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ABSTRACT
We present an improved statistical model of Poisson processes, with
applications in photon-limited imaging. We build on previous work,
adopting a multiscale representation of the Poisson process in which
the ratios of the underlying Poisson intensities (rates) in adjacent
scales are modeled as mixtures of conjugate parametric distributions.
Our main novel contributions are (1) a rigorous and robust regu-
larized Expectation-Maximization (EM) algorithm for maximum-
likelihood estimation of the rate-ratio density parameters directly
from the observed Poisson data (counts); (2) extension of the method
to work under a scale-recursive Hidden Markov Tree model (HMT)
which couples the mixture label assignments in consecutive scales,
thus modeling inter-scale coefficient dependencies in the vicinity
of edges; and (3) exploration of a fully 2-D quad-tree image par-
titioning, involving Dirichlet-mixture rate-ratio densities, instead of
the conventional separable binary image partitioning involving Beta-
mixture rate-ratio densities. Experimental intensity estimation re-
sults on standard images with artificially simulated Poisson noise
and photon-limited images with real shot noise demonstrate the ef-
fectiveness of the proposed approach.

Index Terms— Photon-Limited Imaging, Poisson , Bayesian in-
ference, Hidden Markov tree, Expectation-Maximization algorithm.

1. INTRODUCTION

Image acquisition by photon imaging systems is accomplished
by counting photon detections at different spatial locations over a
given observation period. The quality of captured images is de-
graded by the so called quantum or shot noise, due to fluctuations
on the number of detected photons, a consequence of the discrete
nature of the detection process. The number of detected photons in
each pixel location follows a Poisson distribution, whose underlying
intensity/rate corresponds to the desired clean source image. The
described image formation model arises in various image processing
applications, notably medical and astronomical imaging. Thus the
problem of estimating the discretized underlying intensity of a Pois-
son process, given noisy observations, is of fundamental importance.

There is a variety of Poisson intensity estimation techniques pro-
posed in the literature [1], with the Bayesian methods allowing incor-
poration of prior knowledge about the underlying intensity to be esti-
mated. In particular, multiscale Bayesian methods are becoming in-
creasingly popular since they can provide significant simplifications
to the problem. In this work we follow the multiscale representa-
tion of Poisson processes of [2] and [3]. The adopted representation
leads to a multiscale factorization of the Poisson process likelihood
function, which, combined with a factorized conjugate parametric
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mixture model for the image intensity prior, substantially simplifies
the intensity estimation problem, as discussed in Section 2. Inter-
scale dependencies between mixture assignments can be efficiently
modeled with a Hidden Markov Tree (HMT) structure [4, 5, 6].

A significant shortcoming of previous approaches [2, 3, 7] utiliz-
ing the above framework is that they do not properly address model
parameter estimation from the noisy image. Our main contribu-
tion is an Expectation-Maximization (EM) technique for maximum-
likelihood estimation of these parameters directly from the observed
Poisson data, so that the model accurately matches the statistics of
the source image. The robustness of the technique is enhanced by in-
corporating a simple regularization term, as we discuss in Section 3.
The parameter estimation issue has been even more pronounced in
the case of HMT-based approaches, where the HMT-specific param-
eters also need to be fitted. In Section 4 we extend our EM-based
parameter estimation method to work with HMT-based models; this
can provide further benefits in the intensity estimation problem. The
proposed techniques can equally well apply to estimators based on
either conventional separable dyadic-tree or fully 2-D quad-tree im-
age partitioning which we explore in Section 2.2. Finally, in Section
5 we present image denoising experiments on both standard images
with artificially simulated Poisson noise and photon-limited images,
which demonstrate the effectiveness of the proposed methods.

2. MULTISCALE MODELING OF POISSON PROCESSES
2.1. Dyadic-Tree Image Partitioning

Assume that the vector x =
[
x0 x1 . . . xN−1

]
consists of ob-

servation samples of N independent random variables Xk, k =
0, . . . , N − 1, following Poisson distribution with intensities λ =[
λ0 λ1 . . . λN−1

