowadays, the use of microphone arrays for speech enhancement
and robust speech recognition seems very promising. The main
advantage against single channel techniques is that a microphone
array can simultaneously exploit the spatial diversity of speech and
noise, so that both spectral and spatial characteristics of signals
can be considered. The spatial discrimination of the array is ex-
ploited by beamforming algorithms [1]. In many cases though,
the obtainable noise reduction performance is not sufficient and
post-filtering techniques are applied to further enhance the output
of the beamformer. The Minimum Mean Square Error (MMSE)
estimation of a multichannel signal taken from its noisy observa-
tions is obtained using the multichannel Wiener filter. Simmer
et al. [2] have recently shown that the optimal broadband multi-
channel MMSE filter can be factorized into a Minimum Variance
Distortionless Response (MVDR) beamformer [3] followed by a
single-channel Wiener post-filter. In general, such a post-filter ac-
complishes higher noise reduction levels than the MVDR beam-
former alone, and therefore its integration in the beamformer out-
put can lead to substantial SNR gain.

Despite its theoretical optimality, the Wiener post-filter is dif-
ficult to be realized. This is due to the requirement for the knowl-
edge of second order statistics for both speech and the corrupting
noise signals that make Wiener filter signal-dependent. A variety
of post-filtering techniques trying to address this issue have been
proposed in the literature [4, 5, 6]. A quite common method for the
formulation of the post-filter’s transfer function is based on the use
of the auto- and cross-spectral densities of the multichannel input
signals [2, 4, 6].
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One of the early methods for post-filter estimation is due to
nski [4] that was further studied by Marro et al. [7]. A more
ralized approach of the Zelinski’s algorithm is based on the
mption of a spatially uncorrelated noise field. However, this
mption is not realistic for most of the practical applications.
more accurate noise field model could be used, the overall

ormance of the noise reduction system would be improved.
owan and Bourlard [6] assume a known noise field coherence
tion and propose a more general post-filtering scheme improv-
the overall performance. A certain drawback though in both
ods is that the noise power spectrum at the beamformer’s out-

is over-estimated [6, 8] and therefore the derived filters are
optimal in the Wiener sense.
This paper deals with the problem of estimating the Wiener
-filter transfer function so that the estimated filter is optimal
rms of MMSE, allowing though, the development of a general
-filter appropriate for different noise fields. To meet with these
ands we preserve the general assumption of a known noise
coherence function [6] but in addition, we take into account

noise reduction performed by the MVDR beamformer. This
, we estimate the speech source’s spectrum like in [6] but we
ose a new robust method for estimating the power spectrum at

beamformer’s output, being consistent with the optimality in
MMSE sense. The enhanced speech signals are used in noisy

tasks where promising preliminary results are presented.

2. Microphone Array Post-Filtering
sidering an M -sensor linear microphone array, the observed
al yi(n), i = 0, . . . , M − 1, at the ith-sensor is a delayed and
uated version of the original speech signal s(n) with an ad-
e noise component vi(n). Applying the short-time Fourier
sform (STFT), the observed information in the joint time-
uency domain can be written as

Y(k, �) = H(k)S(k, �) + V(k, �) , (1)

re k and � are the frequency bin and the time frame index,
ectively. Y, H and V are M × 1 column vectors with H
g the propagation vector of the signal source.
A standard method to estimate the desired signal, based on
observed noisy signals, is to compute the weight vector that
sforms the corrupted input signal vector into the best MMSE
oximation of the source signal. This weight vector is known
ultichannel Wiener filter, and it can be further decomposed
a MVDR beamformer followed by a single-channel Wiener

r [2],

Wopt(k, �) =
Φ−1

VV (k, �)H(k)

HH(k)Φ−1
VV (k, �)H(k)︸ ︷︷ ︸

Wmvdr(k,�)

· Hpost(k, �) , (2)
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Hpost(k, �) =
ΦSS(k, �)

ΦSS(k, �) + Φnn(k, �)
. (3)

In Eq. (2), ΦVV(k, �) is the normalized cross-power spectral den-
sity matrix of the noise, while in Eq. (3) ΦSS(k, �) is the power
spectral density of the source signal and Φnn(k, �) is the power
spectrum of the noise at the output of the beamformer,

Φnn(k, �) = Φnf (k, �)WH
mvdr(k, �)ΦVV(k, �)Wmvdr(k, �) . (4)

The quantity Φnf (k, �) is the normalization factor of the noise
cross-power spectral matrix defined as the ratio of the matrix trace
to the number of its diagonal elements. In the case of the MVDR
beamformer, the weight vector Wmvdr(k, �) can be evaluated since
it is data independent. However, for the Wiener post-filter the so-
lution depends on ΦSS(k, �).

