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Abstract. In this paper we briefly describe advancements in two broad areas of morphological image
analysis. Part I deals with differential morphology and curve evolution. The partial differential equations
(PDEs) that model basic morphological operations are first presented. The resulting dilation PDE, nu-
merically implemented by curve evolution algorithms, improves the accuracy of morphological multiscale
analysis by Euclidean disks and (its anisotropic/heterogeneous version) is the basic ingredient of PDE mod-
els that solve image analysis problems such as gridless halftoning and watershed segmentation based on the
eikonal PDE. Part II deals with morphology-related systems for pattern recognition. It presents a general
class of multilayer feed-forward neural networks where the combination of inputs in every node is formed
by hybrid linear and nonlinear (of the morphological/rank type) operations. For its design a methodol-
ogy is formulated using ideas from the back-propagation algorithm and robust techniques are developed
to circumvent the non-differentiability of rank functions. Experimental results in handwritten character
recognition are described and illustrate some of the properties of this new type of neural nets.
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1 PART I: DIFFERENTIAL MORPHOLOGY
AND CURVE EVOLUTION

Morphological image processing has been based tradi-
tionally on set and lattice theory. Thus, so far, the two
classic approaches to analyze or design deterministic mor-
phological operators have been: (i) geometry by viewing
them as image set transformations in Euclidean spaces
and (ii) algebra to analyze their properties using set or
lattice theory. In parallel to these directions, there is a
recently growing part of morphological image processing
that uses tools from differential calculus and dynamical
systems to model nonlinear multiscale analysis and dis-
tance propagation in images.

Recently, the multiscale morphological operators of
dilation, erosion [1, 5, 24] and opening, closing [5] were
modeled via nonlinear partial differential equations (PDEs)
acting in scale-space. These advancements were inspired
by previous work in computer vision where multiscale lin-
ear convolutions of an image were modeled via the heat
PDE. For multiscale flat dilations and erosions of an im-
age f(x, y) by compact convex symmetric structuring sets
B⊆ IR2 at a continuum of scales s ≥ 0, their generating
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PDEs have the form

∂Ψ/∂s = ±||∇Ψ||B , Ψ(x, y, 0) = f(x, y) (1)

where Ψ(x, y, s) is the dilation ⊕ or erosion � of f by
sB, +/− corresponds to dilation/erosion respectively,
||(x, y)||B ≡ sup(a,b)∈B(ax + by), ∇Ψ ≡ (Ψx, Ψy) is the
spatial gradient, and Ψx ≡ ∂Ψ/∂x denote partial deriva-
tives. For example, if B is the unit disk, || · ||B is the
Euclidean norm || · || and

∂Ψ/∂s = ±||∇Ψ|| = ±
√

(Ψx)2 + (Ψy)2 (2)

Even if the initial image f is smooth, at finite scales
s > 0 the above dilation or erosion evolution may create
discontinuities in the derivatives, like ‘shocks’. Thus, the
dilations f⊕sB or erosions f�sB are weak solutions of
(1). Ways to deal with these shocks include replacing
standard derivatives with morphological derivatives [5,
11] or replacing the PDEs with differential inclusions [13].

In parallel to the development of the above ideas,
there have been some advances in the field of differential
geometry for evolving curves or surfaces using level set
methods [17, 23]. Consider at time t = 0 an initial simple,
smooth, closed planar curve Γ(0) which is propagated for
t > 0 along its normal vector field with speed c. Let this
evolving curve Γ(t) be represented by its position vector
�X(p, t) = (x(p, t), y(p, t)) and parameterized by p ∈ J
so that it has its interior on the left in the direction of
increasing p. A general propagation law is

∂ �X(p, t)
∂t

= c �N(p, t) , Γ(0) = { �X(p, 0) : p ∈ J}, (3)
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where �N(p, t) is the instantaneous unit outward normal
vector at points on the evolving curve, and c = c(x, y, t)
is the speed function which generally depends on local
geometrical information such as the curvature κ(p, t),
global image properties, or other factors independent of
the curve. If c = 1 or c = −1, then Γ(t) is the dilation
or erosion of the initial curve Γ(0) by a disk of radius t.
The speed model c = 1±εκ, |ε| ≤ 1, has been extensively
studied in [17, 23] for general evolution of boundaries and
interfaces and in [8] for shape analysis in computer vision.