]
. We aim at estimating the underlying source

image intensity λ from the noisy observations x. If we represent
with x0 and λ0 the finest representation of x and λ respectively, i.e
x0 = x and λ0 = λ, then a multiscale analysis of x and λ can be
obtained through the following formulas, which resemble the recur-
sions that yield the Haar wavelet transform scaling coefficients [2]:

xj,k = xj−1,2k + xj−1,2k+1 (1)
λj,k = λj−1,2k + λj−1,2k+1 (2)

for j = 1, . . . , J and k = 0, . . . , N/2j − 1, and J = log2(N). In
the above equations j denotes the scale of analysis (J is the coarsest
scale) and k the position in the corresponding vector xj . This de-
composition is motivated by two fundamental properties of Poisson
processes: (1) the number of counts over nonoverlapping intervals
are independent, given the underlying intensities and (2) the sum
of independent Poisson random variables remains Poisson. Thus,
the random variable Xj,k will remain Poisson distributed with in-
tensity λj,k. Moreover, since for two Poisson random variables,
X1 ∼ Pois (λ1) and X2 ∼ Pois (λ2), the conditional distribu-
tion p (X1|X1 + X2) is Binomial, it holds that p (xj−1,2k|xj,k) =



Fig. 1. Multiscale Dyadic Partitioning in 3 Scales.

Bin
(
xj−1,2k|xj,k,

λj−1,2k

λj,k

)
. This statistical relation over adjacent

scales permits the factorization of the likelihood function in the fol-
lowing form [3]:

p (x|λ) = p (xJ,0|λJ,0) ·
J∏

j=1

N/2j−1∏

k=0

Bin (xj−1,2k|xj,k, θj,k) (3)

where θj,k =
λj−1,2k

λj,k
is the success rate of the Binomial distribution

which can be interpreted as a splitting factor [5] that governs the
multiscale refinement of the intensity λ.

Observing the binary tree in Fig. 1 produced by the scale-
recursion (2) on λ, we notice that λ has an equivalent vector param-
eterization λe =

[
λJ,0 , θ

]
=

[
λJ,0 , θJ,0, . . . , θ1,0 . . . , θ1,N/2−1

]
.

If we consider λJ,0 and θj,k as the observation samples of a random
variable ΛJ,0 and Θj,k respectively, where the random variables are
statistically independent, then the prior distribution p (λ) can be ex-
pressed in the following factorized form:

p (λ) = p (λJ,0) · p (θ) = p (λJ,0) ·
J∏

j=1

N/2j−1∏

k=0

p (θj,k) (4)

Since the Beta distribution is conjugate to the Binomial [8], it
is convenient to express p (θj,k) as mixture of Beta distributions,

p (θj,k) =
M∑

m=1

πj,m Beta (θj,k|αj,m, βj,m), where πj,m is the mix-

ture weight for the mth mixture component in jth scale of analysis,
αj,m and βj,m are the parameters of the Beta mixture component
and M is the total number of mixture components in each scale.

The described statistical framework, resulting in the factoriza-
tion of the likelihood function and the prior density, is appropriate
for 1-D signals. For the image case, x and λ will be 2-D images
consisting of the discrete observation samples and values of the in-
tensity function, respectively. In this case, a possible multiscale anal-
ysis can be achieved by applying the 1-D model separably [2]; each
decomposition level will consist of one decimation step across the
horizontal and one across the vertical direction. Hereafter, we will
refer to this multiscale framework as separable model.

2.2. Quad-Tree Image Partitioning
Instead of using the separable model to treat images, we

also develop a fully 2-D multiscale decomposition on a quad-
tree. Denoting for each jth-scale pixel location (k, `) the
set of children pixel locations at the next finer scale as
Ck,l = {(2k, 2`), (2k, 2` + 1), (2k + 1, 2`), (2k + 1, 2` + 1)},
the decomposition formulas analogous to (1) and (2) will be:

xj,k,` =
∑

(k′,`′)∈Ck,`

xj−1,k′,`′ , λj,k,` =
∑

(k′,`′)∈Ck,`

λj−1,k′,`′ (5)

for j = 1, . . . J , k, ` = 0, . . . , N/2j − 1, and J = log2(N). The
random variable Xj,k,` will remain Poisson distributed with inten-
sity λj,k,`. Moreover it will also hold that, given Xj,k,l, the con-
ditional distribution of the four children’s random vector Xc

j,k,` =

{Xj−1,k′,`′}(k′,`′)∈Ck,`
will be Multinomial: p

(
xc

j,k,`|xj,k,`

)
=

Mult
(
xc

j,k,`|xj,k,`, θj,k,`

)
, with θj,k,` =

{
λj−1,k′,`′

λj,k,`

}
(k′,`′)∈Ck,`

.

