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ABSTRACT

This paper deals with improving the time-frequency resolu-
tion of Doppler ultrasound spectroscopy, applied to blood
flow analysis, by developing robust nonstationary spectrum
estimation techniques based on Gabor filterbanks and multi-
band AM-FM demodulation that uses an instantaneous en-
ergy separation algorithm.

1. INTRODUCTION

Spectral Doppler ultrasound represents an invaluable tool
for the noninvasive measurement of blood flow, with exten-
sive medical applications in the diagnosis and management
of cardiovascular disease [6] . Spectral Doppler ultrasound
systems operate by transmitting multiple ultrasonic pulses
along a given beam direction, receiving the Doppler signal
backscattered from moving blood cells at a given depth, and
performing spectral analysis of the Doppler signal to produce
a two-dimensional spectrogram which provides the ampli-
tudes of the detected Doppler frequency shifts (proportional
to the corresponding axial velocity components of the mov-
ing blood cells) as a function of time. In all commercially
available systems, spectral analysis is carried out by means
of the short-time Fourier transform. However, it is generally
recognized that this type of conventional spectral analysis is
associated with a number of errors in the context of quanti-
tative blood flow measurements.

More specifically, a first source of error is the temporal
windowing (typically, 20 -30 ms) associated with the short-
time Fourier transform, which causes artificial broadening of
the true Doppler spectrum. A second source of error is intro-
duced by the highly non-stationary nature of Doppler signals
from blood, resulting in spectral distortion and generation
of artificial frequency components. Obviously, an attempt
to minimize the effect of temporal windowing by using a
longer analysis window will accentuate the non-stationarity-
related distortion and vice versa. A third source of error is
due to the amplitude modulation of the Doppler signal by

This work was supported by the basic research program
ARCHIMEDES of the NTUA Institute of Communication and Com-
puter Systems.

the impulse response of the ultrasound system, which cor-
responds to implicit windowing in the spatial domain. The
above sources of error, which have been collectively grouped
under the term ”spectral broadening artifacts”, are consid-
ered responsible for limiting the performance and, in certain
cases, diagnostic utility of spectral Doppler ultrasound. A
quantitative model of spectral broadening can be found in
[2], where as a detailed review is available in [11].

Motivated by the specific drawbacks of the short-time
Fourier transform in the context of Doppler ultrasound, a
number of alternative spectral analysis techniques have been
proposed in the literature, including AR and ARMA models
[17, 7, 9, 14], Wigner distributions [5, 10, 4], and MUSIC
algorithms [1, 18]. However, none of those alternative spec-
tral analysis techniques have been adopted in routine clinical
practice due to concerns about their compatibility with the
non-stationary nature of blood flow (i.e., “optimum” anal-
ysis parameters vary widely throughout the cardiac cycle)
and/or technique-specific artifacts (e.g. Wigner distribution
frequency cross-products). Therefore, a considerable need
still remains for new spectral analysis techniques which are
compatible with the non-stationarity of Doppler signals from
blood, and offer clearly better performance than the short-
time Fourier transform, both in terms of spectral broadening
and distortion artifacts as well as temporal / frequency reso-
lution.

A relatively new trend in nonstationary signal and spec-
trum analysis is to model a signal as a sum of AM-FM sig-
nals, i.e., nonstationary sines x(t) = a(t) cos(

∫ t

0 f(τ)dτ)
that have a combined amplitude modulation (AM) and fre-
quency modulation (FM). To solve the demodulation prob-
lem, an efficient novel methodology was developed in [15]
by tracking the energy of the source producing the AM-FM
oscillation and separating it into its instantaneous amplitude
and frequency components. The energy tracking is done via
nonlinear differential operators, the main representative of
which is the continuous-time Teager-Kaiser energy operator
[12] Ψ[x(t)] � [ẋ(t)]2 −x(t)ẍ(t), where ẋ(t) = dx(t)/dt.
The demodulation is done via the energy separation algo-
rithm (ESA) [15]. In this paper, we use novel tools such as a
multiband version of the ESA [3] and related time-frequency
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robust estimates [16] to develop an improved method for
Doppler ultrasound spectroscopy. We apply the new method
to blood flow signals and compare it with traditional tech-
niques.

2. SIMULATED SIGNALS

Two types of Doppler data were used as inputs in this study:
1) synthetic radiofrequency (RF) signals, generated accord-
ing to a model which specified the signals’ true spectral con-
tent; and 2) in vivo blood flow RF signals, which allowed
testing and evaluation under realistic conditions.