To overcome the topological problem of splitting
and merging and numerical problems with the Lagrangian
formulation (3), an Eulerian formulation was proposed
in [17] where the original curve Γ(0) is first embedded
in the surface of an arbitrary 2D Lipschitz continuous
function Φ0(x, y) as its zero-level curve. (For example,
we select Φ0(x, y) to be equal to the signed (±) distance
function from the boundary of Γ(0) where + is for points
inside and − is for points outside the curve.) Then,
the evolving 2D curve is obtained as the zero-level curve
Γ(t) = {(x, y) : Φ(x, y, t) = 0} of a 2D function Φ(x, y, t)
that evolves according to the PDE

∂Φ/∂t = c||∇Φ|| , Φ(x, y, 0) = Φ0(x, y) (4)

This function evolution PDE makes all level sets expand
at normal speed c. If c = ±1, it is identical to the flat cir-
cular dilation/erosion PDE (2) by equating scale s with
time t.

1.1 Multiscale Analysis via Dilation PDE

Many applications of mathematical morphology [22, 12]
such as nonlinear smoothing, geometrical feature extrac-
tion, skeletonization, size distributions, and segmenta-
tion, inherently require or can benefit from performing
morphological image operations at multiple scales, which
creates a morphological scale-space. For binary images,
the distance transform is a compact way to represent
their multiscale dilations and erosions by convex struc-
turing elements whose shape depends upon the norm
used to measure distances. Thresholding the distance
transform at level t > 0 yields the morphological ero-
sion of the image foreground (or the dilation of the back-
ground) by the norm-induced ball of radius (scale) t.
To obtain isotropic distance propagation, the Euclidean
distance transform is desirable because it gives multi-
scale morphology with the disk as the structuring ele-
ment. However, it has a significant computational com-
plexity. Discrete approaches use various techniques to
obtain integer approximations to the Euclidean distance
transform at a lower complexity. Notable such examples
are the chamfer metrics [3], computed by running re-
cursive min-sum difference equations over the image and
thus propagating local distances within a neighborhood
mask. Their associated unit ball is a polygon whose ap-
proximation of the disk improves by increasing the size
of the mask and optimizing the local distances. In this
paper, for optimal chamfer transforms we shall use the
local distances found in [6].

The continuous approach uses the dilation PDE
(2). This applies to both graylevel and binary images,
because flat dilations commute with thresholding and
hence, when a graylevel image is dilated, each one of
its thresholded versions representing a binary image is
simultaneously dilated by the same element and at the
same scale. Thus, the dilation PDE plays a fundamental
role for modeling morphological scale-space. However, its
usefulness is greatly amplified by the existence of a stable
and shock-capturing algorithm [17] for the numerical
implementation of (4). Its main steps are :
• Let Φn

i,j be an estimate of Φ(i∆x, j∆y, n∆t) on a grid.
• D+

x = (Φn
i+1,j −Φn

i,j)/∆x , D−
x = (Φn

i,j −Φn
i−1,j)/∆x

• D+
y = (Φn

i,j+1 − Φn
i,j)/∆y , D−

y = (Φn
i,j − Φn

i,j−1)/∆y
• H2 = min2(0, D−

x ) + max2(0, D+
x ) + min2(0, D−

y ) +
max2(0, D+

y )
• Φn+1

i,j = Φn
i,j + Cn

i,j |H|∆t , n = 1, 2, ..., (Tmax/∆t)

where Tmax is the maximum time (scale) of interest,
∆x, ∆y are the spatial grid spacings, ∆t is the time (scale)
step, and Cn

i,j = c(i∆x, j∆y, n∆t). Thus, by choosing
fine grids (and possibly higher order terms) an arbitrarily
low error (between signal values on the continuous plane
and the discrete grid) can be achieved in implementing
morphological operations involving disks as structuring
elements. This is a significant advantage of the PDE ap-
proach, as observed in [2, 20]. Thus, curve evolution pro-
vides a geometrically better implementation of multiscale
morphological operations with the disk-shaped structur-
ing element. See Fig. 1 for an example.

