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ABSTRACT

This paper introduces a theory for max-product systems by analyz-
ing them as discrete-time nonlinear dynamical systems that obey a
superposition of a weighted maximum type and evolve on nonlin-
ear spaces which we call complete weighted lattices. Special cases
of such systems have found applications in speech recognition as
weighted finite-state transducers and in belief propagation on graphi-
cal models. Our theoretical approach establishes their representation
in state and input-output spaces using monotone lattice operators,
finds analytically their state and output responses using nonlinear
convolutions, studies their stability, and provides optimal solutions
to solving max-product matrix equations. Further, we apply these
systems to extend the Viterbi algorithm in HMMs by adding control
inputs and model cognitive processes such as detecting audio and vi-
sual salient events in multimodal video streams, which shows good
performance as compared to human attention.

Index Terms— nonlinear systems, multimedia signal process-
ing, lattices, minimax algebra, event detection, cognitive modeling.

1. INTRODUCTION AND SUMMARY

Several successful algorithms in pattern recognition and machine
learning are based on a max-product arithmetic. Examples include
speech recognition using weighted finite-state transducers (WFSTs)
[32, 20], belief propagation in probabilistic graphical models [3, 40],
and the maximum approximation used by the Viterbi decoding al-
gorithm for likelihood scores during state estimation [33]. Further
in signal processing and control there are several established areas
using max/min superpositions and related operations of signals or
vectors; examples include (i) the max-plus convolution (a.k.a. dila-
tion) in morphological signal/image processing [18, 28, 36, 38] con-
vex analysis [26, 35] and optimization [1], (ii) the minimax algebra
used in scheduling [12], and (iii) the max-plus control in discrete-
event dynamical systems [11, 23, 9]. Further, in multimodal signal
processing for cognition modeling, which has been a main motiva-
tion for this work, several psychophysical and computational exper-
iments indicate that the superposition of sensory signals or cognitive
states seems to be better modeled using max or min rules, possibly
weighted. Such an example is the recent work [15] on attention-
based multimodal video summarization where a (possibly weighted)
min/max fusion of features from the audio and visual signal chan-
nels and of salient events from various modalities seems to out-
perform linear fusion schemes. Finally, the sensory-semantic inte-
gration problem in multimedia signal processing requires fusion of
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two different continuous modalities (audio and vision) with discrete
language symbols and semantics extracted from text. Similarly, in
control and robotics there are efforts to develop hybrid systems that
can model interactions between heterogeneous information streams
like continuous inputs and symbolic strings [5]. In both of these
applications we need models where the computations among modal-
ities/states can handle both real numbers and Boolean variables; this
is possible using max/min rules.

Motivated by the above multimodal signal processing problems,
in this paper we develop some theoretical tools for the representation
and analysis of nonlinear systems whose dynamics evolve based on
the following state-space max-product model:

x(t) = A(t)� x(t− 1) ∨ B(t)� u(t)
y(t) = C(t)� x(t) ∨ D(t)� u(t)

(1)

where t denotes a discrete time index, ∨ denotes maximum, x(t) is
an evolving state vector, u(t) is the input signal (scalar or vector),
y(t) is an output signal (scalar or vector), and A,B,C,D are ap-
propriately sized matrices. � denotes the following nonlinear matrix
product with max-product operations:

P = Q �R, pij =
∨
k

qik × rkj (2)

The state equations (1) are written for the case of time-varying co-
efficients. If the matrices are constant and under zero-initial con-
ditions, the input-output relationship of (1) can be described by a
max-product convolution:

y(t) = (h⊗ u)(t) =
∨
k

u(k)h(t− k) (3)

where h is the system’s impulse response. By replacing maximum
(∨) with minimum (∧) in (1) and (3) we can also obtain a dual model
that describes the dynamics of min-product systems.

Compare the above with linear systems [4, 6, 22, 17], which
deal with linear maps: x(t) = Ax(t − 1) + Bu(t) and y(t) =
Cx(t) + Du(t). There, all the matrix-vector products and signal
convolutions are linear, based on a sum-of-products arithmetic.