3. Post-Filter Estimation
At first, we introduce the coherence function which provides us
with a model for the noise field. Then, we propose a new estima-
tion scheme that extends McCowan’s post-filter estimation method
and succeeds to provide a general post-filter, appropriate for dif-
ferent noise fields that is optimal in the Wiener sense. In addition,
we point out the similarities and differences of these two methods.

3.1. Noise Field

In microphone array applications, noise fields can be characterized
by a measure known as the complex coherence function. Coher-
ence function measures the amount of correlation between noise
signals at different spatial locations and is defined [3] as

ΓVpVq (ω) =
ΦVpVq (ω)√

ΦVpVp(ω)ΦVqVq (ω)
, (5)

where ω is the discrete-time angular frequency, ΦVpVq (ω) is the
cross-spectral density between the noise arrived at sensors p and q
and ΦVpVp(ω), ΦVqVq (ω) are the spectral densities of the noise at
sensors p and q, respectively.

A diffuse noise field is defined as an equally distributed un-
correlated white noise signal coming from all directions and is a
widely-used model for many applications concerning noisy envi-
ronments (e.g cars and offices [5], [6]). The complex coherence
function for such a noise field is approximated by

ΓVpVq (ω) =
sin(ωfsd/c)

ωfsd/c
, ∀ω (6)

where d is the distance between sensors p and q and fs is the sam-
pling frequency.

3.2. Proposed Generalized Post-Filter

An overview of the overall multichannel noise reduction system is
provided in Fig. 1. At the output of the sensors the multichannel
input signals are time-aligned and scaled to compensate for the
time-delay and attenuation, thus H(k) equals to a M × 1 column
vector of ones, I. The signals at the delay compensation output are
denoted as

Y(k, �) = I · S(k, �) + V(k, �) (7)

Computing the auto- and cross-power spectral densities of the time
aligned input signals on sensors p and q leads to

ΦYpYq = ΦSS + ΦVpVq + ΦSVp + ΦSVq (8a)

ΦYpYp = ΦSS + ΦVpVq + 2� ΦSVp (8b)
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Figure 1: Block diagram of the noise reduction system.

formulation of the proposed post-filter is based on the same as-
ptions adopted in [6]: (i) The speech and noise signals are un-
elated, (ii) The noise field is homogeneous, i.e ΦVpVp = ΦVV,
An estimation of the coherence function ΓVpVq (ω) is given.
er these assumptions and by combining Eqs. (5) and (8) it fol-
that,

ΦYpYq = ΦSS + ΦVpVq (9a)

ΦYpYp = ΦSS + ΦVV (9b)

ΦVpVq = ΦVVΓVpVq . (9c)

ation set (9) forms a 3 × 3 linear system. Noting that it holds
Yp(k, �) = ΦYqYq (k, �) and solving for ΦSS, the input signal
er spectral density is computed as [6],

pq)
S =

�
{

Φ̂YpYq

}
− 1

2
Φ̂YpYp + Φ̂YqYq �

{
Γ̂VpVq

}

1 −�
{

Γ̂VpVq

} . (10)

average sum of the auto-spectral densities for channels p and
considered to improve robustness. Robustness can be further
roved by taking the average sum over all M

2
possible combi-

ns of channels p and q, resulting to

Φ̂SS =
2

M(M − 1)

M−2∑
p=0

M−1∑
q=p+1

Φ̂
(pq)
SS . (11)

denominator of Eq. (3) denotes the power spectrum of the
DR’s output. If Z is the output of the beamformer, then

ΦZZ = ΦSS + Φnn . (12)

We propose a more robust and accurate way of estimating Φnn.
ming a homogeneous noise field, it holds ΦVV = ΓVV and
= ΦVV. Thus Φnn can be written from Eq. (4) as