1.2 Eikonal PDE

Many tasks for extracting information from visible im-
ages have been related to eikonal optics and wave prop-
agation via the eikonal PDE [4]

||∇U(x, y)|| = η(x, y) (5)

Its solution U(x, y) can provide 3D shape, contour halfton-
ing, or topographic segmentation of an image f(x, y) by
choosing the refractive index field η(x, y) to be an ap-
propriate function of the image [7, 25, 18, 16]. The
eikonal PDE can be seen as a stationary formulation
of the function evolution PDE (4) with positive speed
c(x, y) = c0/η(x, y). Namely [17], if T (x, y) is the time
at which the zero level of Φ(x, y, t) crosses (x, y), then
||∇T || = 1/c. Setting U = c0T leads to the eikonal.

The solution of the eikonal PDE can be viewed as
a weighted distance function [4, 25, 19, 9, 11] between a
point (x, y) and the sources along a path of minimal op-
tical length. The optical length of any path is obtained
by integrating the refractive index field η(x, y) along this
path and is proportional to the time required for light to
travel this path. Thus, we can view the solution U(x, y)
to the eikonal as a gray-weighted distance transform
(GWDT) whose values at each pixel give the minimum
distance from the light sources weighted by the gray val-
ues of the refractive index field. Next we outline two
ways of solving the eikonal PDE.
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(a) (b) (c) (d)
Figure 1. Distance transforms (modulo a constant) of a binary image, obtained via: (a) (1,1) chamfer metric;
(b) optimal 3 × 3 chamfer metric; (c) optimal 5 × 5 chamfer metric; (d) curve evolution.

1.2.1 GWDT based on Chamfer Metrics
Consider a sampled refractive index field η[x, y] (viewed
as a positive image) and a set S of sources. A discrete
GWDT finds at each pixel p = [x, y] the smallest sum
of values of η over all possible paths connecting p to the
sources S. This can also be viewed as a procedure of find-
ing paths of minimal ‘cost’ among nodes of a weighted
graph or as discrete dynamic programming. Such a dis-
crete GWDT (which is an approximation [25, 11] to the
solution of the eikonal PDE ||∇U || = η) can be obtained
via the following 2D recursive erosion [25]

Ui[x, y] = min{Ui[x − 1, y] + aη[x, y],
Ui[x, y − 1] + aη[x, y], Ui[x − 1, y − 1] + bη[x, y],
Ui[x + 1, y − 1] + bη[x, y], Ui−1[x, y]}

where U0[x, y] is set equal to 0 if [x, y] belongs to the
sources S or +∞ otherwise. The propagation of the lo-
cal distance steps (a, b) in the 3 × 3 chamfer mask starts
at the wave sources and moves at speeds proportional to
1/η[x, y]. The above recursive equation is run over the
whole image in forward and backward order, iteratively
(i = 1, 2, 3, ...) until stability. At convergence, U∞ is the
GWDT of S. The above is a sequential implementation of
the GWDT. There are also other faster implementations
using queues [25, 14]. To improve the GWDT approxi-
mation to the eikonal’s solution, one can optimize (a, b).
Using a larger (e.g., 5 × 5) mask can further reduce the
approximation error but at the cost of an even slower
implementation. However, if larger masks are used with
GWDTs, they may give erroneous results since the large
masks can bridge over a thin line that separates two seg-
mentation regions.

1.2.2 GWDT based on Surface Evolution
In this approach, at time t = 0 the boundary of each
source is modeled as a curve Γ(0) which is then propa-
gated with normal speed c(x, y) ∝ 1/η(x, y). The prop-
agating curve Γ(t) is embedded as the zero-level curve
of a function Φ(x, y, t), where Φ(x, y, 0) = Φ0(x, y) is the
signed (positive in the curve interior) distance from Γ(0).
The surface Φ evolves according to the PDE (4), which is
solved via the numerical algorithm of [17]. The value of
the resulting GWDT at any pixel (x, y) of the image is the
time it takes for the evolving curve to reach this pixel,
i.e. the smallest t such that Φ(x, y, t) ≥ 0. This con-
tinuous approach to GWDT can achieve sub-pixel accu-
racy, as investigated in [9]. To reduce the computational

complexity of the above surface evolution algorithm, we
have developed a queue-based implementation of the fast
marching level set methods of [23, 10] adapted to com-
puting GWDTs in case of multiple sources where triple
points develop at the collision of several wavefronts.