A max-product system is a special case of more general systems,
studied in detail in [30], whose algebra is based on maximum of �
operations. Examples of ‘multiplication’ � include the sum and the
product, but � may be only a semigroup operation. The resulting
algebras include the max-plus algebra (R ∪ {−∞},max,+) used
in scheduling and operations research [12], discrete-event dynamical
systems [10, 11, 8, 9], automated manufacturing [23, 24, 13] and
max-plus control [10, 16, 7]; the min-plus algebra or else known as
tropical semiring (R ∪ {+∞},min,+) used in shortest paths on
networks [12] and in natural language processing [32, 20]; the fuzzy
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logic semiring ([0, 1],∨, T )with statistical T -norms playing the role
of fuzzy intersection used in fuzzy automata and neural nets [25, 21],
and fuzzy dynamical systems [31].

Our Contributions. (1) Developed a theory for max-product
systems analyzing both their dynamics in state-space and their input-
output convolutional representation by using a new and powerful
class of underlying spaces, the complete weighted lattices (CWLs).
The detailed theory of CWLs is developed in [29, 30] to which we
refer the reader for all proofs. (2) Derived analytic formulae for
computing the state and output responses of max-product systems as
well as for finding their input-output max-product convolutions, rep-
resented in both cases via lattice monotone operators in adjunction
pairs. Further, use the latter to generate optimal solutions for solving
max-product equations A � x = b. (3) Studied various control-
theoretic issues of max-product systems. (4) Developed applications
of max-product systems that extend the Viterbi algorithm of hidden
Markov models (HMMs) to cases with control inputs and can esti-
mate the saliencies of audio-visual events in multimodal videos with
good performance as compared to human attention.

2. BACKGROUND ON LATTICES AND OPERATORS
The background material in this section follows [2], [37], [19], [18]
and [29]. A partially-ordered set, briefly poset (P ,≤), is a set P
in which a partial ordering ≤ is defined. If the ordering ≤ is total,
then we have a chain. A lattice is a poset (L,≤) any two of whose
elements have a supremum (a.k.a. least upper bound), denoted by
X ∨ Y , and an infimum (a.k.a. greatest lower bound), denoted by
X ∧ Y . We often denote the lattice structure by (L,∨,∧). A lattice
L is complete if each of its (finite or infinite) subsets has a supremum
and an infimum in L.

Duality: In any lattice L, by replacing the partial ordering ≤
with its dual ≤′ and by interchanging the roles of the supremum
and infimum, we can form a new lattice called the dual lattice and
often denoted by L′. To every definition, property and statement that
applies to L there also corresponds a dual one that applies to L′.

Examples of Complete Lattices: (a) The chain of extended real
numbers R = R ∪ {−∞,+∞} equipped with the natural order ≤.
(b) The power set P(E) = {X : X ⊆ E} of an arbitrary set E
equipped with the partial order of set inclusion where the supremum
and infimum are the set union and intersection. (c) Function Lat-
tices: The set of discrete-time signals f : Z → R equipped with the
pointwise ordering ≤, supremum and infimum of R.

Increasing Operators: Given two operators ψ and φ on a com-
plete lattice L we can define pointwise a partial ordering ≤ be-
tween them, their supremum (ψ ∨ φ) and infimum (ψ ∧ φ). Further,
we define the composition of two operators as an operator prod-
uct: ψφ(X) � ψ(φ(X)); special cases are the operator powers
ψn = ψψn−1. Some useful types and properties of lattice opera-
tors ψ include the following: (i) identity: id(X) = X ∀X ∈ L.
(ii) extensive: ψ ≥ id. (iii) anti-extensive: ψ ≤ id. (iv) idempotent:
ψ2 = ψ.

A lattice operator ψ is called increasing if it is order-preserving,
i.e. X ≤ Y =⇒ ψ(X) ≤ ψ(Y ). Four important types of increasing
operators are the following:

δ is dilation iff δ(
∨

i Xi) =
∨

i δ(Xi)
ε is erosion iff ε(

∧
i
Xi) =

∧
i
ε(Xi)

α is opening iff α is increasing, idempotent & anti-extensive
β is closing iff β is increasing, idempotent & extensive

The four above types of lattice operators were originally defined in
[37, 18] as generalizations of the corresponding standard morpho-
logical image operators.