The likelihood function and prior distribution are then factorized as:

p (x|λ) = p (xJ,0,0|λJ,0,0)

J∏
j=1

N/2j−1∏

k,`=0

Mult
(
xc

j,k,`|xj,k,`, θj,k,`

)
(6)

p (λ) = p (λJ,0,0) ·
J∏

j=1

N/2j−1∏

k,`=0

p (θj,k,`) . (7)

Since the Dirichlet distribution is conjugate to the Multinomial [8]
it is convenient to model p (θj,k,`) as mixture of Dirichlets,

p (θj,k,`) =
M∑

m=1

πj,m Dir (θj,k,`|αj,m), where αj,m is the param-

eter vector of the mth mixture component in the jth scale of analysis.
We will refer hereafter to this multiscale model as quad model.

2.3. Posterior Mean Estimation
Given the factorization of the prior and likelihood on multiple

scales, it is straightforward to prove that the posterior distribution
p (λ|x) = p (λJ,0,0|xJ,0,0) · p (θ|x) also bears a multiscale factor-
ization. The factorization of the posterior implies that the intensity
estimation problem can be solved individually on each scale, instead
of requiring a complicated high dimensional solution. For the quad
model the Bayes posterior mean estimator E [θj,k,`|x] for each scale
of analysis, will be given by:

θ̂i
j,k,` =

M∑
m=1

γm(zj,k,`)

(
xc,i

j,k,` + αi
j,m

xj,k,` + α0
j,m

)
, (8)

where the superscript i = 1, . . . , 4 denotes the ith element of the
corresponding vector, α0

j,m =
∑4

i=1 αi
j,m, and

γm(zj,k,`) =
πj,m Polya

(
xc

j,k,`|xj,k,`, αj,m

)
M∑

n=1

πj,n Polya
(
xc

j,k,`|xj,k,`, αj,n

) (9)

is the responsibility of the mth mixture component in the jth scale
given the noisy observations x, and Polya (also called Dirichlet-
Multinomial) is the discrete multivariate distribution given by

Polya (x|n, α) =
n!

D∏
i=1

xi!

·
Γ

(
D∑

i=1

αi

)

Γ

(
n +

D∑
i=1

αi

) ·
D∏

i=1

Γ (xi + αi)

Γ (αi)
(10)

and Γ(x) =
∫∞
0

tx−1e−tdt [9]. For the separable model the corre-
sponding estimator is similar to (8) and is obtained from Eqs. (8),
(9) by replacing xc,i

j,k,` with xj−1,2k, αi
j,m with αj,m, α0

j,m with
(αj,m + βj,m), αj,m with the vector (αj,m, βj,m), and removing
the subindex `.

For the coarsest scale of analysis a satisfactory choice is to esti-
mate λJ,0,0 by λ̂J,0,0 = xJ,0,0 [2]. Alternatively, we can choose a
Gamma prior for λJ,0,0 and obtain the corresponding mean estimate.

3. EM-BASED MODEL PARAMETER ESTIMATION

The posterior mean estimates obtained in Section 2.3 require
knowledge of the model parameters % = {πj , αj}, i.e. the mix-
ture weights and the Beta/Dirichlet mixture parameters governing
the splitting factors Θj,k,l. However, estimation of % has not been



addressed satisfactorily in previous work. The authors in [2] model
the random variables Θj,k with mixtures of 3 symmetric Betas where
the Beta parameters are heuristically set for every scale of analysis.
They also assume that all but one mixture weights are known and
estimate it by the method of moments. The approach followed in [7]
utilizes an auxiliary wavelet thresholding denoising method to ob-
tain an estimate of the splitting factors θj,k, on which % is fitted with
EM; thus it is prone to a potential failure of the auxiliary method.

To account for these limitations, we pursue a Maximum-
Likelihood (ML) estimator to infer model parameters % directly from
the observed Poisson data. Since the multiscale approach allows
handling each scale independently, we drop index j for clarity. Also,
instead of (k, `), we use the index t to denote position, assuming
that we have raster-scanned the image at each scale into a vector x
of length T . The key idea is to integrate-out the unobserved splitting
factors θt, and thus relate the model parameters % directly to the ob-
servations x; the integral can be computed in closed form, yielding:

p (x|%) =

T∏
t=1

∫

θt

p (xt, θt|%) dθt

=

T∏
t=1

M∑
m=1

πmPolya (xc
t |xt, αm)

(11)

where xc
t are the Poisson counts of xt’s children.