1.2.3 Gridless Halftoning via Eikonal PDE

Inspired by the use in [21] of the eikonal function’s con-
tour lines for visually perceiving an intensity image I(x, y),
the work in [25] and especially in [18] attempts to solve
the PDE ||∇U(x, y)|| = const − I(x, y) and create a bi-
nary gridless halftone version of I(x, y) as the union of
the level curves of the eikonal function U(x, y). The
larger the intensity value I(x, y), the smaller the local
density of these contour lines in the vicinity of (x, y).
This eikonal PDE approach to gridless halftoning is in-
deed very promising and can simulate various artistic ef-
fects, as shown in Fig. 2. There we also see that the
surface evolution GWDT gives a smoother halftoning of
the image than the GWDTs based on chamfer metrics.

1.2.4 Watershed Segmentation via Eikonal

A powerful morphological approach to image segmenta-
tion is the watershed [15, 26] which transforms an image
f(x, y) to the crest lines separating adjacent catchment
basins that surround regional minima or other ‘marker’
sets of feature points. In [14, 16] it has been estab-
lished that (in the continuous domain and assuming that
the image is smooth and has isolated critical points) the
continuous watershed is equivalent to finding a skeleton
by influence zones with respect to a weighted distance
function that uses the (one-point) regional minima of
the image as sources and ||∇f || as the field of indices.
(If other markers different than the minima are to be
used as sources, then the homotopy of the function must
be modified via morphological recosntruction to impose
these markers as the only minima.)

In our work we solve the above eikonal PDE model
of watershed segmentation of an image-related function
f by finding a GWDT via surface evolution (4) where the
speed is ∝ 1/||∇f ||. Further we compare the results of
this new segmentation to the digital watershed algorithm
via flooding [26] and to the eikonal approach solved via a
discrete GWDT based on chamfer metrics [25, 14]. In all
three approaches, robust features are extracted first as
markers of the regions, and the original image I is trans-
formed to another function f by smoothing via alternat-
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(a) (b) (c) (d)
Figure 2. Gridless halftoning of the Cameraman image from contour lines of GWDTs obtained via: (a) (1,1) chamfer
metric; (b) optimal 3 × 3 chamfer metric; (c) optimal 5 × 5 chamfer metric; (d) curve evolution.

ing open/closing at multiple scales, taking the gradient
magnitude of the filtered image, and changing (via mor-
phological reconstruction) the homotopy of the gradient
image so that its only minima occur at the markers. The
segmentation is done on the final outcome f of the above
processing.

In the standard digital watershed algorithm [26, 15],
the flooding at each level is achieved by a planar distance
propagation that uses the chess-board metric. This kind
of distance propagation is non-isotropic and could give
wrong results, particularly for images with large plateaus,
as we found experimentally. Eikonal segmentation us-
ing chamfer-based GWDTs improves this situation a lit-
tle but not entirely. In contrast, for images with large
plateaus/regions, segmentation via the eikonal PDE and
surface evolution GWDT gives results close to ideal. As
Fig. 3 shows, compared on a test image that is difficult
(because expanding wavefronts meet watershed lines at
many angles ranging from from being perpendicular to
almost parallel), our continuous segmentation approach
based on the eikonal PDE and surface evolution outper-
forms the discrete segmentation results (using either the
digital watershed flooding algorithm or chamfer-based
GWDTs). However, some real images, as in Fig. 4, may
not contain many plateaus or only large regions, in which
cases the digital watershed flooding algorithm may give
comparable results (or slightly better for thin elongated
regions) than the eikonal PDE approach. Of course, the
fact that the eikonal PDE segmentation may not detect
part or all of a thin elongated region could be an advan-
tage in applications where such thin regions are noisy or
unreliable and hence should not be detected by a robust
segmentation scheme.