The synthetic RF Doppler signals were obtained by means
of a backscatter simulation model which convolved the ul-
trasound system’s impulse response with a spatio-temporal
distribution of multiple elementary targets according to the
equation:

rf(i, t) =
M∑

m=−M

N∑
n=−N

hV (m, n) ∗ s(ri + m, ci + n, t)

(1)
where r, c represent the longitudinal and transverse axis of
the simulated vessel and ri, ci define the ultrasound beam
axis, which forms an angle θ relative to the vessel’s longitudi-
nal axis: i.e., ri = r0+(i−1)dr, ci = c0+(i−1)dc, θ =
arctan(dc/dr). The function rf(i, t) denotes the backscat-
tered RF sample i received at discrete time t = 0, T, 2T, . . .
where T is the pulse repetition period. The matrix hV (m, n)
represents the ultrasound system’s impulse response (first
defined in coordinates parallel and perpendicular to the ul-
trasound beam, and then rotated to coincide with the vessel
coordinates r, c). The function s(r, c, t) specifies the spatio-
temporal distribution of backscatter targets simulating the
red blood cells. The targets are randomly initialized in terms
of their scattering strength, and undergo shifting according
to the model

s (r, c, t) = s (r + v(c, t)T, c, t − T ) (2)

v(c, t) = v0(t)

(
1 − |c − c0|k(t)

Rk(t)

)
(3)

where v0(t) is the target velocity on the vessel longitudinal
axis c = c0, R is the vessel radius, and k(t) determines the
blood velocity profile.

The developed simulation environment included GUIs
which allowed full control of all the important instrumentation-
and physics- related parameters such as ultrasound pulse fre-
quency and length, beam width, pulse repetition frequency,
maximum velocity, beam-vessel angle, etc.

The in vivo blood flow RF signals were acquired from the
common carotid artery, using a central pulse frequency of 4
MHz, RF sampling frequency of 24 MHz, pulse repetition
frequency of 5 kHz, beam-vessel angle of 60 degrees and
observation time of 2 seconds.

3. ENERGY SEPARATION ALGORITHM

We assume that the original (possibly multicomponent) non-
stationary signal under analysis has been filtered through a
bank of bandpass filters. Let the output from a single filter be
modeled as an AM-FM signal x(t) = a(t) cos(

∫ t

0 f(τ)dτ).
Applying the energy operator Ψ to this signal yields the
instantaneous source energy, i.e. Ψ[x(t)] ≈ a2(t)f2(t),
where the approximation error becomes negligible [15] if the
instantaneous amplitude a(t) and instantaneous frequency
f(t) do not vary too fast or too much with respect to the
average value of f(t). Then, AM-FM demodulation can be
achieved by separating the instantaneous energy into its am-
plitude and frequency components. Ψ is the main ingredient
of the first energy separation algorithm (ESA)√

Ψ[x(t)]
Ψ[ẋ(t)]

≈ f(t) ,
Ψ[x(t)]√
Ψ[ẋ(t)]

≈ |a(t)| (4)

developed in [15] and used for signal and speech AM–FM
demodulation.

The instantaneous energy separation methodology has
led to several classes of algorithms for demodulating discrete-
timeAM-FM signalsx[n] = x(nT ) = A[n] cos(

∫ n

0 F [k]dk)
where A[n] = a(nT ) and F [n] = Tf(nT ). A direct ap-
proach is to apply the discrete-time Teager-Kaiser operator
Ψd[xn] � x2

n−xn−1xn+1, wherexn = x[n], to the discrete
AM-FM signal and and its differences (which approximate
derivatives). This yields the following algorithm, called Dis-
crete ESA [15]:

arccos
(
1 − Ψd[xn−xn−1]+Ψd[xn+1−xn]

4Ψd[xn]

)
≈ F [n]√

Ψd[xn]
sin2(F [n]) ≈ |A[n]|

The DESA is a novel and very promising approach to AM-
FM demodulation for many reasons: (i) It yields very small
errors for estimating the instantaneous amplitude and fre-
quency. (ii) It has an extremely low computational complex-
ity. (iii) It has an excellent time resolution, almost instanta-
neous; i.e., operates on a 5-sample moving window and can
track instantaneous changes of signal modulations. (iv) It
is less computationally complex and has better time resolu-
tion than other classical demodulation approaches such as
the Hilbert transform. (v) It can detect transient events.