Dilations and erosions come in pairs as the following concept
reveals. The pair (ε,δ) of two operators δ and ε on a complete
lattice L is called an adjunction on L if

δ(X) ≤ Y ⇐⇒ X ≤ ε(Y ) ∀X,Y ∈ L (4)

In any adjunction (ε,δ), ε is called the adjoint erosion of δ,
whereas δ is the adjoint dilation of ε. There is a one-to-one corre-
spondence between the two operators of an adjunction, since, given
a dilation δ, there is a unique erosion

ε(Y ) =
∨

{X ∈ L : δ(X) ≤ Y } (5)

such that (ε,δ) is adjunction, and vice-versa.
From the composition of the erosion and dilation of any adjunc-

tion (ε,δ) we can generate an opening α = δε; since α is an
opening, we have α(f) ≤ f and α2 = α. Dually, any adjunction
can also generate a closing β = εδ. Both of these are special cases
of morphological filters in [37, 18], a.k.a. lattice projections [29],
since they are increasing and idempotent.

3. THEORY OF MAX-PRODUCT SYSTEMS
3.1. Weighted Lattices of Vectors and Signals
All elements of the vectors, matrices, or signals involved in the de-
scription of max-product systems take their values from the set K =
[0,∞] of nonnegative extended reals. We equip K with the follow-
ing scalar operations: (A) the standard maximum or supremum ∨ on
R, which plays the role of a generalized ‘addition’. (A′) the standard
minimum or infimum ∧ on R. It plays the role of a generalized ‘dual
addition’ . (M) the multiplication × extended over [0,∞] which has
1 as its identity and 0 as its null element, and distributes over any
supremum. (M′) a ‘dual multiplication’ ×′ which has∞ as null ele-
ment, distributes over any infimum and coincides with× on (0,∞).
The four above operations make K an algebraic structure called clo-
dum (complete lattice-ordered double monoid) [27, 29]. We can also
define a conjugation operation mapping bijectively each element a to
its conjugate element a = 1/a = a−1. This interchanges suprema
with infima; further a× b = a−1 ×′ b−1. In [0,∞] the × and ×′

operations coincide in all cases with only one exception, the multi-
plication of 0 with∞. Thus, henceforth we shall use only one mul-
tiplication (×) and remember that the case 0×∞ will have value 0
(resp. ∞) if it is combined with other terms via a supremum (resp.
infimum).

Consider the set W consisting of all nonnegative functions F :
E → K defined on an arbitrary nonempty set E and taking values
in the clodum K = [0,∞]. If we extend pointwise the supremum
(F ∨ G), infimum (F ∧ G) and scalar multiplication (a × F ) for
functions F,G ∈ W and scalars a ∈ K, the set W becomes a com-
plete weighted lattice (CWL) over K. We can also have conjugation
of functions by defining F (t) = 1/F (t). The axioms of CWLs
bear a remarkable conceptual similarity with those of linear spaces
as analyzed in in our recent work [29, 30]. We focus on two spe-
cial cases: (i) If E = {1, 2, ..., n}, then W becomes the set of all
n-dimensional vectors with elements fromK. (ii) If E = Z, thenW
becomes the set of all discrete-time signals with values from K.

On linear spaces, a linear system Γ obeys linear superposition:

Γ(
∑
i

aiFi) =
∑
i

aiΓ(Fi) (6)

On a CWL the conceptually analogous superposition would be to
have systems δ that obey a max-product superposition:

δ(
∨
i

ciFi) =
∨
i

ciδ(Fi), (7)
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This means that δ is both a dilation and invariant to vertical scalings
(in short V-scalings) of signals F (t) �→ aF (t). We call δ a dilation
V-scaling invariant (DVI) system.