2 PART II: MRL NEURAL NETS

The perceptron, i.e., a linear combiner followed by a non-
linearity of the logistic type, is the standard node struc-
ture used in neural networks (NNs). However, it has been
observed that logic operations, which are not well mod-
eled by perceptrons, can be generated by some internal
interactions in a neuron [33]. To better represent such
internal properties, we propose the MRL-NNs, a general
class of NNs where the combination of inputs in every
node is formed by hybrid linear and nonlinear (of the

morphological/rank type) operations. The fundamental
processing unit of this class of systems is the MRL-filter
[29], which is a linear combination between a morpho-
logical/rank filter and a linear FIR filter. The MRL-
NNs have the unifying property that the characteristics
of both multilayer perceptrons (MLPs) and morphologi-
cal/rank neural networks (MRNNs) [30] are observed in
the same system. An important special case of MRNNs
is the class of min-max classifiers [34]. Next, we for-
mulate a simple and systematic training procedure using
ideas from the back-propagation algorithm [31] and ro-
bust techniques to circumvent the non-differentiability of
rank functions. (Note that, since adaptive filters and
NNs are closely related [28], we have investigated the
adaptation of MRL filters and the training of MRL NNs
under the same framework.) Our approach to train the
morphological/rank nodes is a theoretically and numeri-
cally improved version of the method proposed in [32] to
design morphological/rank filters. Finally, we apply the
proposed design methodology in a problem of handwrit-
ten character recognition, and provide some experimen-
tal evidences showing that not only the MRL-NNs can
generate similar or better results when compared with
the classical MLPs, but also they usually require smaller
processing times for training.

2.1 The Structure of MRL-NNs

In general terms, a (multilayer feed-forward) NN is a lay-
ered system composed by similar nodes, with some of
them non-observable (hidden), where the node inputs in
a given layer depend only on the node outputs from the
preceding layer. Every node performs a generic compos-
ite operation, where an input to the node is first pro-
cessed by some function h(· , ·) of the input and internal
weights, and then transformed by an activation function
f(·). The node structure is defined by the function h. In
the case of MLPs, h is a linear combination. The activa-
tion function f is usually employed for rescaling purposes.
A general NN is formally defined by the following set of
recursive equations.

y(l) ≡ F (z(l)) = (f(z(l)
1 ), f(z(l)

2 ), · · · , f(z(l)
Nl

)) ,

l = 1, 2, · · · , L ,

z
(l)
n ≡ h(y(l−1), w(l)

n ) , n = 1, 2, · · · , Nl ,

(6)
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(a) (b) (c) (d)
Figure 3. The Test image is the minimum of two potential functions. Its contour plot (thin bright curves) is
superimposed on all segmentation results. Markers are the two source points of the potential functions. Segmentation
results based on: (a) Digital watershed flooding algorithm. (b) (3×3) chamfer-based GWDT. (c) (5×5) chamfer-based
GWDT. (d) Eikonal PDE and surface evolution GWDT. (The thick bright curve shows the correct segmentation.)

(a) (b) (c) (d)
Figure 4. (a) Original Cameraman image with markers placed within desired regions. (b) Gradient magnitude
of filtered image. (c) Segmentation result (superimposed on original) from digital watershed flooding algorithm.
(d) Segmentation from eikonal PDE and surface evolution GWDT.

where l is the layer number, and Nl is the number of
nodes in layer l. The weight vectors w(l)

n represent the
tuning parameters in the system. Besides this, the input
and output of the system are

y(0) = x = (x1, x2, · · · , xN0) (input)
y(L) = y = (y1, y2, · · · , yNL) (output)

(7)

The MRL-NN is the system defined by (6) and (7)
such that

z
(l)
n ≡ λ

(l)
n α

(l)
n + (1 − λ

(l)
n )β(l)

n

α
(l)
n = R

r
(l)
n

(y(l−1) + a(l)
n )

β
(l)
n = y(l−1) · (b(l)

n )′ + τ
(l)
n

(8)

where λ
(l)
n , τ

(l)
n ∈ IR; a(l)

n , b(l)
n ∈ IRNl−1 ; and ‘′’ denotes

transposition.
Rr(t) is the r-th rank function of the vector t ∈ IRn.