Φnn = ΦVVW
H
mvdrΓVVWmvdr . (13)

re ΓVV is the coherence matrix of the noise field.
ing the system in (9) for ΦVV instead of ΦSS, the noise power
trum is estimated as:

Φ̂
(pq)
VV =

1
2

Φ̂YpYp + Φ̂YqYq −�
{

Φ̂YpYq

}

1 −�
{

Γ̂VpVq

} . (14)

owing the previous clues, additional robustness can be estab-
d by averaging all combinations of channels p and q, resulting

Φ̂VV =
2

M(M − 1)

M−2∑
p=0

M−1∑
q=p+1

Φ̂
(pq)
VV . (15)



We must note that a problem may arise in the estimation of Φ̂
(pq)
SS

(10) and Φ̂
(pq)
VV (14) when Γ̂VpVq = 1, for all p �= q. A possible

solution proposed in [6] is to bound the model of the coherence
function so as Γ̂VpVq < 1, for all p �= q.

To estimate the power spectrum at the beamformer’s output
with no prior knowledge of the ΦSS values, we use the existing
estimations. The post-filter’s denominator becomes

Φ̂ZZ = Φ̂SS + Φ̂VVW
H
mvdrΓ̂VVWmvdr . (16)

An alternative approach would be to estimate the spectral density
ΦZZ directly from the output of the MVDR beamformer. However,
in such case the estimation would lack robustness since only one
output signal would be available for the estimation process, instead
of N signals.

From Eqs. (3), (11) and (16) we finally obtain the transfer
function of the Wiener post-filter

Ĥprop =
Φ̂SS

Φ̂SS + Φ̂VVWH
mvdrΓ̂VVWmvdr

. (17)

At this point we have to note that in both methods proposed in [4]
and [6], the post-filter’s denominator is

Φ̂ZZ =
1

M

M−1∑
p=0

Φ̂YpYp . (18)

This is an over-estimation of the noise power spectrum at the
beamformer’s output due to the fact that the noise attenuation, al-
ready provided by the MVDR beamformer, is not taken into ac-
count in the post-filtering process. Therefore the derived filters are
sub-optimal in the Wiener sense [6, 8].

4. Speech Experiments and Results
The effectiveness of the proposed post-filter is examined by com-
paring it with the other multi-channel, noise-reduction techniques,
including the MVDR beamformer [3], the generalized Zelinski [4]
and the McCowan post-filters [6], under the assumption of a dif-
fuse noise field.

4.1. Speech Corpus and System Realization

The microphone data set (source signals) used for the experiments
is taken from the TIDIGITS database and recorded in a room with
diffuse noise. The recordings were collected by a linear micro-
phone array consisting of 16 sensors with a spacing of 2cm be-
tween the adjacent sensors. The desired speech source was posi-
tioned directly in front of the array at a distance of 1.3m from the
center. All the recordings were sampled at 16 kHz. The data set
contains recordings from 52 male and 52 female adult speakers.

We window the sampled input signals into frames of length
400 samples (25 ms) and apply to each frame a Hamming window.
The overlap between adjacent frames equals to 300 samples (≈ 19
ms). Each data block is then transformed in the frequency domain
with a FFT of size 512 samples.

The MVDR weight vector is estimated under a White Noise
Gain (WNG) constraint [9]. The multichannel noisy signals are
first applied to the MVDR beamformer. The beamformer’s out-
put is further processed by the above-mentioned post-filters. To
calculate the Wiener post-filters’ transfer functions, the auto- and
cross-spectral densities have to be estimated. The power spectra
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Figure 2: MVDR beamformer directivity factor.

stimated using the short-time spectral estimation method pro-
d in [10]. This method smoothes the spectra in both time and
uency domains yielding improved estimates. Finally, the out-
of the noise reduction system, Fig. 1, is transformed to the
-domain using the Overlap and Add Synthesis (OLA) method.