CWL of vectors: Consider now the CWL vector space W =
Kn, equipped with the pointwise partial ordering x ≤ y, supremum
x∨y = [xi∨yi], infimum x∧y = [xi∧yi], and scalar multiplica-
tions of vectors . On finite-dimensional linear vector spaces a vector
map is linear iff it can be represented as a linear product between
the system’s matrix and the input vector. Similarly, we have shown
that on the CWL W a map is DVI iff it can be represented as the
max-product between the input vector x and the matrixM = [mij ]

with mij = {δ(vj)}i, where vj are basis vectors. This map is a
vector dilation δM (x) = M �x . Its adjoint vector erosion, so that
(ε,δ) is an adjunction, can be shown to equal [30]

ε(y) = M
∗

�
′

y, M
∗

� M
T
, (8)

where M∗ � [m−1
ji ] is the adjoint matrix of M = [mij ], and �′

denotes the matrix min-product; namely, P = Q �′ R with pij =∧
k
qikrkj . This adjunction helps us solvemax-product equations:

A� x = b (9)

Often (9) does not have an exact solution, in which case we can
find an optimum approximate solution by solving the following con-
strained minimization problem:

Minimize ||A� x− b||
subject to A� x ≤ b

(10)

where || · || is either the �∞ or the �1 norm.
Theorem 1 (a) The vector x̂ = A∗ �′ b is a solution to (10).
(b) If Eq. (9) has a solution, then x̂ is its greatest solution.

Our method for solving (10) is to consider vectors x that are
sub-solutions in the sense that A � x ≤ b and find the greatest
such sub-solution using adjunctions. The set of sub-solutions forms
a semigroup under vector∨whose supremum equals x̂, which yields
either the greatest exact solution of (9) or an optimum approximate
solution in the sense of (10). This adjunction-based solution creates
a lattice projection via the opening δ(ε(b)) ≤ b that best approxi-
mates b from below.

CWL of signals: Consider the set W of all discrete-time sig-
nals f : Z → K with values from K = [0,∞]. Equipped with
pointwise supremum ∨ and infimum ∧, and pointwise scalar mul-
tiplications, this becomes a complete weighted lattice. The signal
translations are the operators τ k,v(f)(t) = vf(t − k). A signal
operator on W is called translation invariant iff it commutes with
any such translation. This translation-invariance contains both a ver-
tical translation and a horizontal translation which is the well-known
time-invariance. Now, if q(t) is the impulse, equal to 1 at t = 0
and 0 elsewhere, every signal f can be represented as a supremum
of translated impulses

f(t) =
∨
k

f(k)q(t− k) (11)

Consider now operators Δ on W that are dilations and translation-
invariant in the above sense. Then, Δ is both DVI in the sense of
(7) and time-invariant. We call such operators dilation translation-
invariant (DTI) systems. Applying Δ to an input signal f decom-
posed as in (11) yields the output as the max-product convolution ⊗
of the input with the system’s impulse response h = Δ(q):

Δ(f)(t) = (f ⊗ h)(t) =
∨
k

f(k)h(t− k) (12)

Theorem 2 A signal operator Δ is a DTI system iff it can be rep-
resented as the max-product convolution of the input signal with the
system’s impulse response h = Δ(q).

3.2. State and Output Responses
Based on the state-space model of a max-product dynamical system
(1), we can compactly express its state response and output response
if we know its transition matrix:

Φ(t2, t1) �

{
A(t2)� · · ·�A(t1 + 1) if t2 > t1
In if t2 = t1

(13)

for t2 ≥ t1, where In is the n × n identity matrix. By using in-
duction on (1), the state and output responses of the time-varying
nonhomogeneous system can be found, for t ≥ 0,

x(t) = Φ(t, 0) � x(0) ∨

(
t∨

i=1

Φ(t, i) �B(i)� u(i)

)
(14)

y(t) = C(t)� Φ(t, 0)� x(0) ∨ D(t)� u(t)

∨

(
t∨

i=1

C(t)�Φ(t, i) �B(i)� u(i)

)
(15)

The zero-state part of y is a time-varying max-product convolution.
If matricesA,B,C,D are constant, the state equations become:

x(t) = A� x(t− 1) ∨ B � u(t)
y(t) = C � x(t) ∨ D � u(t)

(16)

and Φ(t2, t1) = A(t2−t1), where A(t) denotes the t-fold max-
product of A with itself. By representing the matrix-vector max-
product as a dilation operator x �→ δA(x) = A � x, the solutions
of the constant-matrix state equations become

x(t) = δ
t

A[x(0)] ∨
(∨t

i=1
δ
t−i

A δB[u(i)]
)

(17)

y(t) = δCδ
t

A[x(0)]︸ ︷︷ ︸
zero-input resp.