It is evaluated by sorting the components of t = (t1, t2, · · · , tn)
in decreasing order, t(1) ≥ t(2) ≥ · · · ≥ t(n), and picking
the r-th element of the sorted list, i.e., Rr(t) = t(r),
r = 1, 2, · · · , n.

Observe from (6) and (8) that the underlying func-
tion h is an MRL-filter [29] shifted by a threshold (1 −
λ

(l)
n )τ (l)

n . The variables τ
(l)
n are important when λ

(l)
n = 0.

For every MRL-filter, the vector b(l)
n corresponds to the

coefficients of a linear FIR filter, and the vector a(l)
n repre-

sents the coefficients of a morphological/rank filter. The
variables r

(l)
n and λ

(l)
n are the rank and the mixing pa-

rameters, respectively. The resulting weight vector for

every node is then defined by

w(l)
n ≡ (a(l)

n , ρ(l)
n , b(l)

n , τ (l)
n , λ(l)

n ) , (9)

where we use a real variable ρ
(l)
n instead of an integer rank

variable r
(l)
n because we will need to evaluate derivatives

during the design of MRL-NNs. The relation between ρ
(l)
n

and z
(l)
n will be defined later via a differential equation,

and r
(l)
n is obtained from ρ

(l)
n using 1

r(l)
n ≡

⌊
Nl−1 − Nl−1 − 1

1 + exp(−ρ
(l)
n )

+ 0.5

⌋
. (10)

Two important special cases of MRL-NNs are ob-
tained when f is the identity, called MRL-NN of type I
(e.g., MRNN: λ

(l)
n = 1 ∀n, l), and when f is a nonlinear-

ity of the logistic type, called MRL-NN of type II (e.g.,
MLP: λ

(l)
n = 0 ∀n, l).

2.2 Adaptive Design
Based on the LMS criterion and using ideas from the
back-propagation algorithm, we propose a steepest de-
scent method to optimally design general NNs, and then
apply it to MRL-NNs. The design goal is to achieve a set
of parameters w(l)

n , n = 1, 2, · · · , Nl, l = 1, 2, · · · , L, such
that some cost function is minimized using a supervised
procedure. Consider the training set

{(x(k), d(k)) , k = 0, 1, · · · , K − 1} , (11)

1�·� denotes the usual truncation operation, so that
�· + 0.5� is the usual rounding operation.
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where d(k) is the desired system output to the train-
ing sample x(k). From (11) we generate the training
sequence 2

(x([k] mod K
), d([k] mod K

)) , k ∈ ZZ , (12)

by making a periodic extension of (11). Every period
of (12) is usually called an epoch. A general supervised
training algorithm is of the form

w(l)
n (i + 1) = w(l)

n (i) + µ v(l)
n (i) , µ > 0 ,

n = 1, 2, · · · , Nl ; l = 1, 2, · · · , L ,
(13)

where the positive constant µ controls the tradeoff be-
tween stability and speed of convergence, v(l)

n = −∇J ,
and J is some cost function to be minimized. Let us
define the error signal

e(k) = (e1(k), e2(k), · · · , eNL(k)) ≡
d([k] mod K

) − y(k) ,
(14)

and the cost function

J(i) ≡ 1
M

i∑
k=i−M+1

ξ(k) , 1 ≤ M ≤ K , (15)

where

ξ(k) ≡
NL∑
n=1

e2
n(k) . (16)

Based on the steepest descent algorithm, it follows from
(13) and (15) that

v(l)
n (i) =

1
M

i∑
k=i−M+1

u(l)
n (k) , (17)

where

u(l)
n (k) = − ∂ξ(k)

∂w
(l)
n

. (18)

If we define the matrices W (l), V (l) and U (l) by

W (l) ≡




w
(l)
1

w
(l)
2
...

w
(l)
Nl


 ,

V (l) ≡




v
(l)
1

v
(l)
2
...

v
(l)
Nl


 , U (l) ≡




u
(l)
1

u
(l)
2
...

u
(l)
Nl


 ,

(19)

then the algorithm (13) can be written as

W (l)(i + 1) = W (l)(i) + µ V (l)(i) ,

V (l)(i) =
1
M

i∑
k=i−M+1

U (l)(k) ,

l = 1, 2, · · · , L

(20)

2[k] mod K ≡ k −K �k/K� denotes the index k modulo K.