The ML parameters maximize the log-likelihood L (%) =
log p (x|%). Optimizing L (%) directly is hard, due to the multi-
ple mixture components. We thus invoke the EM algorithm [8], and
work with the joint log-likelihood, Lc (%) = log p (x, z|%), where
z is the vector of the discrete mixture component assignments, i.e.
Zt = m, m = 1, . . . , M , if the mth mixture is responsible for
generating the observations xc

t . Parameter estimation then alternates
between the Expectation (E-step) and Maximization (M-step) steps
until convergence. In the E-step we compute the conditional expec-
tation of the complete log-likelihood given the observations and the
current estimates of the model parameters,

E[Lc (%) |x, %(n)] =

T∑
t=1

M∑
m=1

γm(zt) log (πm)

+

T∑
t=1

M∑
m=1

γm(zt) log Polya (xc
t |xt, αm)

(12)

where γm(zt) is defined in (9). In the M-step new estimates
for the parameters of the model are obtained by maximizing (12)
with respect to {%}. The updated mixture weight is π

(n+1)
m =

1/T
∑T

t=1 γm(zt). Maximizing (12) with respect to αm leads to
a nonlinear equation which we solve by Newton-Raphson.

For images with flat cartoon-like content, the histogram of split-
ting factors θ is strongly peaked (at 1/2 for the separable and 1/4 for
the quad model), resulting to very large αi

m parameters. The ML
criterion then leads to overfitting, and the Newton-Raphson method
is unstable. We have addressed this issue by adding a regularization
term −ε

∑M
m=1

∑4
i=1 αi

m in (12), with ε small positive constant.
This term is interpretable as specifying a conjugate prior for αm and
leads to a MAP instead of the standard ML estimation. The resulting
penalized EM algorithm is extremely robust in practice.

4. INFERENCE ON HIDDEN MARKOV TREES
In Section 2 we adopted the simple assumption that the splitting

factors Θj,k,l are independent, yielding the factorized prior p (λ) in
the form of Eqs. (4) and (7). In this section we follow instead the
HMT model first introduced in the context of signal denoising in [4],

which better models inter-scale dependencies [4] and can thus pro-
vide additional benefits in the intensity estimation problem. While
using the HMT model in conjuction with photon-limited imaging
has been previously suggested by [5], wider adoption of the HMT
model in this context has been hindered so far by lack of satisfactory
solution to the model parameter estimation problem. We address
this shortcoming by properly extending our EM-based technique of
Section 3 to the HMT case.

More specifically, let % = {π, A, α} be the vector of HMT
parameters corresponding to prior root node state probabilities, inter-
scale state transition probabilities, and parameters for each mixture,
respectively. Also let t index the T + 1 nodes of the tree, where
t = 0 is the root node, t = T is the last node of the finest scale, p(t)
is t’s parent and xc

t is the vector of xt’s children. Then the apriori
probability of a hidden state path z = (z0, . . . , zT ) under the model
is P (z) = πz0

∏T
t=1 Azp(t)zt . Similarly to the independent case of

Section 3, the conditional expectation of the complete log-likelihood
estimated in the E-step, will be of the form:

E[Lc (%) |x, %(n)] =

T∑
t=0

M∑
m=1

γm(zt) log Polya (xc
t |xt, αm)

+

M∑
m=1

γm(z0) log (π0,m) +

T∑
t=1

M∑
m=1

M∑

k=1

ξm,k(zt, zp(t)) log Akmt

(13)

Note that in the HMT case of Eq. (13) observations from all
scales are processed as whole. Utilizing the Upward-Downward
algorithm [4] we can efficiently compute the conditional probabil-
ity γm(zt) = P (zt = m|x) which is required in the posterior
mean estimates of Eq. (8), as well as the joint-state probability
ξm,k(zt, zp(t)) = P

(
zt = m, zp(t) = k|x)

. Then in the M-step
new estimates for the parameters of the model are obtained. Treating
π and A is done as in [4], while maximizing Eq. (13) with respect
to α is done exactly as in the independent case. Regularizing the
solution is similarly important to achieve robustness.