Speech Enhancement Experiments

advantages of estimating the post-filter transfer function with
proposed method are examined by two different objective
ch quality measures.
At first, the segmental signal-to-noise ratio enhancement
RE) is used. The SNRE is defined as the difference in seg-
tal SNR between the enhanced output and the noisy input of
oise reduction system, Fig. 1. The post-filter transfer function

the examined algorithms is derived when applying the noisy
ch signals to the noise reduction system. For the calculation
e SNRE, we estimate the output of the noise reduction sys-
using the clean, noisy speech and the noise signals as inputs.
way, we have available three signals as output; the processed

n speech signal, the enhanced output signal and the processed
e. The segmental SNR is estimated over consecutive samples
block size of 512 samples according to the definition given

]. Then, the speech degradation (SD) measure is used to assess
peech quality of the enhanced output signal. This measure is
d to be highly correlated with the human perception and pro-
s a quantitative measure of the speech distortion caused by the
all system. Low SD values denote high speech quality. The
measure is defined according to the formula provided in [2].
The SNRE and SD results are averaged across the male and
emale data set and are presented in Table 1. Examining these
lts we note that neither the beamformer alone nor the Zelinski
-filter can remove sufficiently the noise. The low SNRE re-
of the MVDR beamformer can be attributed to the fact that
reatest portion of the noise energy is concentrated in the low

uency region, where the beamformer has a low directivity fac-
Fig. 2). The poor performance of Zelinski’s post-filter is ex-
ed since it assumes a noise field model that is inappropriate.
additional explanation can be found in [11] where it is shown
this method, works well only for reverberation times above
ms. On the other hand, McCowan’s method performs better
the previous two. However, we note that the proposed post-

r consistently outperforms all the other methods as it produces
best results for all the objective measures. It gives the great-



est noise reduction while still providing the highest speech quality
signal.

Male Female Total
Method SNRE SD SNRE SD SNRE SD

MVDR 0.47 3.66 0.37 3.67 0.42 3.66
Zelinski 0.16 5.10 0.01 5.12 0.09 5.11

McCowan 1.40 3.90 3.21 4.09 2.31 4.00
Proposed 3.73 3.37 5.14 3.42 4.44 3.40

Table 1: Speech Enhancement Results (dB)

4.3. Speech Recognition Experiments

The examined algorithms are used for the feature extraction pro-
cess of an HMM-based recognizer like the HTK Toolkit. We ex-
tract features from the enhanced signals and apply them to the
HTK Toolkit to examine their impact on ASR tasks. For the ASR
experiments, we have used the same database as mentioned in Sec-
tion 4, dividing it into 2 separate sets though. In detail, 700 of the
sentences are used as the training corpus and the other 300 are used
as the testing sentences. Context-independent, 12-state, left-right
word HMMs with 3 gaussian mixtures are used. The grammar
used is the all-pair, unweighted grammar. We have examined all
seven different versions of the speech sentences, the source, clean
and noisy data and the four enhanced versions.

Computational Architecture: For the ASR experiments we
are using an attractive computational architecture for the feature
extraction process taking advantage of the STFT. The extracted
features are the widely-used MFCC features plus their first and
second-order time derivatives. The features are extracted directly
from the frequency versions of the enhanced signals before re-
synthesizing them with the OLA algorithm, to avoid inserting ad-
ditional modeling errors. For the noisy speech data, the signals
recorder by the central microphone are considered.

Herein, in Table 2, the ASR results only for the most promi-
nent algorithms are presented due to lack of space. Note that the
speech database used was not originally designed for ASR tasks
so it lacks of training and testing variability in speakers and sen-
tences. This is the main reason for the very high correct accuracy
percentages.

Correct Word Accuracies (%)
Input Signals
for ASR task Original Noisy McCowan Proposed

MFCC+D+DD 96.37 94.98 93.83 95.23

Table 2: ASR Results For the Matched Training/Testing Scenario.

5. Conclusions
In this paper a multichannel noise reduction system with an ad-
ditional post-filtering process has been presented. The proposed
post-filter estimation scheme is an extension of the existing Mc-
Cowan post-filter. This method and its special case, the Zelin-
ski post-filter, use an over-estimation of the spectral density in the
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ut of the beamformer, which constitutes them sub-optimal in
s of MMSE. On the other hand, the proposed post-filter takes
account the noise reduction performed by the beamformer and
uces a robust spectral estimation that satisfies the MMSE op-
lity of the Wiener filter. In experiments with real noise multi-
nel recordings from a noisy room, the proposed technique has
shown to obtain a significant gain over McCowan post-filter

rms of signal-to-noise ratio, speech degradation measure and
ch recognition performance. The ASR results yielded by the
osed algorithm are close to the clean-speech case. These re-
seem promising and further research in feature extraction and
ation is in our near future research plans.
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