4. MULTIBAND ANALYSIS AND EXPERIMENTS

In order to take advantage of ESA’s capabilities, the doppler
RF signals are filtered through a filter-bank constructed by
real 1 Gabor bandpass filters. Gabor filters [8] are known to
be optimally compact and smooth both in time and frequency

1At this stage of the analysis no complex signals are used.
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domains and have impulse response h(t) and frequency re-
sponse H(ω),

h (t) = e−α2t2 cos (2πνt) (5)

H (ω) =
√

π

2α

[
e− π(ω−ν)2

α2 + e− π(ω+ν)2

α2

]
(6)

where ν is the center frequency of each filter and α is the
bandwidth parameter. (The rms bandwidth is equal toα/

√
2π.)

The bandpass signals produced as the outputs of a dense
bank of overlapping uniformly-spaced Gabor filters are de-
modulated by using the ESA algorithm, thereby yielding
instantaneous frequency f(t) and amplitude |a(t)| estimates
for each filter output. For the AM-FM signal at each filter’s
output, a robust estimate of its short-time mean frequency,
weighted by the squared amplitude [a(t)]2, is given by [16]

Fw =

∫ t0+T

t0
f(t)[a(t)]2dt∫ t0+T

t0
[a(t)]2dt

(7)

for each analysis frame centered around time t and each fil-
ter centered around a central frequency ν. The denser the
Gabor filterbank, the better the frequency resolution. Time-
resolution depends on the length of the analysis frame. Typ-
ical durations of the analysis frame for this category of sig-
nals (Section 2) vary between 5-30 ms. The frequency steps
between adjacent filters that have been used vary between
200-500 Hz. In Figs. 1(b) and 2(b) a time-frequency rep-
resentation known as pyknogram [16] is shown as a binary
image, in which for each analysis frame time center and for
each filter’s center frequency a dot is plotted at the weighted
short-time mean frequency estimate Fw (which in general
may be different from the filter’s center frequency). Since
dense regions correspond to dominant frequencies at each
time instant, the pyknogram is a useful tool for frequency
estimation. Fig. 1(b) presents the pyknogram of a synthetic
signal with constant flow velocity, constant velocity profile,
central pulse frequency of 4 MHz, RF sampling frequency of
20 MHz, pulse repetition frequency of 8 kHz, beam-vessel
angle of 45 degrees and observation time of 2 sec. In Fig. 2(b)
the same method has been employed for the real part of the
in vivo blood flow RF signal. For both experiments, we
used moving frames of 128 samples with 50% overlap for
computing Fw. It is evident that the pyknogram tracks the
dominant frequencies throughout the duration of the two car-
diac cycles. In the above mentioned pyknograms the lighter
dots correspond to bandpass signals whose Teager energy
[15] surpasses a threshold.

We have compared the above pyknogram method with
the short-time Fourier transform (STFT) method for spec-
tral estimation. In Figs. 1(c) and 2(c) the STFTs of the two
signals are presented. (For computing the STFT, 256-point
DFT’s were used on moving Hamming-windowed frames

of 128 samples with a 50% overlap.) From preliminary ex-
periments, the pyknogram appears to offer a better spectral
resolution than the STFT. A detailed quantitative evaluation
of the two techniques is currently in progress.

5. CONCLUSIONS

In this paper multiband analysis and ESA [15, 3, 16] have
been succesfully introduced as an attempt to improve doppler
ultrasound spectroscopy. Our initial experience is clearly
promising and our on-going research work in this area in-
cludes: extension of the multiband energy demodulation
analysis for complex doppler signals, extended experiments
and comparison with STFT and other alternative methods.
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Fig. 1. (a) Synthetic Doppler Signal, (b) Pyknogram of Synthetic Signal, (c) STFT of Synthetic Signal.

0 0.02 0.04 0.06 0.08 0.1 0.12
−6000

−4000

−2000

0

2000

4000

6000

D
op

pl
er

 S
ig

na
l a

t V
es

se
l C

en
te

r

Slow Time (Pulse Repetition Interval, sec)
0 0.5 1 1.5 2 2.5

0

500

1000

1500

2000

2500

Time (sec)

Pyknogram

F
re

qu
en

cy
 (

H
z)

F
re

qu
en

cy
 (

H
z)

Time (sec)

Short−Time Fourier Transform

0 0.5 1 1.5 2 2.5

2500

2000

1500

1000

500

0

(a) (b) (c)

Fig. 2. (a) In vivo Doppler Signal, (b) Pyknogram of In vivo Signal, (c) STFT of In vivo Signal.
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