∨
(∨t

i=1
δCδ

t−i

A δB[u(i)]
)
∨ δD[u(t)]︸ ︷︷ ︸

yzs(t)� zero-state resp.

Thus, the output response is found to consist of two parts: (i) the
zero-input response which is due only to the initial conditions x(0)
and assumes a zero input, and (ii) the zero-state response which is
due only to the input u(t) and assumes zero initial conditions x(0).

For single-input single-output systems the mapping u(t) �→
yzs(t) can be viewed as a translation invariant dilation system Δ.
Hence, the zero-state response can be found as the max-product con-
volution of the input with the system’s impulse response h = Δ(q).
The latter can be found from the general output by setting initial
conditions x(0) = 0 and the input u(t) = q(t):

h(t) =

{
D, t = 0

C �A(t) �B, t ≥ 1
(18)

The previous results allowed us to address and solve in [30] var-
ious important control-theoretic problems for max-product systems,
such as their stability, controllability and observability. We outline
next the stability result. A useful bound for signals f(t) processed by
such systems is their supremal value

∨
t
f(t). We call max-product

systems bounded-input bounded-output (BIBO) stable iff an upper
bounded input yields an upper bounded output, i.e. if∨

t

u(t) < ∞ =⇒
∨
t

y(t) < ∞ (19)

Since all signals involved are nonnegative, the above definition of
sup-stability coincides with their absolute stability.
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Theorem 3 Consider a DTI system Δ and let h = Δ(q) be its im-
pulse response. Then: (a) The system is causal iff h(t) = 0 for all
t < 0. (b) The system is BIBO stable iff

∨
t h(t) < ∞.

4. HMMS EXTENSIONS AND APPLICATIONS TO
DETECTINGMULTIMODAL SALIENCIES

Assume a video sequence of audio-visual events each to be scored
with some degree of saliency in [0, 1] where ‘saliency’ is some
bottom-up low-level sensory form of attention by a human watching
this video. The states x1, x2, x3, x4 represent time-evolving mono-
or multi-modal saliencies, where 1=audio, 2=visual, 3=audiovisual,
and 4=non-salient. Peaks in these saliency trajectories signify im-
portant events, which can be automatically detected and produce
video summaries that agree well with human attention [15]. The
following state equations are a possible time-varying max-product
dynamical model we propose for the evolution of these saliencies:

xi(t) =

(
4∨

j=1

aijxj(t− 1)

)
� pi(t) ∨

(
4∨

j=1

bijuj(t)

)
(20)

for state i = 1, 2, 3, 4. The constants aij represent state transitions
probabilities and pi(t) denotes the probability of state xi(t) being
salient based on observed measurable low-level feature vectors ot.
We assume that the parameters aij and pi(t) are given. The opera-
tion � must distribute over ∨ and can be a product, min or max.

Assume first that � is the product. Given a time sequence of
observations (o0,o1, ..., ot) one can fit HMMs to these data using
maximum likelihood [34]. Then, the first term in the RHS of (20)
models the evolution of the Viterbi dynamic programming (DP) al-
gorithm used in automatic speech recognition with HMMs for op-
timal state estimation, if we initialize at t = 0 the four states by
setting xi(0) = πipi(0) where πi denotes the probability of the sys-
tem being at the ith state at t = 0. For example, if the inputs ui(t)
are all zero, then the single output y(t) =

∨
i
xi(t) computes the

Viterbi score, which is the probability for having observed the data
(o0, ..., ot) and the HMM having passed through the optimum state
sequence (that maximizes this probability). Our system (20) is more
general than the Viterbi algorithm from which it differs in the fol-
lowing aspects: 1) we have the probability-like signals ui(t) which
can act as control inputs coming possibly from higher-level events
(e.g. detected human faces, presence of speech in the audio, or other
semantics). 2) the outputs of the dynamical system can be various
min-max combinations of the saliency states of various modalities.
3) the operation � may be different than the product (which makes
the system an HMM if the inputs are zero). For example, it can be a
minimum or a maximum.