In this way, using the chain rule to evaluate U (l)(k), it
can be shown that

U (l)(k) = 2 diag(δ(l)(k)) · Γ(l)(k) , (21)

where 3

δ(l)(k) = e(l)(k) � Ḟ (z(l)(k)) , (22)

e(l)(k) =

{
e(k) , l = L

δ(l+1)(k) · Θ(l+1)(k) , otherwise
(23)

The matrices Γ(l) and Θ(l) are defined by

Γ(l) =




γ(l)
1

γ(l)
2
...

γ(l)
Nl


 , Θ(l) =




θ
(l)
1

θ
(l)
2
...

θ
(l)
Nl


 , (24)

where

θ(l)
n =

∂z
(l)
n

∂y(l−1) , γ(l)
n

=
∂z

(l)
n

∂w
(l)
n

.

Based on this framework, the design of MRL-NNs
can easily be derived. The difficulty is due to the non-
differentiability of rank functions, but we can circumvent
this problem by using pulse functions as follows [29].

∂α
(l)
n

∂y(l−1) =
∂α

(l)
n

∂a
(l)
n

= c(l)
n ≡

Q(α(l)
n 1 − y(l−1) − a(l)

n )

Q(α(l)
n 1 − y(l−1) − a

(l)
n ) · 1′

(25)

∂α
(l)
n

∂ρ(l)
n

= s(l)
n ≡

1 − 1
Nl−1

Q(α(l)
n 1 − y(l−1) − a(l)

n ) · 1′ .

(26)

In (25) and (26), Q(v) ≡ (q(v1), q(v2), · · · , q(vn)), where

q(v) ≡
{

1 , if v = 0
0 , if v ∈ IR \ {0} (27)

and 1 = (1, 1, · · · , 1). To avoid abrupt changes and achieve
numerical robustness, we frequently replace the function
q(v) by smoothed impulses qσ(v), σ ≥ 0, such as exp[− 1

2 (v/σ)2]
or sech2(v/σ).

The remaining unknown is Ḟ (·), that depends on
the type of the MRL-NN in use. For the MRL-NN of
type I, F (z(l)) = z(l), so that Ḟ (z(l)) = 1. For the MRL-
NN of type II, we will use f(z) = [1 + exp(−η z)]−1,
η ≥ 1, whose derivative is ḟ(z) = η f(z)[1−f(z)], so that
Ḟ (z(l)) = ηy(l) � [1 − y(l)].

2.3 Application in OCR

Using the design framework discussed in the previ-
ous section, we now describe some experimental results
in a problem of optical character recognition (OCR). Our

3We denote Ḟ (z) ≡ (ḟ(z1), ḟ(z2), · · · , ḟ(zn)). The symbol
‘�’ denotes an array (element-by-element) multiplication.

Proceedings of Int’l Symposium on Computer Graphics, Image Processing & Vision (SIBGRAPI-98), Rio de Janeiro, Brazil, Oct. 1998.



16 P. Maragos, A. Butt, L. Pessoa

FM /‖E(θ)‖/‖R(θ)‖
MRL5 MLP5 MRL10 MLP10 MRL20 MLP20

Training 11.8/13.2/10.5 9.9/8.8/11.1 7.4/6.9/7.8 7.4/7.0/7.7 8.4/7.8/9.0 7.5/6.8/8.2
Testing 18.7/22.4/15.0 18.4/19.9/16.9 11.0/13.1/8.9 11.1/10.9/11.4 17.4/24.6/10.2 11.8/12.8/10.9
Epoch 3 10 62 96 9 88

Table 1: Figure of merit / mean error rate / mean rejection rate corresponding to the optimal set of weights
of best MRL-NNs vs. best MLPs for µ = 0.05.

approach is to perform a comparative analysis of MRL-
NNs versus MLPs, illustrating some of the characteris-
tics of both systems. We show that the MRL-NNs are
a good alternative to MLPs, usually providing equal or
better performance with smaller training times.