5. RESULTS ON PHOTON-LIMITED IMAGING

Our interest in intensity estimation of inhomogeneous Poisson
processes is motivated by the problem of photon-limited image de-
noising. We first present photon-limited image estimation experi-
ments on standard images degraded by simulated Poisson noise. We
compare our proposed methods with the popular Poisson denoising
methods of [2] and [7], briefly described in Section 3. Since the two
aforementioned methods assume 3-mixture symmetric distributions,
we also adopt in these experiments symmetric 3-mixture densities
for direct comparison among models; however our technique can
equally well be applied to estimate more flexible nonsymmetric den-
sities. The quality of the resulting images from all methods is mea-
sured in terms of PSNR and the perceptually-motivated mean struc-
tural similarity (MSSIM) index [10]. MSSIM index takes values
between 0 and 1 and increases for better quality images. Reported
experiments for all methods refer to their shift-invariant versions,
which amounts to averaging the image estimates produced by each
method over all circular shifts of the noisy image [2]. This averaging
results to an image of higher quality with less blocking artifacts.

The results produced by all the methods for 2 testing images
(Cameraman/Lena) are presented in Table 1. Three peak intensi-
ties are reported (20,40,60), corresponding to different Poisson noise
levels. Using the model parameters obtained by our EM methods
consistently yields quantitatively better results than the alternative
techniques. Specifically, our independent mixture models SEP-IND



Table 1. Photon-limited intensity estimation results in PSNR and MSSIM for various peak intensities and 3-mixture distributions.

PSNR (dB) / Methods MSSIM / Methods
Image/ noisy T-N L-K-A SEP QUAD SEP QUAD noisy T-N L-K-A SEP QUAD SEP QUAD
Peak Int. [2] [7] IND IND HMT HMT [2] [7] IND IND HMT HMT
Cam./20 16.30 24.25 24.40 25.46 25.89 26.39 26.25 0.281 0.603 0.675 0.664 0.705 0.765 0.756
Cam./40 19.29 26.12 26.14 27.26 27.60 27.93 27.80 0.370 0.675 0.724 0.723 0.755 0.796 0.794
Cam./60 21.06 26.97 27.54 28.35 28.69 29.01 28.87 0.426 0.674 0.754 0.755 0.787 0.826 0.827
Lena/20 16.85 24.80 24.87 25.67 26.07 26.48 26.42 0.313 0.688 0.706 0.693 0.726 0.772 0.777
Lena/40 19.84 26.21 26.55 27.10 27.61 28.01 27.93 0.417 0.713 0.761 0.738 0.772 0.818 0.820
Lena/60 21.60 27.37 27.65 28.16 28.70 29.08 29.04 0.482 0.752 0.789 0.772 0.804 0.842 0.845

(separable) and QUAD-IND (quad) give roughly 1-1.5 dB improve-
ment over T-N [2] and L-K-A [7]. Modeling scale dependencies with
our SEP-HMT and QUAD-HMT HMT-based models gives a fur-
ther 0.5-1 dB improvement. We can draw similar conclusions from
the perceptual quality MSSIM index results. Regarding comparison
between corresponding separable and quad variants, both perform
equally well and the results do not reveal any clear advantage of
either decomposition strategy over the other. The efficacy of our
method relative to the alternative techniques can be visually appreci-
ated from the representative Cameraman denoising example shown
in Fig. 2. In Fig. 3 we show the results obtained by applying the
proposed SEP-HMT model in a medical image with simulated Pois-
son noise and an astronomical image from [11] with real shot noise.
The result in the latter case confirms that the proposed methods are
equally efficient in “real-world” noisy conditions.

6. CONCLUSIONS
The main contribution of our work is an efficient EM-based ap-

proach for inferring the parameters involved in an important class of
photon-limited imaging models. The proposed method can be ap-
plied equally well to all separable/quad multiscale partitioning and
independent/HMT model variants. Being flexible and fully auto-
matic, our technique can be used in a variety of applications involv-
ing shot noise and photon-limited imaging.

(a) (b) (c)

Fig. 2. Results on Cameraman image with peak intensity 20 and sim-
ulated Poisson noise. Close-up of (a) Noisy image (PSNR=16.30).
(b) T-N result [2] (PSNR=24.25). (c) Our QUAD-HMT result
(PSNR=26.25).
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