In our experiments, for estimating the observation data proba-
bilities pi(t) we have followed two different approaches. In the first,
we fitted Gaussian mixture models (GMMs) to audio and visual fea-
ture vectors extracted from the video data at each frame t. In the
other, we used bottom-up likelihoods by fusing saliencies of the au-
dio and visual streams measured from monomodal cues as in [15].
We have also used high-level control inputs, i.e. automatic face de-
tection [39] and speech activity detection (VAD) [14]. In the case
of GMMs we estimated the state transition probabilities aij using
the EM algorithm on some training data from movie videos. In the
case of bottom-up likelihoods, the probabilities aij were set equal to
1/4 plus a penalty at the diagonal elements aii. For the salient event
detection we keep the best state path (the state sequence that has the
highest probability) and compare it with human annotations from

the movie video. If a frame is annotated with N-labels (e.g. “Au-
dio” and “Audio-Visual”), we search in the N-best state paths. In
Table 1 we present our evaluation results on a movie video (‘Glad-
iator’) from the MovSum database [15]. We also see the average
performance over six movies from various film genres. Our results
using the max-product dynamical system are encouraging as they
can estimate monomodal or multimodal audio-visual salient events
more accurately than GMMs or the bottom-up feature-based likeli-
hoods and can improve with higher-level control inputs. They also
outperform HMMs. In Fig. 1 we see an example of our system evo-
lution. Note that in most cases the human-annotated salient events
are included in the best state paths found by our system.

GMM Likelihoods Bottom-Up (BU) Likelihoods
GMM HMM Variant MPDS BU HMM Variant MPDS

State Prod. Min Max Prod. Min Max Prod. Min Max Prod. Min Max
A 65 68 68 64 76 69 67 24 24 34 26 63 71 74
V 50 52 52 45 57 51 44 56 56 45 47 60 55 14
AV 69 62 26 53 75 55 56 60 60 87 52 64 66 79
None 56 56 43 46 52 28 45 44 44 11 42 42 37 46
Aver.(A,V,AV) 61 60 49 54 69 58 56 47 47 55 42 62 64 56

6 Movies 65 65 53 58 68 67 60 58 58 64 54 65 65 64

Table 1: F-scores
(
F

−1
score = P

−1
recision +R

−1
ecall

)
for the HMM Variant

and the Max-Product Dynamic System (MPDS) using either the GMM esti-
mated or the bottom-up likelihoods. For the operation � we have employed
three different versions: product, minimum and maximum.

500 1000 1500 2000 2500 3000
0

0,5

1

Human Annotations

1st Best State Path
2nd Best State Path
3rd Best State Path

Frames

Audio
Visual
Audio−Visual

Bottom−Up
Likelihoods

Fig. 1: Evolution of audio (blue), visual (red) and audio-visual (green)
bottom-up likelihoods. We also see the human annotations and the 3-Best
state paths using the Max-Product Dynamic System (MPDS) with product
operation. (This figure is best viewed in color.)

5. CONCLUSIONS
We have developed a theory for max-product systems based on com-
plete weighted lattices. Results of the theoretical analysis include
analytic formulae for their state and output responses, max-product
convolutions connecting inputs with outputs, and study of control-
theoretic issues. Further, we have applied max-product systems
to extend the Viterbi algorithm in HMMs to a more general sce-
nario that allows for high-level control inputs in addition to the
observations. This control-based new version of HMMs was ap-
plied to estimate audio-visual saliency states in multimodal videos.
Comparisons between the results of the max-product system and
human-annotations on movie videos yielded promising results for
automatically detecting salient events. Our ongoing and future work
in this area includes a further study of the relationship between the
max-product dynamical systems and HMMs and development of
approaches for estimating the max-product system parameters and
state from observed data.
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