To do so, we used a large database of handwritten
characters provided by the National Institute of Stan-
dards and Technology (NIST) [27]. We selected a total
of K = 61, 094 samples of handwritten digits to form our
data set. In our simulations, we normalized the feature
vectors (64 dimensional Karhunen-Loève transforms) so
that each x(k) ∈ [0, 1]. The data set was split such that
45, 000 digits were used for training and the remaining
16, 094 digits were used for testing. The first 15, 000 el-
ements of the training set were used as a validation set
during the training process. The training sequence was
ordered such that one instance of every digit is presented
to the system in each iteration.

After making several tests, we have set a group 12
experiments with 3 different network topologies: 64-N-
10 MRL-NNs and MLPs, N = 5, 10, 20. This nota-
tion indicates a system with 64 inputs, N hidden nodes,
and 10 outputs. Two different step sizes were tested:
µ = 0.005, 0.05. Every experiment was repeated 5 times
with different random initial conditions, and the best re-
sult is reported here. Among many possible ways to ini-
tialize the systems, and after performing various tests,
we initialized the weights randomly in the ranges: a(l)

n :
[−0.1, 0.1], r

(l)
n : [1, Nl−1], b

(l)
n : [−1/

√
Nl−1, 1/

√
Nl−1],

τ
(l)
n : [−0.1, 0.1], λ

(l)
n : [0.4, 0.6]. Further, in order to

estimate gradients, we smoothed impulses with qσ(v) =
exp[− 1

2 (v/σ)2], σ = 0.05. Due to the size of the training
set, we have used the proposed training algorithm with
M = 1 only. We have tested the case M > 1 with a small
subset of the training set, but no signanificant improve-
ments were observed. Both MRL-NNs and MLPs were
defined using a sigmoid activation function with η = 1
(MRL-NNs of type II). As usual, the desired system out-
put d = (d0, d1, · · · , d9) was defined by

dn =

{
1 , x ↔ digit n
0 , otherwise (28)

In the attempt to compare different systems, a figure
of merit (FM) was defined as follows

FM(t) =
1
2

(‖E(θ)‖ + ‖R(θ)‖) (29)

where θ ∈ [0, 1] is the confidence threshold; t is the epoch;
E is the error rate (%), computed, for a given θ, as the ra-
tio of the number of misclassified digits over the number
of digits that were not rejected during the classification
(in a percentage basis); R is the rejection rate (%), com-
puted, for a given θ, as the ratio of the number of rejected
digits over the total number of elements in the set under
consideration (also in a percentage basis); and

‖E(θ)‖ =
1
10

9∑
i=0

E(
i

10
) , ‖R(θ)‖ =

1
10

9∑
i=0

R(
i

10
)

The training process tends to decrease the figure of merit,
and good performance corresponds to small values of FM.
A given classification is rejected if the desired n-th out-
put is dn = 1 but the actual n-th output has the prop-
erty max{y} = yn < θ, where y is the system output.
An error (misclassification) is obtained when dn = 1 but
max{y} �= yn. The error rate is computed excluding the
rejected digits.

Using our proposed training algorithm with all the
above considerations, we observed that, either for a step
size µ = 0.005 or µ = 0.05, the MRL-NNs required a
smaller number of iterations than MLPs, and provided
similar performances (FMs). Computing the figures of
merit of MLPs with equal number of iterations of MRL-
NNs, we usually observed better performances of MRL-
NNs. Table 1 summarizes some of the results. The best
training performance was obtained with a 64-10-10 MRL-
NN (MRL10, FM=7.4%). Similar results were obtained
with a 64-10-10 MLP (MLP10, FM=7.4%) and a 64-20-
10 MLP (MLP20, FM=7.5%), but with a larger number
of iterations. These best results were all obtained with
µ = 0.05.
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